The Global Silicon Photonics and Photonic Integrated Circuits Market 2025-2035
상품코드:1686674
리서치사:Future Markets, Inc.
발행일:2025년 03월
페이지 정보:영문 344 Pages, 146 Tables, 42 Figures
라이선스 & 가격 (부가세 별도)
한글목차
AI 기술의 급격한 성장은 네트워크와 데이터센터에 대한 전례 없는 수요를 야기하고 있습니다. 실리콘 포토닉스와 광집적회로는 이 문제에 대한 최첨단 네트워킹 솔루션을 제공하며, AI의 "공장"은 매우 큰 규모의 새로운 종류의 데이터센터로, 이에 대응하기 위해 네트워크 인프라를 혁신해야 합니다. 미국에 본사를 둔 AI 컴퓨팅 다국적 기업 NVIDIA는 최근 실리콘 포토닉스와 공동 패키지 광학(CPO)을 활용하여 수백만 개의 GPU를 AI 팩토리에 연결할 계획을 발표했습니다.
실리콘 포토닉스 및 광집적회로(PIC)는 반도체와 광학의 교차점에 있는 혁신적인 기술로, 실리콘 칩에서 빛을 조작할 수 있는 기술입니다. 데이터센터가 AI 워크로드, 클라우드 컴퓨팅, 비디오 스트리밍으로 인해 전례 없는 대역폭 수요에 직면함에 따라 기존의 구리선 상호연결은 대역폭, 전력 소비, 밀도 측면에서 기본적인 물리적 한계에 도달했습니다. 실리콘 포토닉스는 더 높은 대역폭, 더 낮은 지연, 더 낮은 전력 소비, 전자기 간섭에 대한 내성 등 광의 고유한 이점을 활용하여 솔루션을 제공합니다.
이 기술은 프로세서, 메모리, 스토리지 간에 대량의 데이터 이동을 필요로 하는 AI/ML 애플리케이션의 급격한 성장으로 인해 특히 중요성이 커지고 있습니다. 실리콘 포토닉스는 이러한 시스템 확장에 필수적인 높은 대역폭과 에너지 효율적인 상호연결을 가능하게 합니다. 또한, 실리콘 포토닉스와 성숙한 CMOS 제조 공정의 결합으로 비용 효율적인 대규모 생산이 가능해짐에 따라 실리콘 포토닉스의 보급이 점점 더 현실화되고 있습니다.
앞으로 실리콘 포토닉스는 여러 첨단 기술에서 매우 중요한 역할을 할 것으로 예상됩니다. 양자 컴퓨팅에서 PIC는 양자 정보 처리에 필요한 광 양자 비트를 정밀하게 제어할 수 있습니다. 차세대 센싱에서 PIC 기반 LiDAR 시스템은 자율주행차의 성능 향상과 비용 절감을 가능하게 합니다. 통신 분야에서는 실리콘 포토닉스가 5G/6G 네트워크의 백본과 Beyond 5G를 지원하여 지속적으로 증가하는 대역폭 수요를 충족시킬 수 있습니다.
이 기술이 성숙해짐에 따라, 전자 반도체 산업에서 볼 수 있는 진화와 마찬가지로 개별 광학 부품에서 단일 칩에 여러 기능을 통합한 고집적 광학 회로로 전환되고 있습니다. 이러한 집적화와 공동 패키지 광학과 같은 첨단 패키징 기술은 성능, 에너지 효율성, 비용의 개선을 지속적으로 촉진하여 실리콘 포토닉스를 커넥티드 및 데이터 집약적인 세계의 기반 기술로 자리매김할 것으로 예상됩니다.
이 보고서는 빠르게 진화하는 실리콘 포토닉스 및 광집적회로(PIC) 시장 동향을 면밀히 분석하여 2023-2035년 시장 역학, 기술 동향, 여러 응용 분야에 걸친 성장 기회에 대한 전략적 인사이트를 제공합니다.
