특히 오지 및 신흥국에서의 마이크로그리드 확장은 플로우 배터리용도에 대한 새로운 기회를 창출하고 있습니다. 따라서 마이크로그리드 시장의 급격한 성장에 따라 시장 규모는 2024년 22억 4,000만 달러를 돌파하고 2031년에는 96억 4,000만 달러에 달할 것으로 예상됩니다.
플로우 배터리는 장시간 에너지 저장 용도에 탁월하며 그리드 복원력과 재생 가능 에너지 통합에 점점 더 중요해지고 있습니다. 따라서 장시간 에너지 저장에 대한 관심이 높아짐에 따라 시장은 2024년부터 2031년까지 연평균 22.10%의 연평균 복합 성장률(CAGR)로 성장할 것입니다.
플로우 배터리 시장 정의/개요
플로우 배터리는 막으로 분리된 두 개의 분리된 화학 용액에 에너지를 저장하는 충전식 전기화학 에너지 저장 장치입니다. 이 배터리의 에너지 용량은 전해질 탱크의 크기를 늘림으로써 확장할 수 있어 대규모 에너지 저장에 이상적입니다. 이 배터리는 풍력이나 태양광과 같은 재생 가능 에너지원에서 생산된 잉여 에너지를 저장하고 수요가 많거나 발전량이 적은 시간대에 사용할 수 있는 그리드 규모의 용도에 특히 적합합니다.
플로우 배터리는 수요가 낮을 때 잉여 에너지를 저장했다가 필요할 때 방출함으로써 재생에너지의 간헐적인 특성을 해결하고 전력망의 안정성과 신뢰성을 향상시킵니다. 또한, 오프 피크에 충전하고 피크에 방전함으로써 전력 수요의 피크를 억제하여 소비자와 전력 회사 모두에게 전기 요금을 절감할 수 있습니다.
태양광 및 풍력 발전과 같은 재생 가능 에너지원의 사용이 증가함에 따라 간헐성과 변동성에 대처할 수 있는 효율적인 에너지 저장 솔루션이 필요합니다. 플로우 배터리는 발전량이 적거나 수요가 많을 때 잉여 재생 가능 에너지를 저장할 수 있는 안정적인 방법을 제공합니다. 국제에너지기구(IEA)에 따르면 2023년 재생에너지 용량은 2022년 대비 107GW(33%) 증가하여 총 440GW에 달할 것으로 예상됩니다. 재생에너지의 통합으로 전력망이 복잡해짐에 따라 전력망 안정성과 에너지 안보를 실현할 수 있는 기술의 필요성이 높아지고 있습니다. 미국 에너지부의 에너지 저장 그랜드 챌린지는 2030년까지 미국 시장의 모든 수요를 충족시킬 수 있는 에너지 저장 기술을 개발하고 국산화하는 것을 목표로 하고 있으며, 시장 규모는 연간 350억 달러에 달할 것으로 예상됩니다.
지속적인 연구 개발 노력으로 인해 플로우 배터리 기술의 비용이 낮아지고 에너지 저장 시장에서 경쟁력이 높아지고 있습니다. 국립 재생 에너지 연구소(NREL)의 보고서에 따르면 바나듐 레독스 플로우 배터리의 비용은 2018 년에서 2050년사이에 66% 감소하여 $ 555/kWh에서 $ 190/kWh로 떨어질 것으로 예상됩니다. 정부의 지원 정책과 인센티브는 플로우 배터리를 포함한 에너지 저장 기술의 채택을 촉진하고 있습니다. 미국의 2022년 인플레이션 감소법에는 2025년 이전에 착공하는 프로젝트에 대해 30%의 에너지 저장 투자 세액공제(ITC)가 단독으로 포함되어 있으며, 이는 플로우 배터리에 적용됩니다. 미국 에너지부는 2030년까지 장시간 에너지 저장 비용을 90% 절감하고 10시간 이상 시스템 평준화 비용을 0.05달러/kWh로 낮추겠다는 목표를 세웠으며, 이는 플로우 배터리와 같은 기술의 채택을 크게 촉진할 수 있습니다.
플로우 배터리는 일반적으로 리튬 이온 배터리와 같은 일부 경쟁 기술에 비해 에너지 밀도가 낮으며, 동등한 에너지 저장 용량을 얻기 위해 더 큰 설치 면적이 필요할 수 있습니다. 미국 에너지부의 Global Energy Storage Database에 따르면, 바나듐 레독스 플로우 배터리의 에너지 밀도는 일반적으로 20-40Wh/L인 반면, 리튬 이온 배터리는 200-400Wh/L입니다. 플로우 배터리는 다른 에너지 저장 기술에 비해 초기 비용이 높은 경우가 많으며, 이는 도입 장벽으로 작용할 수 있습니다. 미국 국립재생에너지연구소(NREL)의 보고서에 따르면 2020년 4시간 지속시간의 바나듐 레독스 플로우 배터리 시스템의 설치 비용은 약 460달러/kWh인 반면, 비슷한 지속시간의 리튬이온 시스템의 설치 비용은 380달러/kWh입니다.
