세계의 의료 및 생명과학용 자연언어 처리(NLP) 시장 규모 : 컴퍼넌트별, NLP 유형별, 용도별, 최종 사용자별, 지역별, 범위 및 예측
Global Natural Language Processing In Healthcare And Life Sciences Market Size By Component, By NLP Types, By Application (Interactive voice response, Pattern & image recognition), By End-User, By Geographic Scope And Forecast
상품코드 : 1624504
리서치사 : Verified Market Research
발행일 : 2024년 08월
페이지 정보 : 영문 202 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,950 ₩ 5,703,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.
US $ 4,850 ₩ 7,002,000
PDF & Excel (5 User License) help
PDF 및 Excel 보고서를 동일 기업의 5명까지 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.
US $ 7,550 ₩ 10,900,000
PDF & Excel (Enterprise User License) help
PDF 및 Excel 보고서를 동일기업내 모든 분들이 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.


한글목차

의료 및 생명과학용 자연 언어 처리(NLP) 시장 규모와 예측

의료 및 생명과학용 자연언어처리(NLP) 시장 규모는 2024년에 22억 5,000만 달러로 평가되었고, 2024년부터 2031년에 걸쳐 19.82%의 연평균 복합 성장률(CAGR)로 성장하여 2031년에는 95억 7,000만 달러에 달할 것으로 예상됩니다. 컴퓨터가 의료 문맥에서 인간의 말을 이해, 해석, 생성할 수 있도록 하는 AI 기술의 응용을 가리킵니다. 복잡한 텍스트를 실용적인 통찰력으로 변환함으로써 NLP는 임상 의사결정을 강화하고 환자 관리를 향상시킵니다.

NLP는 임상 문서 개선, 환자 감정 분석, 전자 건강 기록(EHR)에서 의미 있는 정보 추출 등 건강 관리에서 수많은 용도가 있습니다.

또한 환자 참여를 위한 챗봇에도 활용되어 의료 제공자와 환자 간의 커뮤니케이션을 촉진하고 있습니다. 창약에도 도움이 됩니다.

의료 및 생명과학에서 자연 언어 처리(NLP) 시장 역학

주요 시장 성장 촉진요인

건강 데이터의 폭발적 증가:

의료 분야에서는 전자 차트로부터 웨어러블 디바이스까지, 매일 방대한 양의 데이터가 생성되고 있습니다. 2020년에는 2,314엑사바이트에 이르며 매년 48%의 비율로 증가하며 2025년에는 11,318엑사바이트에 달할 전망입니다.

환자 참여 강화:

NLP 기술은 환자와의 의사 소통과 피드백을 분석하고 건강 관리 제공업체가 환자의 요구를 더 잘 이해할 수 있도록 도와줍니다. 학위를 높입니다.이 연결의 향상은 결국 건강 상태를 향상시킵니다. Medical Internet Research에 게재된 조사에 따르면 NLP를 탑재한 채팅봇은 기존 방법에 비해 환자의 참여율을 35% 향상시켰습니다.

업무 효율성:

의료 사업자는 효율성 향상과 비용 절감에 직면해 있습니다. 은 관리 업무보다 환자 케어에 집중할 수 있습니다. Healthcare Financial Management Association은 2023년 임상문서 개선을 위해 NLP를 사용한 병원에서는 조회율이 20% 감소했고 증례 혼합지수가 15% 개선되었다고 보고했습니다.

R&D 가속:

생명과학 분야에서 NLP는 엄청난 양의 연구 문헌과 임상시험 데이터를 신속하게 처리 할 수 있습니다. 데이터에 대한 접근성을 높임으로써 NLP는 연구의 정보를 바탕으로 의사결정을 지원합니다. Nature Biotechnology 잡지에 게재된 조사에 의하면, NLP 지원에 의한 문헌 검토는 연구 논문의 초기 스크리닝에 걸리는 시간을 최대 70% 단축할 수 있는 것을 나타내고 있습니다.

주요 과제

의료 용어의 복잡성:

의료 용어는 복잡하고 전문 분야에 따라 크게 다르기 때문에 NLP의 구현을 복잡하게 하고 있습니다. 해석을 초래하여 임상 결과에 영향을 줄 수 있습니다.

기존 시스템과의 통합:

효과적인 NLP 모델 교육에는 고품질의 주석이 달린 데이터 세트가 필수적이지만 건강 관리에서는 부족한 경향이 있습니다. 이 제한은 NLP 애플리케이션의 확장 성과 효율성을 제한합니다.

