빅데이터 보안 시장 : 세계 산업 규모, 점유율, 동향, 기회, 예측 - 경쟁별, 보안 유형별, 최종 이용 산업별, 지역별, 경쟁별(2020-2030년)
Big Data Security Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Security Type, By End-User Industry, By Region & Competition, 2020-2030F
상품코드 : 1841561
리서치사 : TechSci Research
발행일 : 2025년 09월
페이지 정보 : 영문 188 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,500 ₩ 6,531,000
Unprintable PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트의 Copy&Paste도 불가능합니다.
US $ 5,500 ₩ 7,982,000
PDF and Excel (Multi-User License) help
PDF 및 Excel 보고서를 기업의 팀이나 기관에서 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다.
US $ 8,000 ₩ 11,611,000
PDF and Excel (Custom Research License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다. 80시간의 애널리스트 타임이 포함되어 있고 Copy & Paste 가능한 PPT 버전도 제공됩니다. 짧은 Bespoke 리서치 프로젝트 수행에 맞는 라이선스입니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.

한글목차

세계의 빅데이터 보안 시장 규모는 2024년에 238억 7,000만 달러로 평가되었으며, 예측 기간 동안 CAGR 17.67%로 2030년에는 639억 3,000만 달러에 달할 것으로 예측됩니다.

시장 개요
예측 기간 2026-2030년
시장 규모 : 2024년 238억 7,000만 달러
시장 규모 : 2030년 639억 3,000만 달러
CAGR : 2025-2030년 17.67%
급성장 부문 네트워크 보안
최대 시장 북미

빅데이터 보안 시장은 웹사이트, 모바일 애플리케이션, 애플리케이션 프로그래밍 인터페이스 등 디지털 시스템을 대상으로 하는 악성 봇 트래픽을 탐지, 관리, 완화하는 데 초점을 맞춘 산업을 말합니다. 이러한 봇은 종종 사이버 범죄자들에 의해 사용되며, 크리덴셜 스터핑, 컨텐츠 스크래핑, 서비스 거부 공격, 인벤토리 호딩, 광고 사기 등의 활동을 수행하여 비즈니스 운영과 고객 신뢰에 심각한 위험을 초래합니다. 각 분야에서 디지털 전환이 가속화되면서 기업들은 고객 참여와 서비스 제공을 위해 온라인 플랫폼에 대한 의존도를 높이고 있으며, 이에 따라 악성 자동 트래픽에 대한 공격 대상이 확대되고 있습니다.

이러한 역동적인 움직임으로 인해 인공지능, 머신러닝, 행동 분석, 리스크 스코어링을 사용하여 유해한 봇의 행동을 실시간으로 식별하고 차단하는 고도화된 봇 대응 솔루션에 대한 수요가 증가하고 있습니다. 합법적인 사용자 행동을 모방할 수 있는 인간과 유사한 '고도화된 지속형 봇'의 출현 등 봇의 고도화가 진행됨에 따라 기존의 보안 대책만으로는 충분하지 않으며, 보다 적응력 있고 지능적인 솔루션이 요구되고 있습니다. 또한, 유럽 일반 데이터 보호 규정과 각국의 사이버 보안 프레임워크 등 데이터 프라이버시 및 사이버 보안 컴플라이언스 관련 규제 압력이 증가함에 따라 기업들은 온라인 방어를 강화해야 하는 상황에 직면해 있습니다.

은행 및 금융 서비스, 소매 및 E-Commerce, 미디어 및 엔터테인먼트, 여행 및 호텔 등 주요 분야는 디지털 자산과 민감한 고객 데이터의 가치가 높아 빅데이터 보안 도입의 최전선에 서 있습니다. 또한, 클라우드 기반 도입 모델과 기존 웹 애플리케이션 방화벽 및 컨텐츠 전송 네트워크와의 통합을 통해 빅데이터 보안 솔루션은 모든 규모의 조직에서 보다 쉽게 사용할 수 있고 확장성이 뛰어나며, 모든 규모의 조직에 적합하도록 설계되었습니다.

전략적 파트너십, 제품 혁신, 사이버 보안 인프라에 대한 투자 증가도 시장 성장에 기여하고 있습니다. 위협 주체가 전술을 계속 진화시키는 가운데, 디지털화되는 세계 경제에서 선제적이고 지능적인 실시간 방어 메커니즘에 대한 중요한 요구로 인해 빅데이터 보안 시장은 지속적으로 확대될 것으로 예상됩니다.