목차
제1장 주요 요약
시장 개요
전자와 광자 통합의 비교
실리콘 포토닉 트랜시버의 진화
시장 맵
실리콘 포토닉스 세계 시장 동향
경쟁과 보완적인 포토닉스 기술
광자 AI 엑셀러레이션의 가능성
실리콘 포토닉스 상업 전개
제조 과제
제2장 소개
실리콘 포토닉스란?
실리콘 포토닉스의 이점
실리콘 포토닉스의 용도
기타 광집적 기술과의 비교
전자에서 광자 통합으로의 진화
실리콘 포토닉스 vs. 기존 전자
최신 고성능 AI 데이터센터
코어 테크놀러지 컴포넌트
기본적인 광데이터 전송
실리콘 포토닉 회로 아키텍처
제3장 재료와 컴포넌트
실리콘
게르마늄
질화 실리콘
박막 니오브산리튬(TFLN)
인화인듐
바륨 티탄산염, 희토류 금속
실리콘상 유기 폴리머
웨이퍼 처리
하이브리드, 헤테로지니어스 통합
제4장 첨단 패키징 기술
패키징 기술의 진화
2.5D 통합 기술
3D 통합 접근법
공동 패키지 광학(CPO)
광학 얼라인먼트
제조 과제
제5장 시장과 용도
데이터 통신 용도
통신
센싱 용도
AI, 머신러닝
양자 컴퓨팅, 통신
바이오포토닉스, 의료 진단
제6장 세계 시장 규모
세계의 실리콘 포토닉스 및 광집적회로 시장 개요
데이터 통신 용도
통신 용도
센싱 용도
광집적회로 시장 : 재료별
제7장 공급망 분석
파운드리, 웨이퍼 공급업체
수직통합형 디바이스 제조업체(IDM)
파운드리, 웨이퍼 공급업체
패키징, 테스트
시스템 통합사업자, 최종사용자
제8장 기술 동향
레이저 통합 기술
변조기 기술
광검출기 기술
도파관과 커플링 혁신
패키징과 통합의 진보
제9장 과제와 향후 동향
CMOS 파운드리 호환 디바이스, 통합
전력 소비, 열 관리
패키징, 테스트
확장성, 비용 효율
신재료, 하이브리드 통합
제10장 기업 개요(기업 183개사 프로파일)
제11장 부록
제12장 참고문헌
ksm
영문 목차
영문목차
The rapid growth of AI technology has put unprecedented demands on networks and data centers. Silicon photonics and photonic integrated circuits offer the most advanced networking solution to this problem. AI "factories" are a new class of data centers with extreme scale, and networking infrastructure must be reinvented to keep pace. The US-based artificial intelligence (AI) computing multinational NVIDIA recently announced its plan to leverage silicon photonics and co-packaged optics (CPO) to connect millions of GPUs in these AI factories.
Silicon photonics and photonic integrated circuits (PICs) represent a transformative technology at the intersection of semiconductors and optics, enabling the manipulation of light on silicon chips. As data centers face unprecedented bandwidth demands driven by AI workloads, cloud computing, and video streaming, traditional copper interconnects reach fundamental physical limitations in terms of bandwidth, power consumption, and density. Silicon photonics offers a solution by leveraging light's inherent advantages: higher bandwidth, lower latency, reduced power consumption, and immunity to electromagnetic interference.
The technology is particularly crucial now due to the exponential growth in AI/ML applications, which require massive data movement between processors, memory, and storage. Silicon photonics enables the high-bandwidth, energy-efficient interconnects essential for scaling these systems. Additionally, the convergence of silicon photonics with mature CMOS manufacturing processes allows for cost-effective production at scale, making widespread adoption increasingly viable.
Looking toward the future, silicon photonics will play a pivotal role in multiple frontier technologies. In quantum computing, PICs provide the precise control of photonic qubits necessary for quantum information processing. For next-generation sensing, PIC-based LiDAR systems will enable autonomous vehicles with improved performance and reduced cost. In telecommunications, silicon photonics will support the backbone of 5G/6G networks and beyond, meeting ever-increasing bandwidth demands.
As the technology matures, we're witnessing a transition from discrete optical components to highly integrated photonic circuits that combine multiple functions on a single chip, similar to the evolution seen in the electronic semiconductor industry. This integration, coupled with advanced packaging technologies like co-packaged optics, will continue to drive improvements in performance, energy efficiency, and cost, cementing silicon photonics as a foundational technology for our increasingly connected, data-intensive world.
"The Global Silicon Photonics and Photonic Integrated Circuits Market 2023-2035" provides an in-depth analysis of the rapidly evolving silicon photonics and photonic integrated circuits (PICs) landscape, offering strategic insights into market dynamics, technology trends, and growth opportunities across multiple application segments from 2023 to 2035.
Key Report Features:
Material Platform Analysis: Comparative assessment of silicon, silicon nitride, lithium niobate, indium phosphide, and emerging material technologies
Application Segmentation: In-depth market forecasts for datacom, telecom, sensing, AI acceleration, and quantum computing applications
Manufacturing and Packaging: Evaluation of wafer processing challenges, yield management, and advanced packaging technologies including co-packaged optics
Competitive Landscape: Profiles of 186 companies across the entire value chain from materials suppliers to system integrators
Technology Roadmaps: Forecasts for product development timelines, performance improvements, and market adoption rates
Introduction to Silicon Photonics: Fundamental principles, comparative advantages over traditional technologies, and basic optical data transmission mechanisms
Materials and Components Analysis: Comprehensive review of platform technologies including silicon-on-insulator (SOI), germanium photodetectors, silicon nitride waveguides, thin-film lithium niobate, and hybrid integration approaches
Advanced Packaging Technologies: Detailed analysis of 2.5D and 3D integration technologies, through-silicon vias (TSVs), hybrid bonding, and co-packaged optics solutions
Market Applications in Depth:
Datacom: Data center architectures, transceiver evolution, co-packaged optics, and high-performance computing interconnects
Telecommunications: 5G/6G infrastructure, optical networking, and long-haul/metro applications
Sensing: LiDAR systems, chemical/biological sensing, and medical diagnostics
AI/ML: Photonic processors, neural network accelerators, and programmable photonic systems
Quantum: PIC-based quantum computing architectures, quantum communications, and single-photon sources
Market Forecasts 2023-2035:
Global market size and regional analysis
Segmentation by application, material platform, and component type
Pricing trends and volume projections for key product categories
Detailed forecasts for emerging segments including AI transceivers and quantum PICs
Challenges and Future Directions: CMOS-foundry compatibility, power consumption issues, packaging optimization, and scalability solutions.
This report provides essential strategic intelligence for technology vendors, component manufacturers, system integrators, end-users, and investors to navigate the complex and rapidly evolving silicon photonics ecosystem. With detailed technical benchmarking, market forecasts, and competitive analysis, the report enables stakeholders to identify growth opportunities, anticipate technological disruptions, and develop informed strategies for this transformative market.