변화에 저항:

의료 전문가들은 확립된 워크플로우가 파괴되는 것을 두려워하고 새로운 기술을 채택하는 것에 저항을 나타낼 수 있습니다. 이 저항을 극복하려면 임상 현장에서 NLP의 가치를 증명해야합니다.

주요 동향

대화형 AI:

NLP를 활용한 대화형 AI는 환자와의 상호작용을 위해 건강 관리 환경에 통합되는 경우가 늘고 있습니다. 가상 어시스턴트는 환자의 문의에 즉시 응답하여 정보에 대한 액세스를 향상시킬 수 있습니다. 이 추세는 환자의 참여도를 높이고 관리 프로세스를 간소화합니다. 2023년 미국 병원 협회(AHA)의 조사에 따르면 47%의 병원이 환자 참여를 위해 대화형 AI 솔루션을 사용하거나 시험적으로 도입했습니다.

감정 분석 :

건강 관리의 감정 분석은 피드백과 리뷰에서 환자의 감정과 경험을 측정하기 위해 NLP를 사용합니다. 환자의 감정을 이해함으로써 의료 제공업체는 서비스를 조정하고 치료 제공을 개선할 수 있습니다. 이 추세는 건강 관리에서 환자 중심 접근법의 중요성을 강조합니다. 2023년 Journal of Medical Internet Research에 게재된 설문 조사에서는 NLP 기반 환자 피드백의 감정 분석을 통해 병원 재입원률을 78%의 정확도로 예측할 수 있음을 확인했습니다.

전자 의료 기록(EHR)과의 통합:

NLP는 EHR 시스템과 통합되어 데이터 추출 및 분석 기능을 강화합니다. 비구조화된 데이터를 구조화된 형식으로 변환함으로써 NLP는 더 나은 임상적 의사결정을 촉진합니다. 이 추세는 워크플로우의 효율성을 개선하고 건강 관리 환경에서 환자 결과를 최적화하는 것을 목표로 합니다. ONC(Office of the National Coordinator for Health Information Technology)에 따르면, 2023년 현재 연방정부 이외의 급성기 병원의 96%가 공인 EHR 기술을 도입하고 있습니다.

목차

의료 및 생명과학용 자연 언어 처리(NLP) 시장 소개

제2장 주요 요약

제3장 VERIFIED MARKET RESEARCH의 조사 방법

제4장 의료 및 생명과학용 자연언어 처리(NLP) 세계 시장 전망

제5장 의료 및 생명과학용 자연 언어 처리(NLP) 세계 시장 : 컴포넌트별

제6장 의료 및 생명과학용 자연 언어 처리(NLP) 세계 시장 : NLP 유형별

제7장 의료 및 생명과학용 자연 언어 처리(NLP) 세계 시장 : 용도별

제8장 의료 및 생명과학용 자연언어 처리(NLP) 세계 시장 : 조직 규모별

제9장 의료 및 생명과학용 자연언어 처리(NLP) 세계 시장 : 최종 사용자별

제10장 의료 및 생명과학용 자연언어처리(NLP)의 세계 시장 : 지역별

제11장 의료 및 생명과학용 자연언어처리(NLP)의 세계 시장 : 경쟁 구도

제12장 기업 프로파일

제13장 주요 발전

제14장 부록

JHS
영문 목차

영문목차

Natural Language Processing (NLP) In Healthcare And Life Sciences Market Size And Forecast

Natural Language Processing (NLP) In Healthcare And Life Sciences Market size was valued at USD 2.25 Billion in 2024 and is projected to reach USD 9.57 Billion by 2031, growing at a CAGR of 19.82% from 2024 to 2031. Natural Language Processing (NLP) in healthcare refers to the application of AI technologies that enable computers to understand, interpret, and generate human language within medical contexts. It involves processing unstructured data from clinical notes, patient records, and research articles, allowing for more efficient data management and analysis. By transforming complex text into actionable insights, NLP enhances clinical decision-making and improves patient care.

NLP has numerous applications in healthcare, including clinical documentation improvement, patient sentiment analysis, and the extraction of meaningful information from electronic health records (EHRs).