유량 배터리는 펌프, 탱크, 멤브레인 등 복잡한 시스템을 포함하고 있어 유지보수 필요성과 운영상의 어려움이 높을 수 있는데, Journal of Energy Storage에 게재된 연구에 따르면 유량 배터리 시스템의 연간 유지보수 비용은 초기 자본 비용의 1.5-2.5%인 반면, 리튬 이온 배터리 시스템은 0.5-1.5%인 것으로 나타났습니다.의 1.5%에서 2.5%인 반면, 리튬 이온 배터리 시스템은 0.5%에서 1%인 것으로 나타났습니다. 리튬 이온 배터리와 같은 기존 기술에 비해 플로우 배터리는 상업적 역사가 짧기 때문에 투자자와 전력회사가 채택을 주저할 수 있습니다. 미국 에너지부의 Global Energy Storage Database에 따르면 2021년 현재 전 세계에서 가동 중인 플로우 배터리 프로젝트는 약 70개, 리튬 이온 배터리 프로젝트는 700개 이상입니다.
The expansion of microgrids, particularly in remote areas and developing countries, is creating new opportunities for flow battery applications. Thus, with the increasing microgrid market surge the growth of market size surpassing USD 2.24 Billion in 2024 to reach the valuation of USD 9.64 Billion by 2031.
Flow batteries excel in long-duration energy storage applications, which are becoming increasingly important for grid resilience and renewable energy integration. Thus, the increasing focus on long-duration energy storage enables the market to grow at a CAGR of 22.10% from 2024 to 2031.
Flow Battery Market: Definition/ Overview
A flow battery is a rechargeable electrochemical energy storage device that stores energy in two separate chemical solutions, divided by a membrane. The battery's energy capacity is scalable by increasing the size of the electrolyte tanks, making it ideal for large-scale energy storage. These batteries are particularly well-suited for grid-scale applications, where they can store surplus energy generated from renewable sources like wind and solar for use during periods of high demand or low generation.
Flow batteries address the intermittent nature of renewable energy by storing excess energy when demand is low and releasing it when needed, thereby enhancing grid stability and reliability. They also help reduce peak electricity demand by charging during off-peak hours and discharging during peak periods, resulting in lower electricity costs for both consumers and utilities.
Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.
The increasing use of renewable energy sources like solar and wind power necessitates efficient energy storage solutions to address intermittency and variability. Flow batteries offer a reliable method for storing excess renewable energy during low-generation or high-demand periods. According to the International Energy Agency (IEA), renewable energy capacity additions are on track to increase by 107 GW (33%) in 2023 compared to 2022, reaching a total of 440 GW. As power grids become more complex with the integration of renewables, there's a growing need for technologies that can provide grid stability and energy security. The U.S. Department of Energy's Energy Storage Grand Challenge aims to develop and domestically manufacture energy storage technologies that can meet all U.S. market demands by 2030, with a projected market size of USD 35 Billion annually.
Ongoing research and development efforts are driving down the costs of flow battery technology, making it more competitive in the energy storage market. According to a report by the National Renewable Energy Laboratory (NREL), the cost of vanadium redox flow batteries is projected to decrease by 66% between 2018 and 2050, from $555/kWh to $190/kWh. Supportive government policies and incentives are encouraging the adoption of energy storage technologies, including flow batteries. The U.S. Inflation Reduction Act of 2022 includes a standalone energy storage Investment Tax Credit (ITC) of 30% for projects commencing construction before 2025, which applies to flow batteries. The U.S. Department of Energy has set a goal to reduce the cost of long-duration energy storage by 90% to $0.05/kWh levelized cost for 10+ hour systems by 2030, which could significantly boost the adoption of technologies like flow batteries.
The flow batteries typically have lower energy density compared to some competing technologies like lithium-ion batteries, which may require larger footprints for equivalent energy storage capacity. According to the U.S. Department of Energy's Global Energy Storage Database, the energy density of vanadium redox flow batteries typically ranges from 20-40 Wh/L, while lithium-ion batteries can achieve 200-400 Wh/L. Flow batteries often have higher upfront costs compared to other energy storage technologies, which can be a barrier to adoption. A report by the National Renewable Energy Laboratory (NREL) estimated that in 2020, the installed cost for a 4-hour duration vanadium redox flow battery system was approximately $460/kWh, compared to $380/kWh for a lithium-ion system of similar duration.