The report provides comprehensive profiles of 183 companies across the silicon photonics and photonic integrated circuits ecosystem, including Accelink Technologies, Aeva Technologies, Aeponyx, Advanced Fiber Resources, AIM Photonics, AIO Core, Alibaba Cloud, Amazon (AWS), ANSYS, Advanced Micro Foundry (AMF), Amkor Technology, AMO GmbH, Analog Photonics, Anello Photonics, Aryballe, A*STAR, ASE Holdings, Aurora Innovation, Axalume, AXT, Ayar Labs, Baidu, Bay Photonics, BE Epitaxy Semiconductor, Broadcom, Black Semiconductor, Broadex, ByteDance, Cadence, Camgraphic, CEA LETI, Celestial AI, Centera Photonics, Cambridge Industries Group (CIG), Ciena Corporation, CISCO Systems, CNIT, Coherent Corp., CompoundTek, Cornerstone, Crealights Technology, DustPhotonics, EFFECT Photonics, Eoptolink (Alpine Optoelectronics), Ephos, Epiphany, Fabrinet, Fast Photonics, Fiberhome, Fibertop China Shen Zhen Fibertop Technology, ficonTEC, FormFactor, Fujitsu, Genalyte, Gigalight, GlobalFoundries, HGGenuine, Hisense Broadband, HyperLight, HyperPhotonix, Icon Photonics, InnoLight Technology, Innosemi, IntelliEpi, Inphotec, Intel, Imec, IMECAS, iPronics, JABIL, JCET Group, JFS Laboratory, JSR Corporation, Juniper Networks, Ki3 Photonics, LandMark, Leoni AG, Ligentec, Lightelligence, Lightium, Lightmatter, Lightsynq Technologies, Lightwave Logic, Light Trace Photonics, Liobate Technologies, LioniX International, LPKF, Lumentum, Luceda, Luminous Computing, LuminWave Technology, Lumiphase AG, Luxshare Precision Industry, Luxtelligence SA, MACOM, Marvell, Molex, NanoLN, NanoWired, NEC Corporation, NewPhotonics, NGK Insulators, NLM Photonics, Nokia Corporation, Novel Si Integration Technology, NTT Corporation, Nvidia, O-Net, OpenLight Photonics, OriChip Optoelectronics Technology, Partow Technologies, PETRA, Phix, PHOTON IP, and many more. Each profile includes company background, technology focus, product offerings, manufacturing capabilities, partnerships, and market positioning to provide a complete view of the competitive landscape and ecosystem relationships.
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
1.1. Market Overview
1.2. Electronic and Photonic Integration Compared
1.3. Silicon Photonic Transceiver Evolution
1.4. Market Map
1.5. Global Market Trends in Silicon Photonics
1.6. Competing and Complementary Photonics Technologies
1.6.1. Metaphotonics
1.6.2. III-V Photonics
1.6.3. Lithium Niobate Photonics
1.6.4. Polymer Photonics
1.6.5. Plasmonic Photonics
1.7. Potential of photonic AI acceleration
1.8. Commercial deployment of silicon photonics
1.9. Manufacturing challenges
2. INTRODUCTION
2.1. What is Silicon Photonics?
2.1.1. Definition and Principles of Silicon Photonics
2.1.2. Comparison with traditional technologies
2.1.3. Silicon and Photonic Integrated Circuits
2.1.4. Optical IO, Coupling and Couplers
2.1.5. Emission and Photon Sources/Lasers
2.1.6. Detection and Photodetectors
2.1.7. Compound Semiconductor Lasers and Photodetectors (III-V)
2.1.8. Modulation, Modulators, and Mach-Zehnder Interferometers
2.1.8.1. New modulator technologies
2.1.9. Light Propagation and Waveguides
2.1.10. Optical Component Density
2.2. Advantages of Silicon Photonics
2.3. Applications of Silicon Photonics
2.4. Comparison with Other Photonic Integration Technologies
2.5. Evolution from Electronic to Photonic Integration
2.6. Silicon Photonics vs Traditional Electronics
2.7. Modern high-performance AI data centers
2.8. Core Technology Components
2.8.1. Optical IO, Coupling and Couplers
2.8.2. Emission and Photon Sources/Lasers
2.8.2.1. III-V Integration Challenges
2.8.2.2. Laser Integration Approaches