It is also utilized in chatbots for patient engagement, facilitating communication between healthcare providers and patients. Additionally, NLP aids in drug discovery by analyzing vast amounts of literature to identify potential therapeutic targets.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market Dynamics

The key market dynamics that are shaping the global natural language processing (NLP) in healthcare and life sciences market include:

Key Market Drivers

Explosion of Health Data:

The healthcare sector generates an immense volume of data daily, from electronic health records to wearable devices. This sheer volume necessitates advanced tools for data analysis. NLP serves as a critical solution for transforming unstructured data into actionable insights. According to the International Data Corporation (IDC), the volume of healthcare data reached 2,314 exabytes in 2020 and is projected to grow at a rate of 48% annually, reaching 11,318 exabytes by 2025.

Enhanced Patient Engagement:

NLP technologies can analyze patient interactions and feedback, helping healthcare providers understand patient needs better. By facilitating personalized communication, these tools boost patient engagement and satisfaction. This improved connection ultimately leads to better health outcomes. A study published in the Journal of Medical Internet Research in 2023 found that NLP-powered chatbots improved patient engagement rates by 35% compared to traditional methods.

Operational Efficiency:

Healthcare providers face increasing pressure to improve efficiency and reduce costs. NLP automates time-consuming tasks such as documentation and coding, freeing up valuable clinician time. This allows healthcare teams to focus more on patient care rather than administrative burdens. The Healthcare Financial Management Association reported in 2023 that hospitals using NLP for clinical documentation improvement saw a 20% reduction in query rates and a 15% improvement in case mix index.

Accelerated Research and Development:

In the realm of life sciences, NLP can quickly process vast amounts of research literature and clinical trial data. This capability significantly speeds up the drug discovery process and the development of innovative treatments. By enhancing data accessibility, NLP supports informed decision-making in research. A study published in Nature Biotechnology in 2023 showed that NLP-assisted literature review could reduce the time spent on initial screening of research papers by up to 70%.

Key Challenges:

Complexity of Medical Language:

Medical terminology is intricate and varies widely across specialties, complicating NLP implementation. The ability to accurately interpret jargon, abbreviations, and context remains a significant hurdle. This complexity can lead to misinterpretations and affect clinical outcomes.

Integration with Existing Systems:

High-quality, annotated datasets are essential for training effective NLP models, yet they are often scarce in healthcare. The absence of comprehensive training data can lead to suboptimal model performance. This limitation restricts the scalability and effectiveness of NLP applications.

Resistance to Change:

Healthcare professionals may be resistant to adopting new technologies, fearing disruption to established workflows. This skepticism can stem from concerns about accuracy and reliability. Overcoming this resistance requires targeted education and evidence of NLP's value in clinical practice.

Key Trends

Conversational AI:

Conversational AI, powered by NLP, is increasingly being integrated into healthcare settings for patient interaction. Virtual health assistants can provide instant responses to patient inquiries, improving access to information. This trend enhances patient engagement and streamlines administrative processes. According to a survey by the American Hospital Association (AHA) in 2023, 47% of hospitals were using or piloting conversational AI solutions for patient engagement.

Sentiment Analysis:

Sentiment analysis in healthcare utilizes NLP to gauge patient emotions and experiences from feedback and reviews. Understanding patient sentiment helps providers tailor services and improve care delivery. This trend emphasizes the importance of patient-centered approaches in healthcare. A study published in the Journal of Medical Internet Research in 2023 found that NLP-based sentiment analysis of patient feedback could predict hospital readmission rates with 78% accuracy.

Integration with Electronic Health Records (EHRs):

NLP is being integrated with EHR systems to enhance data extraction and analysis capabilities. By transforming unstructured data into structured formats, NLP facilitates better clinical decision-making. This trend aims to improve workflow efficiency and optimize patient outcomes in healthcare settings. According to the Office of the National Coordinator for Health Information Technology (ONC), as of 2023, 96% of all non-federal acute care hospitals have adopted certified EHR technology.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market Regional Analysis

Here is a more detailed regional analysis of the global natural language processing (NLP) In healthcare and life sciences market:

North America

North America dominating the natural language processing (NLP) in healthcare and life sciences market, driven by advanced healthcare infrastructure and substantial investments in AI and machine learning technologies. The region's dominance is reinforced by the presence of major tech companies and healthcare providers actively integrating NLP solutions to improve patient care and streamline operations.

According to the U.S. Department of Health and Human Services, 96% of hospitals had adopted certified electronic health record (EHR) technology by 2021, creating a vast repository of unstructured data ideal for NLP applications. Recently, IBM Watson Health announced a collaboration with Humana to leverage NLP and AI for improving care management and addressing social determinants of health.