시장 촉진요인

데이터 양 증가와 복잡성 증가

주요 시장 과제

다양하고 분산된 데이터 환경 보호의 복잡성

주요 시장 동향

사전 예방적 위협 탐지를 위한 인공지능과 머신러닝의 결합

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 소리

제5장 세계의 빅데이터 보안 시장 전망

제6장 북미의 빅데이터 보안 시장 전망

제7장 유럽의 빅데이터 보안 시장 전망

제8장 아시아태평양의 빅데이터 보안 시장 전망

제9장 중동 및 아프리카의 빅데이터 보안 시장 전망

제10장 남미의 빅데이터 보안 시장 전망

제11장 시장 역학

제12장 시장 동향과 발전

제13장 기업 개요

제14장 전략적 제안

제15장 조사 회사 소개 및 면책사항

KSM
영문 목차

영문목차

The Global Big Data Security Market was valued at USD 23.87 billion in 2024 and is expected to reach USD 63.93 billion by 2030 with a CAGR of 17.67% during the forecast period.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 23.87 Billion
Market Size 2030USD 63.93 Billion
CAGR 2025-203017.67%
Fastest Growing SegmentNetwork Security
Largest MarketNorth America

The Big Data Security Market refers to the industry focused on detecting, managing, and mitigating malicious bot traffic that targets digital systems, including websites, mobile applications, and application programming interfaces. These bots are often used by cybercriminals to conduct activities such as credential stuffing, content scraping, denial-of-service attacks, inventory hoarding, and ad fraud, posing severe risks to both business operations and customer trust. As digital transformation accelerates across sectors, organizations are increasingly relying on online platforms for customer engagement and service delivery, creating a broader attack surface for malicious automated traffic.

This dynamic is driving heightened demand for advanced bot protection solutions that use artificial intelligence, machine learning, behavioral analysis, and risk scoring to identify and block harmful bot behavior in real time. The rising sophistication of bots, including the emergence of human-like "advanced persistent bots" that can mimic legitimate user behavior, has made traditional security measures insufficient, necessitating more adaptive and intelligent solutions. In addition, growing regulatory pressure related to data privacy and cybersecurity compliance, such as the General Data Protection Regulation in Europe and various national cybersecurity frameworks, is compelling enterprises to strengthen their online defenses.

Key sectors such as banking and financial services, retail and e-commerce, media and entertainment, and travel and hospitality are at the forefront of Big Data Security adoption due to the high value of digital assets and sensitive customer data. Furthermore, cloud-based deployment models and integration with existing web application firewalls and content delivery networks are making Big Data Security solutions more accessible and scalable for organizations of all sizes.

Strategic partnerships, product innovation, and rising investments in cybersecurity infrastructure are also contributing to market growth. As threat actors continue to evolve their tactics, the Big Data Security Market is expected to witness sustained expansion, driven by the critical need for proactive, intelligent, and real-time defense mechanisms in an increasingly digitized global economy.

Key Market Drivers

Increasing Volume and Complexity of Data

The Big Data Security Market is experiencing significant growth due to the exponential increase in data volume and complexity across industries. Organizations are generating vast amounts of data from diverse sources, including IoT devices, social media, cloud platforms, and enterprise applications. This surge in data creation, coupled with the need to process and analyze unstructured and semi-structured data, heightens the risk of cyber threats such as data breaches and unauthorized access.

As businesses leverage big data for strategic decision-making, the demand for robust security solutions to protect sensitive information, ensure data integrity, and maintain operational continuity is paramount. Advanced security measures like AI-driven threat detection, encryption, and zero-trust architectures are being adopted to safeguard complex data environments.

The proliferation of digital transformation initiatives further amplifies the need for scalable security frameworks that can handle the velocity, variety, and volume of big data. This driver is fueled by the necessity to protect intellectual property, customer data, and proprietary insights, which are critical for maintaining competitive advantage and regulatory compliance in a data-driven economy.

In 2023, global data creation reached approximately 120 zettabytes, with projections estimating a rise to 180 zettabytes by 2025. Over 57% of this data is user-generated, increasing the complexity of securing diverse datasets. Internet traffic is expected to generate 150-200 zettabytes by the end of 2025, with daily data generation at 2.5 quintillion bytes, necessitating advanced security solutions to protect against vulnerabilities in real-time data processing environments.

Key Market Challenges

Complexity in Securing Diverse and Distributed Data Environments

One of the most critical challenges facing the Big Data Security Market is the inherent complexity involved in securing diverse and distributed data environments. Big data systems typically operate across a wide range of platforms, including on-premise servers, private clouds, and public cloud infrastructures. These environments may span multiple geographic locations, legal jurisdictions, and technology stacks. The sheer volume, velocity, and variety of data flowing through these systems increases the difficulty of implementing a unified and coherent security framework.

Organizations handling massive datasets often struggle with visibility across their data assets. In such scenarios, sensitive information may be inadvertently stored without adequate encryption or access controls. Moreover, the traditional perimeter-based security models are insufficient for protecting modern, decentralized big data infrastructures. Data is often transferred between different business units, third-party vendors, and cloud-based services, making it highly susceptible to interception and unauthorized access. The integration of legacy systems with new-age big data platforms further exacerbates the risk, as older systems may not support modern security protocols.

In addition, securing real-time data processing environments such as those powered by Hadoop, Apache Spark, or NoSQL databases poses unique security challenges. These frameworks were not originally designed with strong security in mind, leading to vulnerabilities that require specialized tools and configurations. Ensuring end-to-end data protection-from ingestion to storage, processing, and output-requires constant monitoring, layered security controls, and effective incident response mechanisms.

To address these issues, organizations need to adopt a holistic security approach that incorporates data classification, role-based access controls, encryption at rest and in transit, anomaly detection, and security analytics. However, developing and maintaining such a multi-layered security infrastructure involves high financial and operational costs. Furthermore, a lack of skilled professionals with expertise in both big data technologies and cybersecurity adds to the implementation burden. As enterprises continue to embrace data-driven strategies, failure to effectively address these complexities could lead to increased risk of data breaches, regulatory non-compliance, and loss of stakeholder trust.

Key Market Trends

Integration of Artificial Intelligence and Machine Learning for Proactive Threat Detection

One of the most transformative trends shaping the Big Data Security Market is the integration of artificial intelligence and machine learning technologies to enable proactive threat detection and response. As the volume and complexity of cyber threats continue to escalate, traditional rule-based security approaches are becoming increasingly inadequate. In response, organizations are leveraging artificial intelligence and machine learning algorithms to analyze massive datasets in real time, identify anomalies, and detect potential security breaches before they can cause significant damage.

Artificial intelligence-driven solutions can process historical and real-time data simultaneously to build behavioral models that differentiate between normal user activity and suspicious behavior. Machine learning models, trained on extensive cybersecurity datasets, can accurately identify patterns associated with malicious activities such as data exfiltration, insider threats, and brute-force attacks. This not only enhances the accuracy of threat detection but also reduces the number of false positives, thereby optimizing the efficiency of security operations centers.

Furthermore, the use of artificial intelligence in big data security enables automated incident response. Once a threat is detected, artificial intelligence systems can initiate predefined actions such as isolating compromised nodes, blocking unauthorized access, and notifying the appropriate personnel. This level of automation is particularly beneficial in large-scale data environments where manual intervention may not be fast enough to prevent data loss or service disruption.

In addition to threat detection, artificial intelligence and machine learning are being employed to enhance encryption techniques, predict vulnerabilities, and improve access control mechanisms. These technologies are also helping organizations comply with data protection regulations by enabling real-time monitoring and audit trails. As the sophistication of cyber threats continues to grow, the adoption of artificial intelligence and machine learning in the Big Data Security Market is expected to become a standard practice, driving innovation and reinforcing trust in digital ecosystems.

Key Market Players

Report Scope:

In this report, the Global Big Data Security Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Big Data Security Market, By Component:

Big Data Security Market, By Security Type:

Big Data Security Market, By End-User Industry:

Big Data Security Market, By Region:

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Big Data Security Market.

Available Customizations:

Global Big Data Security Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Table of Contents

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Voice of Customer

5. Global Big Data Security Market Outlook

6. North America Big Data Security Market Outlook

7. Europe Big Data Security Market Outlook

8. Asia Pacific Big Data Security Market Outlook

9. Middle East & Africa Big Data Security Market Outlook

10. South America Big Data Security Market Outlook

11. Market Dynamics

12. Market Trends and Developments

13. Company Profiles

14. Strategic Recommendations

15. About Us & Disclaimer

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기