2.8.3. Detection and Photodetectors
2.8.4. Modulation Technologies
2.8.4.1. Mach-Zehnder Interferometers
2.8.4.2. Ring Modulators
2.8.5. Light Propagation and Waveguides
2.8.6. Optical Component Density
2.9. Basic Optical Data Transmission
2.10. Silicon Photonic Circuit Architecture
3. MATERIALS AND COMPONENTS
3.1. Silicon
3.1.1. Silicon as a Photonic Material
3.1.1.1. Optical Properties of Silicon
3.1.1.2. Fabrication Processes for Silicon Photonics
3.1.2. Silicon and Silicon-on-insulator (SOI)
3.1.2.1. SOI Manufacturing Process
3.1.2.2. SOI Performance Benchmarks
3.1.2.3. Key SOI Players
3.2. Germanium
3.2.1. Germanium Integration in Silicon Photonics
3.2.2. Germanium Photodetectors
3.2.3. Germanium-on-Silicon Modulators
3.3. Silicon Nitride
3.3.1. Silicon Nitride (SiN) in Photonics Integrated Circuits
3.3.2. Optical Properties and Fabrication of SiN
3.3.3. SiN Modulator Technologies
3.3.4. SiN Applications in Photonics Integrated Circuits
3.3.5. Advances in SiN Modulator Technologies
3.3.6. SiN-based Waveguides and Devices
3.3.7. SiN Performance Analysis
3.3.8. Applications of SiN in Photonics
3.3.9. SiN PIC Players
3.4. Thin Film Lithium Niobate (TFLN)
3.4.1. Overview
3.4.2. Lithium Niobate on Insulator (LNOI)
3.4.2.1. Overview of LNOI Technology
3.4.2.2. Characteristics and Properties of LNOI
3.4.2.3. LNOI Fabrication Processes
3.4.2.4. LNOI-based Modulator and Switch Technologies
3.4.2.5. Trends Toward Higher Speed and Improved Power Efficiency
3.4.2.6. High-Speed LNOI Modulators
3.4.2.6.1. Energy-Efficient LNOI Devices
3.4.2.6.2. Emerging LNOI Device Technologies
3.5. Indium Phosphide
3.5.1. Indium Phosphide (InP) Integration
3.5.1.1. InP as a Direct Bandgap Semiconductor
3.5.1.2. InP-based Active Components
3.5.1.3. Hybrid Integration of InP with Silicon Photonics
3.5.2. InP PIC Players
3.6. Barium Titanite and Rare Earth metals
3.6.1. Barium Titanate (BTO) Modulators
3.7. Organic Polymer on Silicon
3.7.1. Polymer-based Modulators
3.8. Wafer Processing
3.8.1. Wafer Sizes by Platform
3.8.2. Processing Challenges
3.8.3. Yield Management
3.9. Hybrid and Heterogeneous Integration
3.9.1. Monolithic Integration
3.9.2. Hybrid Integration
3.9.3. Heterogeneous Integration
3.9.4. III-V-on-Silicon
3.9.5. Bonding and Die-Attachment Techniques
3.9.6. Monolithic versus Hybrid Integration
4. ADVANCED PACKAGING TECHNOLOGIES
4.1. Evolution of Packaging Technologies
4.1.1. Traditional Packaging Approaches
4.1.2. Advanced Packaging Roadmap
4.1.3. Key Performance Metrics
4.2. 2.5D Integration Technologies
4.2.1. Silicon Interposer Technology
4.2.2. Glass Interposer Solutions
4.2.3. Organic Substrate Options
4.3. 3D Integration Approaches
4.3.1. Through-Silicon Via (TSV)
4.3.1.1. TSV Manufacturing Process
4.3.1.2. TSV Challenges and Solutions
4.3.2. Hybrid Bonding Technologies
4.3.2.1. Cu-Cu Bonding
4.3.2.2. Direct Bonding
4.4. Co-Packaged Optics (CPO)
4.4.1. CPO Architecture Overview
4.4.2. Benefits and Challenges
4.4.3. Integration Approaches
4.4.3.1. 2D Integration
4.4.3.2. 2.5D Integration
4.4.3.3. 3D Integration
4.4.4. Thermal Management
4.4.5. Optical Coupling Solutions
4.5. Optical Alignment
4.5.1. Active vs Passive Alignment
4.5.2. Coupling Efficiency
4.6. Manufacturing Challenges
5. MARKETS AND APPLICATIONS
5.1. Datacom Applications
5.1.1. Data Center Architecture Evolution
5.1.2. Transceivers
5.1.2.1. Integration
5.1.3. Artificial intelligence (AI) and machine learning (ML)
5.1.4. Pluggable optics
5.1.5. Linear drive and linear pluggable optics (LPO)
5.1.6. Interconnects
5.1.6.1. PIC-based on-device interconnects
5.1.6.2. Advanced Packaging and Co-Packaged Optics