The COVID-19 pandemic has accelerated the adoption of NLP technologies in North American healthcare, particularly for analyzing vast amounts of medical literature, clinical notes, and patient data. NLP tools have proven invaluable in tracking disease spread, identifying potential treatments, and managing vaccine distribution.

Asia Pacific

The Asia Pacific region is experiencing rapid growth in the Natural Language Processing (NLP) in Healthcare and Life Sciences Market, driven by increasing digitalization of healthcare systems and substantial investments in AI technologies. Countries like China, Japan, and India are actively adopting NLP solutions to overcome language barriers, improve clinical documentation, and enhance patient care in their diverse healthcare landscapes.

According to China's National Health Commission, the country's health information technology market reached 77.55 billion yuan ($11.04 billion) in 2020, with NLP playing a crucial role in this expansion. Recently, Alibaba Health announced a partnership with SenseTime to develop AI-powered NLP solutions for medical image analysis and clinical decision support, showcasing the region's commitment to advancing healthcare technology.

The COVID-19 pandemic has accelerated the adoption of NLP technologies in Asia Pacific's healthcare sector, particularly for analyzing large volumes of medical literature, tracking disease spread, and managing vaccine distribution. NLP tools have proven invaluable in processing multilingual health data and facilitating cross-border collaboration in pandemic response.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market: Segmentation Analysis

The Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is segmented based on Component, NLP Types, Application, End-User, and Geography.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By Component

Based on Component, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Solution and Services. In the healthcare and life sciences market for natural language processing (NLP), the solution segment currently dominates due to the increasing adoption of NLP technologies for clinical documentation, patient engagement, and data analysis. However, the services segment is rapidly growing as healthcare providers seek tailored implementations, ongoing support, and training to optimize these solutions. This trend highlights a shift towards integrated, comprehensive NLP strategies that enhance both functionality and user experience.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By NLP Types

Based on NLP Types, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Rule-based natural language processing, Statistical natural language processing, Hybrid natural language processing. In the healthcare and life sciences market for Natural Language Processing (NLP), the rule-based natural language processing segment currently dominates due to its reliability and effectiveness in specific applications like clinical coding and data extraction. However, the hybrid natural language processing segment is rapidly growing, as it combines the strengths of both rule-based and statistical approaches, offering greater flexibility and accuracy in handling diverse healthcare data. This trend reflects an increasing demand for more robust and adaptive NLP solutions that can improve outcomes in patient care and research.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By Application

Based on Application, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Interactive Voice Response (IVR), Pattern & Image Recognition, Auto Coding, and Classification & Categorization, and Text & Speech Analytics. In the natural language processing (NLP) in healthcare and life sciences market, the text and speech analytics segment is dominating owing to its critical role in analyzing vast amounts of unstructured data for improved clinical insights and patient interactions. Meanwhile, the auto coding segment is rapidly growing, fueled by the increasing need for automation in medical coding and billing processes, which enhances efficiency and accuracy in healthcare operations. This growth reflects a broader trend toward integrating advanced NLP applications to streamline workflows and improve healthcare delivery.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By End-User

Based on End-User, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Physicians, Researchers, Patients, and Clinical Operators. The physician segment is expected to dominate the market as healthcare providers increasingly leverage NLP to enhance clinical documentation, decision-making, and patient interactions. However, the patient segment is rapidly growing, driven by the rise of patient engagement tools and telehealth services that utilize NLP to improve communication and personalize care. This trend highlights a shift towards empowering patients through technology, ultimately fostering better health outcomes and experiences.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By Geography

Based on Geography, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is classified into North America, Europe, Asia Pacific, and the Rest of the World. North America is anticipated to hold major share in the natural language processing (NLP) in healthcare and life sciences market owing to its advanced healthcare infrastructure, high investment in technology, and a strong focus on data-driven solutions. Meanwhile, the Asia Pacific segment is rapidly growing, fueled by increasing digitalization in healthcare, rising healthcare expenditures, and a growing emphasis on improving patient outcomes through innovative technologies. This shift indicates a burgeoning market opportunity as countries in the region adopt NLP solutions to enhance their healthcare systems.

Key Players

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with its product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market Key Developments

TABLE OF CONTENTS

INTRODUCTION OF GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

4 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET OUTLOOK

5 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY COMPONENT

6 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY NLP TYPES

7 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY APPLICATION

8 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY ORGANIZATION SIZE

9 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY END-USER

10 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY GEOGRAPHY

11 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET COMPETITIVE LANDSCAPE

12 COMPANY PROFILES

13 KEY DEVELOPMENTS

14 Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기