세계의 실리콘 포토닉스 시장 규모 : 컴포넌트별, 제품별, 용도별, 지역 범위별 및 예측
Global Silicon Photonics Market Size By Component, By Product, By Application, By Geographic Scope And Forecast
상품코드 : 1845820
리서치사 : Verified Market Research
발행일 : 2025년 09월
페이지 정보 : 영문 202 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,950 ₩ 5,693,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.
US $ 4,850 ₩ 6,990,000
PDF & Excel (5 User License) help
PDF 및 Excel 보고서를 동일 기업의 5명까지 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.
US $ 7,550 ₩ 10,881,000
PDF & Excel (Enterprise User License) help
PDF 및 Excel 보고서를 동일기업내 모든 분들이 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.


한글목차

실리콘 포토닉스 시장 규모와 예측

실리콘 포토닉스 시장 규모는 2024년에 20억 2,000만 달러, 2026-2032년에 CAGR 25.50%로 성장하며, 2032년에는 104억 8,000만 달러에 달할 것으로 예측됩니다.

실리콘 포토닉스 시장이란 실리콘 포토닉스 기술의 연구개발, 제조, 응용과 관련된 전 세계 산업을 말합니다. 이 기술은 실리콘을 광 매체로 사용하여 단일 마이크로칩에 전자 부품과 광학 부품을 결합한 광집적회로(PIC)를 만드는 기술입니다.

이 시장을 주도하는 것은 고속, 에너지 효율, 비용 효율적인 데이터 전송 및 데이터 처리에 대한 수요입니다. 이 시장의 주요 특징은 다음과 같습니다.

기술: 기술: 확립된 CMOS(상보형 금속산화막 반도체) 제조 공정을 활용하므로 확장성이 높고, 기존 반도체 인프라와의 호환성이 높습니다. 이를 통해 광과 전자의 기능을 하나의 칩에 통합하여 보다 작고 전력 효율이 높은 디바이스를 구현할 수 있습니다.

주요 제품: 시장에는 다음과 같은 다양한 제품이 있습니다.

광 트랜시버 및 액티브 광케이블(AOC)

광 스위치

광 멀티플렉서/디멀티플렉서

센서(바이오센싱, LiDAR 등)

변조기, 도파관, 광검출기 등의 개별 부품

용도 이 시장은 고속 데이터 전송과 센싱이 중요한 다양한 산업 분야에 적용됩니다. 주요 용도는 다음과 같습니다.

데이터센터 및 고성능 컴퓨팅(HPC) : 데이터센터 및 고성능 컴퓨팅(HPC) : 하이퍼스케일 데이터센터에서 대역폭의 한계를 극복하고 전력 소비를 줄입니다.

통신: 대용량 장거리 광통신, 특히 5G 백홀 및 코어 네트워크용.

자동차 자율주행차 통합 LiDAR 시스템용.

헬스케어 및 생명과학: 소형 고속 진단 장치 및 웨어러블 바이오센서용.

항공우주 및 국방 다양한 감지 및 통신 용도를 위한 항공우주 및 국방.

시장 성장 촉진요인 : 시장 성장의 원동력은 다음과 같습니다.

클라우드 컴퓨팅, AI, 빅데이터, IoT로 인한 데이터 트래픽의 급격한 증가.

5G 네트워크의 급속한 보급.

데이터센터의 전력 소비 증가에 대응하기 위한 에너지 효율적 솔루션의 필요성.

복잡한 광학 시스템을 양산 가능한 소형 칩에 통합할 수 있는 능력.

세계의 실리콘 포토닉스 시장 성장 촉진요인

실리콘 포토닉스 시장은 크게 성장하고 있으며, 2030년에는 90억 달러 이상에 달할 것으로 예측됩니다. 주요 촉진요인을 요약하여 소개한다:

고대역폭, 고속 데이터 전송에 대한 수요: 클라우드 컴퓨팅, AI, 비디오 스트리밍, IoT 등에 힘입어 디지털 세계의 데이터에 대한 끊임없는 수요는 기존의 구리 기반 상호 연결에 부담을 주고 있습니다. 실리콘 포토닉스는 초고속, 광대역, 저지연, 신호 저하 없이 데이터 전송을 가능하게 하는 강력한 솔루션을 제공합니다. 따라서 데이터센터내 또는 데이터센터 간 방대한 데이터 트래픽 처리, 랙 간 통신 및 칩 간 통신에 필수적입니다.