Flow batteries have more complex systems with pumps, tanks, and membranes, potentially leading to higher maintenance needs and operational challenges. A study published in the Journal of Energy Storage found that the annual maintenance costs for flow battery systems can range from 1.5% to 2.5% of the initial capital cost, compared to 0.5% to 1% for lithium-ion battery systems. Compared to more established technologies like lithium-ion batteries, flow batteries have a shorter commercial history, which can make investors and utilities hesitant to adopt them. According to the U.S. Department of Energy's Global Energy Storage Database, as of 2021, there were approximately 70 operational flow battery projects worldwide, compared to over 700 lithium-ion battery projects.
The vanadium segment, dominates in the flow battery market owing to their high energy efficiency, long cycle life, and scalability, making them a preferred choice for grid-scale energy storage applications. One of the key advantages of VRFBs is the use of vanadium electrolytes, which allow for reliable charging and discharging over numerous cycles without significant degradation. This durability is made possible by vanadium's electrochemical properties, which enable the easy transfer of electrons in and out of the element.
In a VRFB, vanadium redox couples V2+/V3+ in the negative half-cell and V4+/V5+ in the positive half-cell are utilized to store energy. This design allows the battery to maintain stable performance over time. A unique advantage of vanadium flow batteries is that their power and energy ratings are independent, meaning they can be optimized separately for specific applications. This flexibility makes VRFBs particularly suited for large-scale energy storage solutions, where both energy capacity and power output can be tailored according to the needs of the grid.
The redox segment, particularly vanadium redox flow batteries (VRFBs), holds a dominant position in the flow battery market owing to their exceptional scalability, long cycle life, and reliable performance in grid-scale energy storage applications. VRFBs are especially valued for their ability to maintain capacity over thousands of charge and discharge cycles, making them an ideal solution for large-scale, long-term energy storage needs. Their unique ability to decouple power and energy capacity allows for flexible system design, where power output and storage capacity can be independently scaled to suit specific applications.
VRFBs durability, leads to a shorter payback period, enhancing their cost-effectiveness for utilities and other large-scale energy storage operators. Unlike other battery types, VRFBs experience minimal degradation over time, providing consistent performance throughout their lifespan. This makes them a preferred choice for renewable energy integration, where they can store excess energy from sources like wind and solar for later use, improving grid reliability.
North America substantially dominates the flow battery market owing to the rapid growth of renewable energy sources in North America is driving the need for effective energy storage solutions like flow batteries to manage intermittency and ensure grid stability. According to the U.S. Energy Information Administration (EIA), renewable energy sources accounted for about 20% of electricity generation in the United States in 2021, up from about 10% in 2011. The EIA projects that renewables will provide 35% of total electricity generation by 2030.
With increasing extreme weather events and aging infrastructure, there's a rising focus on enhancing grid resilience and reliability in North America, driving demand for advanced energy storage solutions like flow batteries. The U.S. Department of Energy's Grid Deployment Office is overseeing the investment of over USD 10.5 Billion to enhance grid resilience and reliability, as part of the Bipartisan Infrastructure Law. This includes significant funding for energy storage projects.
North American governments, particularly in the United States, have implemented policies and incentives that are favorable to the energy storage market, including flow batteries. The U.S. Inflation Reduction Act of 2022 includes a standalone energy storage Investment Tax Credit (ITC) of 30% for projects commencing construction before 2025. This applies to flow batteries and is expected to drive significant market growth. The Canadian government has also committed CAD 964 million over four years to the Smart Renewable and Electrification Pathways Program, which includes support for energy storage projects.
Asia Pacific is anticipated to witness the fastest growth in the flow battery market owing to the region's rapidly expanding renewable energy capacity, which drives the need for energy storage solutions like flow batteries. According to the International Renewable Energy Agency (IRENA), Asia accounted for 64% of new renewable energy capacity added globally in 2021. The region's total renewable energy capacity reached 1.17 TW, with China alone accounting for 931 GW. Many countries in the region are implementing supportive policies and increasing investments in energy storage to improve grid stability and power quality. The China Energy Storage Alliance (CNESA) reports that China's energy storage capacity is expected to reach 35.5 GW by 2025, with government policies targeting 30 GW of new energy storage capacity between 2021 and 2025.
In many parts of the Asia Pacific region, especially in remote and island areas, there's an increasing need for off-grid and microgrid solutions, which often incorporate flow batteries. The Asian Development Bank (ADB) estimates that about 350 million people in Asia and the Pacific still lack access to electricity. The bank has committed to supporting the development of microgrids and off-grid solutions, with plans to invest USD 2 Billion annually in energy projects, including energy storage initiatives.
The Flow Battery Market is still in its early stages, and the competitive landscape is likely to evolve as new technologies and companies emerge. However, the established players in the market have a significant head start and are well-positioned to capitalize on the growing demand for energy storage solutions.
The organizations are focusing on innovating their product line to serve the vast population in diverse regions. Some of the prominent players operating in the flow battery market include: