세계의 수성 유기 레독스 플로우 배터리 시장 : 산업 규모, 점유율, 동향, 기회, 예측 - 유형별, 용도별, 지역별, 경쟁별(2020-2030년)
Aqueous Organic Redox Flow Battery Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application, By Region & Competition, 2020-2030F
상품코드:1743951
리서치사:TechSci Research
발행일:2025년 06월
페이지 정보:영문 188 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
세계의 수성 유기 레독스 플로우 배터리(AORFB) 시장은 2024년 14억 달러로 평가되었고, 예측 기간 동안 CAGR 12.1%로 확대될 전망이며, 2030년에는 28억 달러에 이를 것으로 예측됩니다.
이 성장의 원동력은 태양광과 풍력과 같은 신재생 에너지원의 도입이 증가하고 있는 것이며, 이러한 에너지원은 간헐성 문제를 상쇄하기 위해 신뢰성과 확장성이 높은 에너지 저장 솔루션이 필요합니다. AORFB는 특히 장시간 에너지 저장에 적합하며, 유연한 전력 및 에너지 구성을 제공하기 때문에 유틸리티 스케일이나 분산형 용도에 매우 적합합니다. 무독성 수성 유기 전해질을 사용함으로써 기존 배터리 시스템보다 환경 및 안전 측면에서 유리하고 세계 지속 가능성 목표 및 환경 규제 강화에 대응할 수 있습니다. 유기화학, 막기술, 시스템 설계의 진보는 AORFB의 성능과 경제성을 향상시켜 시장 도입에 더욱 박차를 가하고 있습니다. 이와 더불어 보조금, 세제혜택, 청정에너지 의무화 등의 형태의 정부 지원으로 이 분야에 대한 투자가 가속화되고 있으며, 저탄소 에너지 시스템으로의 이행에 있어서 중요한 컴포넌트로서의 AORFB의 역할이 강화되고 있습니다.
시장 개요
예측 기간
2026-2030년
시장 규모(2024년)
14억 달러
시장 규모(2030년)
28억 달러
CAGR(2025-2030년)
12.1%
급성장 부문
1000 킬로와트 시간 미만
최대 시장
북미
시장 성장 촉진요인
신재생 에너지원 통합 증가 및 효율적인 에너지 저장 필요성
주요 시장 과제
높은 초기 자본 비용 및 경제적 실행 가능성에 대한 우려
주요 시장 동향
유기 전해질 화학 및 맞춤형 분자 설계의 발전
목차
제1장 개요
제2장 조사 방법
제3장 주요 요약
제4장 고객의 목소리
제5장 세계의 수성 유기 레독스 플로우 배터리 시장 전망
시장 규모 및 예측
금액별
시장 점유율 및 예측
유형별(1000 kwh 미만, 1000 kwh 이상)
용도별(유틸리티 및 발전, 상업 및 공업)
지역별(북미, 유럽, 남미, 중동 및 아프리카, 아시아태평양)
기업별(2024년)
시장 맵
제6장 북미의 수성 유기 레독스 플로우 배터리 시장 전망
시장 규모 및 예측
시장 점유율 및 예측
북미 : 국가별 분석
미국
캐나다
멕시코
제7장 유럽의 수성 유기 레독스 플로우 배터리 시장 전망
시장 규모 및 예측
시장 점유율 및 예측
유럽 : 국가별 분석
독일
프랑스
영국
이탈리아
스페인
제8장 아시아태평양의 수성 유기 레독스 플로우 배터리 시장 전망
시장 규모 및 예측
시장 점유율 및 예측
아시아태평양 : 국가별 분석
중국
인도
일본
한국
호주
제9장 중동 및 아프리카의 수성 유기 레독스 플로우 배터리 시장 전망
시장 규모 및 예측
시장 점유율 및 예측
중동 및 아프리카 : 국가별 분석
사우디아라비아
아랍에미리트(UAE)
남아프리카
제10장 남미의 수성 유기 레독스 플로우 배터리 시장 전망
시장 규모 및 예측
시장 점유율 및 예측
남미 : 국가별 분석
브라질
콜롬비아
아르헨티나
제11장 시장 역학
성장 촉진요인
과제
제12장 시장 동향 및 발전
합병 및 인수
제품 출시
최근 동향
제13장 기업 프로파일
ESS, Inc.
JenaBatteries GmbH
RedT Energy Storage
ViZn Energy Systems, Inc.
Sumitomo Electric Industries, Ltd.
Redflow Limited
Invinity Energy Systems
CellCube Energy Storage Systems Inc.
제14장 전략적 제안
제15장 기업 소개 및 면책사항
AJY
영문 목차
영문목차
The Global Aqueous Organic Redox Flow Battery (AORFB) Market was valued at USD 1.4 billion in 2024 and is projected to reach USD 2.8 billion by 2030, expanding at a CAGR of 12.1% during the forecast period. This growth is driven by the increasing deployment of renewable energy sources such as solar and wind, which require reliable, scalable energy storage solutions to offset intermittency issues. AORFBs are particularly suited for long-duration energy storage and offer flexible power and energy configurations, making them ideal for utility-scale and decentralized applications. Their use of non-toxic, water-based organic electrolytes provides environmental and safety advantages over conventional battery systems, aligning with global sustainability targets and stricter environmental regulations. Advances in organic chemistry, membrane technologies, and system design have improved the performance and economic feasibility of AORFBs, further spurring market adoption. In addition, government support in the form of subsidies, tax incentives, and clean energy mandates is accelerating investment in this sector, reinforcing the role of AORFBs as a critical component in the transition to low-carbon energy systems.
Market Overview
Forecast Period
2026-2030
Market Size 2024
USD 1.4 Billion
Market Size 2030
USD 2.8 Billion
CAGR 2025-2030
12.1%
Fastest Growing Segment
<1000 kwh
Largest Market
North America
Key Market Drivers
Increasing Integration of Renewable Energy Sources and the Need for Efficient Energy Storage
The global shift toward renewable energy sources such as solar and wind is generating significant demand for reliable energy storage solutions to counter the intermittent nature of these resources. Unlike conventional batteries, Aqueous Organic Redox Flow Batteries (AORFBs) offer modularity and long-duration discharge capabilities, making them highly suitable for smoothing out fluctuations in renewable energy output. These batteries decouple energy capacity from power output, allowing for cost-effective scalability across applications ranging from microgrids to utility-scale installations. Their water-based, non-toxic electrolytes ensure a safer and more sustainable alternative to metal-based systems, while grid modernization efforts further elevate their relevance. As governments implement ambitious renewable targets, such as the IEA's forecast of renewables supplying over 42% of global electricity by 2030, the need for dependable storage becomes more pressing. AORFBs' suitability for decentralization and grid resilience makes them a pivotal solution in supporting the global clean energy transition.
Key Market Challenges
High Initial Capital Costs and Economic Viability Concerns
The widespread adoption of AORFBs is hindered by their high initial costs, which stem from the specialized components and materials required for system construction. Elements such as ion-exchange membranes, redox-active organic molecules, and large electrolyte tanks contribute to the elevated capital expenditure. Although operational safety and environmental benefits are strong value propositions, the lack of large-scale commercial deployment and economies of scale means costs remain higher compared to established lithium-ion technologies. In addition, the complex balance-of-plant requirements-including pumps and site-specific infrastructure-add to the total cost. This financial barrier is particularly significant for utilities and developers operating in cost-sensitive markets. Without mass production efficiencies or further advancements in low-cost organic chemistry, economic viability will continue to be a limiting factor for AORFB market growth.
Key Market Trends
Advancements in Organic Electrolyte Chemistry and Custom Molecule Design
A key trend in the AORFB market is the focused innovation around organic electrolyte development. Redox-active organic molecules, such as quinones, phenazines, and viologens, are being synthetically engineered to improve performance attributes like solubility, redox potential, cycling stability, and energy density. These advancements address historical limitations in durability and energy output, bringing AORFBs closer to commercial competitiveness. Molecular customization allows manufacturers to fine-tune battery performance for specific applications, enabling flexibility across both large-scale grid and smaller distributed energy storage. The ongoing collaboration between startups, research institutions, and industrial stakeholders is accelerating breakthroughs in electrolyte stability and low-cost synthesis. As these custom-designed molecules become more widely adopted, they are expected to enhance battery reliability, scalability, and sustainability, ultimately driving wider market penetration.
Key Market Players
ESS, Inc.
JenaBatteries GmbH
RedT Energy Storage
ViZn Energy Systems, Inc.
Sumitomo Electric Industries, Ltd.
Redflow Limited
Invinity Energy Systems
CellCube Energy Storage Systems Inc.
Report Scope:
In this report, the Global Aqueous Organic Redox Flow Battery Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Aqueous Organic Redox Flow Battery Market, By Type:
< 1000 kWh
>= 1000 kWh
Aqueous Organic Redox Flow Battery Market, By Application:
Utilities & Power Generation
Commercial & Industrial
Aqueous Organic Redox Flow Battery Market, By Region:
North America
United States
Canada
Mexico
Europe
Germany
France
United Kingdom
Italy
Spain
Asia Pacific
China
India
Japan
South Korea
Australia
South America
Brazil
Colombia
Argentina
Middle East & Africa
Saudi Arabia
UAE
South Africa
Competitive Landscape
Company Profiles: Detailed analysis of the major companies present in the Global Aqueous Organic Redox Flow Battery Market.
Available Customizations:
Global Aqueous Organic Redox Flow Battery Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
Company Information
Detailed analysis and profiling of additional market players (up to five).
Table of Contents
1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, and Trends
4. Voice of Customer
5. Global Aqueous Organic Redox Flow Battery Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Type (< 1000 kwh, >= 1000 kwh)
5.2.2. By Application (Utilities & Power Generation, Commercial & Industrial)
5.2.3. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
5.3. By Company (2024)
5.4. Market Map
6. North America Aqueous Organic Redox Flow Battery Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Type
6.2.2. By Application
6.2.3. By Country
6.3. North America: Country Analysis
6.3.1. United States Aqueous Organic Redox Flow Battery Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Type
6.3.1.2.2. By Application
6.3.2. Canada Aqueous Organic Redox Flow Battery Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Type
6.3.2.2.2. By Application
6.3.3. Mexico Aqueous Organic Redox Flow Battery Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Type
6.3.3.2.2. By Application
7. Europe Aqueous Organic Redox Flow Battery Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Type
7.2.2. By Application
7.2.3. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Aqueous Organic Redox Flow Battery Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Type
7.3.1.2.2. By Application
7.3.2. France Aqueous Organic Redox Flow Battery Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Type
7.3.2.2.2. By Application
7.3.3. United Kingdom Aqueous Organic Redox Flow Battery Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Type
7.3.3.2.2. By Application
7.3.4. Italy Aqueous Organic Redox Flow Battery Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Type
7.3.4.2.2. By Application
7.3.5. Spain Aqueous Organic Redox Flow Battery Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Type
7.3.5.2.2. By Application
8. Asia Pacific Aqueous Organic Redox Flow Battery Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Type
8.2.2. By Application
8.2.3. By Country
8.3. Asia Pacific: Country Analysis
8.3.1. China Aqueous Organic Redox Flow Battery Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Type
8.3.1.2.2. By Application
8.3.2. India Aqueous Organic Redox Flow Battery Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Type
8.3.2.2.2. By Application
8.3.3. Japan Aqueous Organic Redox Flow Battery Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Type
8.3.3.2.2. By Application
8.3.4. South Korea Aqueous Organic Redox Flow Battery Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Type
8.3.4.2.2. By Application
8.3.5. Australia Aqueous Organic Redox Flow Battery Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Type
8.3.5.2.2. By Application
9. Middle East & Africa Aqueous Organic Redox Flow Battery Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Type
9.2.2. By Application
9.2.3. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia Aqueous Organic Redox Flow Battery Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Type
9.3.1.2.2. By Application
9.3.2. UAE Aqueous Organic Redox Flow Battery Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Type
9.3.2.2.2. By Application
9.3.3. South Africa Aqueous Organic Redox Flow Battery Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Type
9.3.3.2.2. By Application
10. South America Aqueous Organic Redox Flow Battery Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Type
10.2.2. By Application
10.2.3. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Aqueous Organic Redox Flow Battery Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Type
10.3.1.2.2. By Application
10.3.2. Colombia Aqueous Organic Redox Flow Battery Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Type
10.3.2.2.2. By Application
10.3.3. Argentina Aqueous Organic Redox Flow Battery Market Outlook