클라우드 컴퓨팅, AI, 하이퍼스케일 데이터센터의 성장: 클라우드 서비스 및 AI/ML 용도의 근간을 이루는 하이퍼스케일 데이터센터에서는 방대한 워크로드를 관리할 수 있는 확장 가능하고 에너지 효율이 높은 솔루션이 필요합니다. 솔루션이 필요합니다. 실리콘 포토닉스는 고속 광 인터커넥트를 제공하며, 이러한 거대한 인프라의 데이터 흐름을 최적화하는 데 필수적입니다. 실리콘 포토닉스는 낮은 레이턴시와 높은 처리량이 가장 중요한 AI 시스템에서 GPU, TPU, 메모리 모듈의 연결에 특히 효과적입니다.

통신 인프라의 발전(5G 및 6G) : 현재 진행 중인 5G의 세계 확산과 6G 네트워크의 개발로 인해 대용량, 초저지연 백홀 및 프론트홀 연결이 시급히 요구되고 있습니다. 실리콘 포토닉스는 이러한 네트워크에서 방대한 양의 데이터를 처리할 수 있는 비용 효율적이고 효율적인 방법을 제공하여 보다 강력한 엣지 컴퓨팅 기능을 구현하는 데 중요한 역할을 합니다.

에너지 효율 및 전력 소비 감소: 데이터센터는 많은 에너지를 소비합니다. 실리콘 포토닉스는 기존의 전기 신호보다 훨씬 적은 전력으로 데이터를 전송할 수 있는 빛을 사용하여 이 문제를 해결합니다. 이는 운영 비용 절감과 냉각 요구 사항 감소로 이어지며, 지속가능성을 높이고 탄소발자국을 줄이기 위한 전 세계적인 노력과 일치합니다.

CMOS 제조와의 호환성 및 확장성: 실리콘 포토닉스의 가장 큰 장점은 기존 CMOS(상보형 금속산화막 반도체) 제조 공정과의 호환성입니다. 이를 통해 기존 반도체 인프라를 활용한 대량 생산이 가능해져 제조 비용을 절감하고, 견고하고 확장 가능한 공급망을 구현할 수 있습니다. 보급이 진행되면 규모의 경제로 인해 비용은 더욱 낮아질 것입니다.

정부 구상과 전략적 투자: 세계 각국 정부는 반도체와 포토닉스 기술의 전략적 중요성을 인식하고 있습니다. 자금지원, 세제혜택, 인프라 투자를 통해 연구개발을 적극 지원하고 있습니다. 이러한 제도적 지원은 실리콘 포토닉스 기술의 상용화와 채택을 가속화할 것입니다.

데이터 통신과 통신을 넘어선 새로운 용도: 데이터센터와 통신이 주요 시장인 반면, 실리콘 포토닉스는 새롭고 다양한 용도로 확장되고 있습니다. 이 기술은 빛의 양자 상태를 조작할 수 있게 함으로써 확장 가능하고 내결함성이 있는 네트워크 양자컴퓨터를 구축하는 데 매우 중요한 기술입니다.

소형화 및 Co-Packaged Optics: 전자 부품과 광학 부품의 소형화, 집적화 추세는 CPO(Co Packaged Optics)의 필요성을 높이고 있습니다. 실리콘 포토닉스는 이러한 추세의 핵심이며, 단일 칩에 광학 부품과 전자 부품을 긴밀하게 통합할 수 있습니다. 이를 통해 에너지 손실과 지연 시간을 줄여 차세대 컴퓨팅 아키텍처와 고성능 네트워크 확장에 필수적인 요소로 작용합니다.

프라이빗 네트워크와 엣지 컴퓨팅의 부상: 산업용 5G, 엣지 컴퓨팅, 프라이빗 무선 네트워크의 성장으로 현지화된 고속, 저지연 연결에 대한 수요가 증가하고 있습니다. 실리콘 포토닉스는 이러한 분산형 컴퓨팅 수요에 대응하기에 적합하며, 제조, 물류, 스마트 시티 등의 용도에서 특히 유용하게 활용되고 있습니다.

세계의 실리콘 포토닉스 시장 성장 억제요인

최근 시장 분석에 따르면 실리콘 포토닉스 시장은 성장과 보급을 늦추는 몇 가지 주요 억제요인에 직면해 있습니다. 이러한 문제들은 종종 상호 연관되어 있으며, 초기 R&D 및 제조 단계부터 광범위한 시장 역학에 이르기까지 다양한 분야에 걸쳐 있습니다.

높은 초기 자본 및 제조 비용: 실리콘 포토닉스 제조 시설의 설립 및 업그레이드에 소요되는 높은 비용이 진입 장벽으로 작용하고 있습니다. 여기에는 특수 장비와 SOI(Silicon on Insulator) 웨이퍼와 같은 고가의 재료 사용에 필요한 막대한 자본 투자가 포함됩니다. 정밀한 에칭과 성막을 포함한 복잡한 다단계 제조 공정은 단위당 비용을 더욱 증가시킵니다. 또한 이 기술은 아직 개발 중이기 때문에 성숙한 전자 IC에 비해 제조 수율이 낮고, 기능 칩당 비용이 높습니다.

설계, 통합, 포장의 복잡성: 실리콘 포토닉스에서는 전자 부품과 광학 부품을 모두 원활하게 통합해야 합니다. 이 '협업 설계'는 매우 복잡한 과정이며, 전문적인 전자 설계 자동화(EDA) 툴와 여러 분야의 전문가 팀이 필요합니다. 포장은 특히 중요하고 비용이 많이 드는 병목 현상입니다. 칩과 외부 파이버 및 레이저 사이의 광학 정렬 및 결합의 서브미크론 정밀도를 달성하고 유지하는 것은 어려운 과제입니다. 집적 레이저에서 발생하는 열은 성능 저하 및 파장 드리프트를 유발할 수 있으므로 열 관리도 중요한 문제입니다.

재료와 광원의 과제: 실리콘의 간접적인 밴드갭은 기본적인 물리적 한계이며, 발광 효율이 낮은 재료입니다. 이 때문에 온칩 레이저 집적에는 인듐인화물(InP), 갈륨비소(GaAs) 등 보다 고가의 특수한 재료를 사용해야 합니다. 이러한 하이브리드 집적 방식은 제조 공정에 복잡성과 비용을 추가합니다. 또한 도파관 및 변조기의 광 손실 및 낮은 결합 효율과 같은 문제는 전체 장치의 성능을 제한할 수 있습니다.

표준화 및 생태계 성숙도 부족: 실리콘 포토닉스 산업은 표준화된 생태계가 부족합니다. 공통 설계 규칙, 공정 설계 키트(PDK), 포장 인터페이스의 수는 제한되어 있습니다. 이러한 단편화는 상호운용성 문제를 야기하고, 설계 및 제조 공정를 지연시킵니다. 또한 생태계가 미성숙하여 전자산업과 같이 특수한 툴이나 테스트 장비가 쉽게 구할 수 없거나 표준화되어 있지 않은 것도 개발 주기가 길어지고 연구개발비용이 상승하는 원인이 되고 있습니다.

확장성 및 수율 문제: 프로토타입에서 대량 생산으로 확장하는 것은 큰 장애물입니다. 제조 공차가 엄격하고 제조 공정이 복잡하므로 수율이 낮아지는 경우가 많아 대규모 생산의 상업적 실현 가능성에 직접적인 영향을 미칩니다. 또한 특수 소재 및 부품공급망은 기존 반도체만큼 견고하지도 성숙하지도 않아 잠재적인 지연 및 공급 리스크가 발생할 수 있습니다.

신뢰성, 열, 환경 관련 우려: 실리콘 포토닉스 디바이스의 실제 환경에서의 신뢰성에 대한 우려가 있습니다. 열 변화로 인한 파장 드리프트, 집적 레이저의 장기적인 열화 등의 요인이 성능에 영향을 미칠 수 있습니다. 광전자 부품은 정밀한 정렬과 섬세한 특성으로 인해 가혹한 사용 환경의 진동과 극한의 온도 변화로 인한 손상이 발생하기 쉽습니다.

대체 기술과의 경쟁: 실리콘 포토닉스만이 고속 데이터 전송을 위한 유일한 솔루션은 아닙니다. 특정 용도에서는 인듐 인화물(InP) 및 갈륨 비소(GaAs)와 같은 기존 기술이 여전히 경쟁력이 있으며, 특정 틈새 분야에서 더 나은 성능을 제공합니다. 비용에 민감한 시장에서는 기존의 구리 상호 연결 및 레거시 광학 솔루션으로 충분할 수 있으며, 실리콘 포토닉스가 발판을 마련하기 어려울 수 있습니다.

중소기업 및 스타트업의 진입장벽: 높은 R&D 비용과 자본비용은 전문 기술자의 필요성과 고가의 주조 서비스에 대한 접근성과 결합하여 스타트업 및 소규모 기업에게 큰 진입장벽이 됩니다. 개발 주기가 길다는 점도 이를 더욱 악화시켜 신규 진출기업이 적시에 상용화 및 수익성을 달성하는 것을 어렵게 만들고 있습니다.

목차

제1장 서론

제2장 조사 방법

제3장 개요

제4장 시장 전망

제5장 컴포넌트별 시장

제6장 제품별 시장

제7장 애플리케이션별 시장

제8장 지역별 시장

제9장 경쟁 구도

제10장 기업 개요

KSA
영문 목차

영문목차

Silicon Photonics Market Size And Forecast

Silicon Photonics Market size was valued at USD 2.02 Billion in 2024 and is projected to reach USD 10.48 Billion by 2032, growing at a CAGR of 25.50% from 2026 to 2032.

The Silicon Photonics Market refers to the global industry involved in the research, development, manufacturing, and application of silicon photonics technology. This technology uses silicon as an optical medium to create photonic integrated circuits (PICs), which combine electronic and optical components on a single microchip.

The market is driven by the demand for high speed, energy efficient, and cost effective data transmission and processing. Key characteristics of this market include:

Technology: It leverages established CMOS (Complementary Metal Oxide Semiconductor) manufacturing processes, making it highly scalable and compatible with existing semiconductor infrastructure. This allows for the integration of optical and electronic functions on a single chip, leading to smaller, more power efficient devices.

Key Products: The market includes a variety of products such as:

Optical Transceivers and Active Optical Cables (AOCs)

Optical Switches

Optical Multiplexers/De multiplexers

Sensors (e.g., for biosensing, LiDAR)

Individual components like modulators, waveguides, and photodetectors.

Applications: The market serves a wide range of industries where high speed data transfer and sensing are critical. Major applications include:

Data Centers and High Performance Computing (HPC): To overcome bandwidth limitations and reduce power consumption in hyperscale data centers.

Telecommunications: For high capacity, long distance optical communication, particularly for 5G backhaul and core networks.

Automotive: For integrated LiDAR systems in autonomous vehicles.

Healthcare and Life Sciences: For compact, high speed diagnostic devices and wearable biosensors.

Aerospace and Defense: For various sensing and communication applications.

Market Drivers: The growth of the market is fueled by:

The exponential increase in data traffic from cloud computing, AI, big data, and IoT.

The rapid adoption of 5G networks.

The need for energy efficient solutions to address the rising power consumption of data centers.

The ability to integrate complex optical systems into small, mass producible chips.

Global Silicon Photonics Market Drivers

The silicon photonics market is experiencing significant growth, projected to reach over $9 billion by 2030, driven by a confluence of technological advancements and increasing data demands. Here is a summary of the key drivers:

Demand for High Bandwidth, High Speed Data Transmission: The digital world's insatiable appetite for data, fueled by cloud computing, AI, video streaming, and IoT, has strained traditional copper based interconnects. Silicon photonics provides a powerful solution by enabling ultra fast, high bandwidth data transmission with lower latency and signal degradation. This makes it essential for handling the massive data traffic within and between data centers, as well as for rack to rack and chip to chip communications.

Growth of Cloud Computing, AI, and Hyperscale Data Centers: Hyperscale data centers, which form the backbone of cloud services and AI/ML applications, require scalable and energy efficient solutions to manage immense workloads. Silicon photonics offers high speed optical interconnects that are crucial for optimizing data flow across these vast infrastructures. It is particularly beneficial for connecting GPUs, TPUs, and memory modules in AI systems, where low latency and high throughput are paramount.

Advancement in Telecommunications Infrastructure (5G & 6G): The ongoing global rollout of 5G and the development of 6G networks are creating an urgent need for high capacity, ultra low latency backhaul and fronthaul connections. Silicon photonics provides a cost effective and efficient way to handle the massive data volumes in these networks, playing a vital role in enabling stronger edge computing capabilities.

Energy Efficiency and Reduced Power Consumption: Data centers are major consumers of energy. Silicon photonics addresses this challenge by using light to transmit data, which requires significantly less power than traditional electrical signals. This leads to reduced operating costs and lower cooling requirements, aligning with global efforts to improve sustainability and reduce carbon footprints.

Compatibility with CMOS Manufacturing and Scalability: A significant advantage of silicon photonics is its compatibility with established CMOS (Complementary Metal Oxide Semiconductor) fabrication processes. This allows for mass production using existing semiconductor infrastructure, which reduces manufacturing costs and enables a robust and scalable supply chain. As adoption increases, economies of scale will further lower costs.

Government Initiatives and Strategic Investments: Governments worldwide are recognizing the strategic importance of semiconductor and photonics technologies. Through funding, tax incentives, and infrastructure investments, they are actively supporting research and development. This institutional support accelerates the commercialization and adoption of silicon photonics technology.

Emerging Applications Beyond Datacom and Telecom: While data centers and telecommunications are the primary markets, silicon photonics is expanding into new and diverse applications. These include are Integrated photonic circuits are enabling more compact, robust, and cost effective LiDAR systems for self driving cars.Silicon photonics based sensors and "lab on a chip" solutions are being developed for advanced medical diagnostics and biosensing.The technology is crucial for building scalable, fault tolerant networked quantum computers by enabling the manipulation of quantum states of light.

Miniaturization and Co Packaged Optics: The trend toward smaller, more integrated electronic and optical components is driving the need for co packaged optics (CPO). Silicon photonics is key to this trend, enabling the close integration of optical and electronic components on a single chip. This reduces energy loss and latency, which is critical for scaling next generation computing architectures and high performance networks.

Rise of Private Networks and Edge Computing: The growth of industrial 5G, edge computing, and private wireless networks is creating a demand for localized, high speed, and low latency connectivity. Silicon photonics is well suited to handle these decentralized computing demands, making it especially valuable for applications in manufacturing, logistics, and smart cities.

Global Silicon Photonics Market Restraints

Based on recent market analyses, the silicon photonics market faces several key restraints that are slowing its growth and adoption. These challenges are often interconnected, spanning from the initial R&D and manufacturing phases to broader market dynamics.

High Initial Capital & Manufacturing Costs: A significant barrier to entry is the high cost of establishing or upgrading a silicon photonics fabrication facility. This includes the massive capital investment required for specialized equipment and the use of expensive materials, such as Silicon on Insulator (SOI) wafers. The complex, multi step fabrication process, including precise etching and deposition, further increases per unit costs. Additionally, the nascent nature of the technology leads to lower manufacturing yields compared to mature electronic ICs, resulting in a higher cost per functional chip.

Complexity of Design, Integration & Packaging: Silicon photonics requires the seamless integration of both electronic and photonic components. This "co design" is a highly complex process that demands specialized Electronic Design Automation (EDA) tools and a multi disciplinary team of experts. Packaging is a particularly critical and costly bottleneck. Achieving and maintaining sub micron precision for optical alignment and coupling between the chip and external fibers or lasers is challenging. Thermal management is another significant concern, as heat generated by integrated lasers can cause performance degradation and wavelength drift.

Material & Light Source Challenges: Silicon's indirect bandgap is a fundamental physical limitation, making it an inefficient material for light emission. This necessitates the use of more expensive, specialized materials such as Indium Phosphide (InP) or Gallium Arsenide (GaAs) for on chip laser integration. These hybrid integration methods add complexity and cost to the manufacturing process. Furthermore, issues like optical losses and low coupling efficiency in waveguides and modulators can limit overall device performance.

Lack of Standardization and Ecosystem Maturity: The silicon photonics industry lacks a standardized ecosystem. There is a limited number of common design rules, Process Design Kits (PDKs), and packaging interfaces. This fragmentation creates interoperability issues and slows down the design and manufacturing process. The immaturity of the ecosystem also means that specialized tooling and test equipment are not as readily available or standardized as in the electronics industry, leading to longer development cycles and higher R&D costs.

Scalability & Yield Issues: Scaling from prototypes to high volume production is a major hurdle. The tight fabrication tolerances and complex manufacturing steps often result in lower yields, which directly impacts the commercial viability of large scale production. Additionally, the supply chain for specialty materials and components is not as robust or mature as for traditional semiconductors, leading to potential delays and supply risks.

Reliability, Thermal, and Environmental Concerns: The reliability of silicon photonics devices in real world conditions is a concern. Factors such as wavelength drift due to thermal changes and the long term degradation of integrated lasers can affect performance. The precise alignment and delicate nature of opto electronic components make them susceptible to damage from vibration and extreme temperature fluctuations in harsh operating environments.

Competition from Alternative Technologies: Silicon photonics is not the only solution for high speed data transmission. In certain applications, established technologies like Indium Phosphide (InP) and Gallium Arsenide (GaAs) are still competitive, offering better performance in specific niches. For cost sensitive markets, traditional copper interconnects or legacy optical solutions may still be "good enough," making it difficult for silicon photonics to gain a foothold.

Barriers for Smaller Players and Startups: The high R&D and capital costs, coupled with the need for specialized technical talent and access to expensive foundry services, create significant barriers to entry for startups and smaller companies. The long development cycles further exacerbate this, making it difficult for new entrants to achieve commercialization and profitability in a timely manner.

Global Silicon Photonics Market: Segmentation Analysis

The Global Silicon Photonics Market is segmented based on Component, Product, Application, and Geography.

Silicon Photonics Market, By Component

Active Components

Passive Components

Based on Component, the Silicon Photonics Market is segmented into Active Components, Passive Components. At VMR, we observe that the Active Components subsegment is currently dominant, holding a substantial market share, driven by its critical role in data transmission and its direct reliance on key industry trends. This dominance is primarily fueled by the exponential growth of data centers and high performance computing (HPC), which necessitate ultra high speed data transfer rates. The proliferation of AI, machine learning, and cloud computing has created an insatiable demand for components like lasers, modulators, and photodetectors, which form the core of silicon photonic transceivers. Regionally, North America leads this segment, with major tech hubs and hyperscale cloud providers investing heavily in cutting edge data center infrastructure. The Asia Pacific region is also a significant growth driver, with a robust CAGR, propelled by the rapid deployment of 5G networks and digitalization initiatives in countries like China and South Korea. These drivers align with the market trend of replacing traditional, power hungry copper interconnects with energy efficient photonic solutions.

The second most dominant subsegment, Passive Components, plays a crucial supporting role. While not directly generating light or modulating signals, components such as waveguides, filters, and arrayed waveguide gratings are essential for guiding and manipulating light within the photonic integrated circuit. Their growth is driven by the need for low loss, high density optical interconnects to ensure signal integrity and efficiency within complex systems. We project this segment to exhibit a strong CAGR as advancements in co packaged optics (CPO) and other integration technologies become more widespread. The remaining subsegments, including packaging and test equipment, are vital enablers for the entire silicon photonics ecosystem, supporting the production, reliability, and mass adoption of both active and passive components. Their future potential is intrinsically linked to the overall growth of the market, as scaling up production will require sophisticated testing and packaging solutions to maintain performance and cost effectiveness.

Silicon Photonics Market, By Product

Transceiver

Variable optical attenuator

Switch

Cable

Sensor

Based on Product, the Silicon Photonics Market is segmented into Transceiver, Variable Optical Attenuator, Switch, Cable, and Sensor. The Transceiver subsegment is overwhelmingly dominant, accounting for the largest market share, with some estimates placing its revenue contribution at over 60% in 2024. At VMR, we observe this dominance is driven by the explosive need for high speed, high bandwidth data transmission, primarily within the Data Center and High Performance Computing (HPC) end users, where silicon photonics transceivers are critical for 400G and 800G interconnects. Key market drivers include the rapid global adoption of Artificial Intelligence (AI), Machine Learning, and cloud computing services, which necessitate low latency, energy efficient optical interconnects to manage exabyte scale data traffic. Regionally, North America leads in overall revenue due to the presence of hyperscale cloud providers, while the Asia Pacific region is projected to exhibit the highest CAGR, propelled by expanding 5G network rollouts and government digitalization initiatives. This product's cost effectiveness and scalability, stemming from compatibility with existing CMOS manufacturing processes, solidify its critical role in next generation digital infrastructure.

Following the transceiver, the Switch subsegment represents the second most dominant category, playing a crucial role in dynamic high speed data routing within data centers and telecommunication networks. Its growth is fueled by the industry trend toward massive network virtualization and the need for ultra fast, energy efficient optical switching solutions to manage growing data center traffic and enable the migration to 400GbE and beyond, with its market size expected to grow significantly due to its low power consumption and small footprint. Supporting these core components, Cable (specifically Active Optical Cables or AOCs) also holds a notable share, valued for transferring high data rates over longer distances than traditional copper cables while simplifying installation. Variable Optical Attenuator and Sensor subsegments occupy more niche yet high potential areas; attenuators are essential for power level control in optical networks, while sensors leveraging silicon photonics' high sensitivity and miniaturization are poised for strong future growth in emerging applications such as LiDAR for autonomous vehicles and highly sensitive biomedical and life sciences applications, reflecting the technology's versatile future potential beyond pure communications.

Silicon Photonics Market, By Application

Data Center & High Performance Computing

Telecommunications

Military, Defense, and Aerospace

Medical and Life Sciences

Sensing

Based on Application, the Silicon Photonics Market is segmented into Data Center & High Performance Computing, Telecommunications, Military, Defense, Aerospace, Medical and Life Sciences, and Sensing. At VMR, we observe that the Data Center & High Performance Computing (HPC) subsegment holds the dominant market share, driven by a confluence of powerful industry trends. The exponential growth in data traffic, fueled by widespread cloud computing adoption, the proliferation of AI and machine learning, and data intensive applications like streaming services, has created an urgent need for faster, more efficient data transfer. Silicon photonics provides a transformative solution by enabling ultra high speed optical interconnects (e.g., 400G and 800G transceivers) that overcome the bandwidth and power consumption limitations of traditional copper cables. This is especially critical for hyperscale data centers operated by tech giants like Google and Microsoft. Regionally, North America leads this segment due to its concentration of major cloud providers and significant investments in next generation data center infrastructure. The Asia Pacific region is also experiencing rapid growth, with a robust CAGR, as it invests heavily in digitalization and expands its own data center footprint.

The second most dominant subsegment, Telecommunications, plays a pivotal role in the long haul and metro network infrastructure that connects these data centers. Silicon photonics is crucial for supporting high speed backbone networks and enabling the rollout of 5G infrastructure. Components like silicon photonic transceivers and switches facilitate high bandwidth, low latency communication over long distances, which is essential for modern telecommunication networks. This segment's growth is driven by the global demand for faster internet and the continuous upgrade of network capacity.

While Data Center & HPC and Telecommunications segments are the primary revenue drivers, the remaining subsegments demonstrate significant future potential. The Military, Defense, & Aerospace segment leverages silicon photonics for secure, high speed communication, radar systems, and advanced sensing, where its low size, weight, and power (SWaP) characteristics are highly valued. Similarly, Medical and Life Sciences is a high potential, niche adoption area, utilizing the technology for biosensing, medical imaging (e.g., OCT), and point of care diagnostics. The Sensing subsegment is a broad category, encompassing everything from LiDAR for autonomous vehicles to industrial sensors, and is poised for substantial growth as the technology becomes more cost effective and miniaturized.

Silicon Photonics Market, By Geography

North America

Europe

Asia Pacific

Rest of the world

The Silicon Photonics market is experiencing rapid global growth, driven by the escalating demand for high speed, high bandwidth, and energy efficient data transmission, primarily from hyperscale data centers, cloud computing, artificial intelligence (AI), and 5G network deployments. Silicon photonics technology, which integrates photonic (light based) and electronic components onto a single silicon chip, offers superior performance, scalability, and lower power consumption compared to traditional copper interconnects. This geographical analysis provides a detailed look at the market dynamics, key growth drivers, and prevailing trends across major world regions.

United States Silicon Photonics Market

The United States is a dominant force in the global Silicon Photonics market, often holding the largest market share, fueled by a robust ecosystem of technology giants, vast research and development (R&D) investments, and advanced IT infrastructure.

Dynamics: The market is characterized by intense competition among leading global technology companies (such as Intel, Cisco, and Juniper Networks) that are pioneering silicon photonics technology. The US is a major hub for hyperscale and cloud data centers, which are the primary end users of silicon photonics transceivers and other components.

Key Growth Drivers:

AI and High Performance Computing (HPC) Demand: The surging need for high speed, low latency interconnects to manage massive data volumes for AI/Machine Learning workloads and HPC clusters.

Early Technology Adoption: The country's quick adoption of cutting edge technologies like 400G and 800G Ethernet for data center and telecommunications upgrades.

Strong R&D and Government Backing: Substantial investments in R&D, both private and governmental, fostering innovation in advanced photonic integrated circuits (PICs).

Current Trends: A major trend is the development and adoption of Co Packaged Optics (CPO), which integrates silicon photonics with switching ASICs directly on a single package to further reduce power consumption and increase bandwidth density in data centers. Increasing exploration of applications beyond telecom and datacom, particularly in healthcare (e.g., biosensing) and defense.

Europe Silicon Photonics Market

The European market is an important and rapidly expanding region, propelled by digitalization initiatives, the rollout of 5G, and strong focus on R&D for next generation communication systems.

Dynamics: The market is dynamic, supported by government backed research programs and academic industry collaborations aimed at establishing a strong local manufacturing base. Key markets like Germany, the UK, and France are leading the adoption.

Key Growth Drivers:

5G Network Deployment: The ongoing widespread rollout of 5G infrastructure across the continent, necessitating high speed, low latency optical components for fronthaul and backhaul networks.

Data Center Expansion: The growth of data centers, driven by increased use of cloud services, streaming media, and IoT.

Focus on Energy Efficiency: A strong regional emphasis on reducing carbon footprints and operational costs is driving the adoption of energy efficient silicon photonics transceivers over traditional electronic circuits.

Current Trends: Increasing demand for silicon photonics solutions in the automotive sector for LiDAR systems used in advanced driver assistance systems (ADAS) and autonomous vehicles. Growing prominence of European startups focused on specialized silicon photonics components.

Asia Pacific Silicon Photonics Market

The Asia Pacific region is projected to be the fastest growing market globally, characterized by massive digital transformation and significant investments in semiconductor and telecommunications infrastructure.

Dynamics: The market's growth is exponential, anchored by countries like China, Japan, South Korea, and India. The region's vast electronics manufacturing ecosystem and government support for technological self sufficiency are major factors.

Key Growth Drivers:

Explosive Data Center Growth: The rapid construction and expansion of hyperscale and edge data centers, especially in China and India, to meet surging demand from billions of internet and smartphone users.

Technological Advancements and Government Support: Strong government initiatives (e.g., China's "Made in China 2025") and significant investments in 5G and AI, positioning the region at the forefront of silicon photonics development.

Massive Telecommunications Upgrades: The continuous need to upgrade telecommunication networks to support the ever increasing bandwidth requirements from high definition streaming, gaming, and mobile internet.

Current Trends: Asia Pacific is driving innovation in key components, with the modulator segment expected to see the highest growth. The region's robust semiconductor manufacturing base contributes to the scalability and affordability of silicon photonics components.

Latin America Silicon Photonics Market

The Latin America market is an emerging region with growing potential, though it currently holds a smaller share compared to the leading regions.

Dynamics: Market growth is steady but focused primarily on core infrastructure upgrades in the largest economies like Brazil and Mexico. The market is dependent on foreign investment and technological imports.

Key Growth Drivers:

Increasing Internet Penetration: Rising internet and smartphone adoption, leading to increased data consumption and the subsequent need for high capacity data centers and faster networks.

Cloud Computing and Digitalization: The slow but steady migration of businesses and government services to the cloud, driving the demand for improved data center infrastructure.

Current Trends: The market is mainly focused on the adoption of transceivers for data center interconnects and foundational telecommunications upgrades to 4G/LTE, with 5G deployment still in earlier stages compared to other regions.

Middle East & Africa Silicon Photonics Market

The Middle East & Africa (MEA) region is exhibiting steady growth, largely driven by large scale digital initiatives and significant investments in new smart city projects and communications infrastructure.

Dynamics: Growth is concentrated in the Gulf Cooperation Council (GCC) countries in the Middle East, fueled by government led diversification efforts (e.g., in Saudi Arabia and the UAE) and substantial investments in high tech infrastructure. Africa's market development is more nascent but promising due to rising mobile data usage.

Key Growth Drivers:

Data Center Investment: Major hyperscale cloud providers are establishing regional data centers, creating a need for high performance silicon photonics components.

Smart City and Digitalization Projects: Large scale projects, particularly in the UAE and Saudi Arabia, require advanced communication systems, including fiber optics and silicon photonics, for robust connectivity.

5G Deployment: Rapid 5G rollout in key Middle Eastern countries drives demand for high capacity optical components.

Current Trends: A growing emphasis on using silicon photonics in defense and security applications, alongside a focus on building a resilient and modern telecommunications backbone.

Key Players

The "Global Silicon Photonics Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are Finisar, Acacia, Mellanox Technologies, Cisco, Intel, Hamamatsu Photonics, IBM, Global Foundries, STMicroelectronics, and Broadcom.

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET OUTLOOK

5 MARKET, BY COMPONENT

6 MARKET, BY PRODUCT

7 MARKET, BY APPLICATION

8 MARKET, BY GEOGRAPHY

9 COMPETITIVE LANDSCAPE

10 COMPANY PROFILES

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기