Àü±â ¹× ÀüÀÚ ºÐ¾ß ¹ÙÀÌ¿ÀÆú¸®¸Ó ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 8,285¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2030³â±îÁö ¿¬Æò±Õ 8.95%ÀÇ ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÌ·¯ÇÑ º¯È´Â Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡, ±ÔÁ¦ Á¶Ä¡, ģȯ°æ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÌ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2026-2030³â |
½ÃÀå ±Ô¸ð : 2024³â | 8,285¸¸ ´Þ·¯ |
½ÃÀå ±Ô¸ð : 2030³â | 1¾ï 3,888¸¸ ´Þ·¯ |
CAGR : 2025-2030³â | 8.95 |
±Þ¼ºÀå ºÎ¹® | ºñ»ýºÐÇØ¼º ÇÃ¶ó½ºÆ½ |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
Àü±â ¹× ÀüÀÚ »ê¾÷¿¡¼ Áö¼Ó °¡´ÉÇÑ ´ëü ¼ÒÀçÀÇ Çʿ伺ÀÌ ´ëµÎµÊ¿¡ µû¶ó ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ Ã¤ÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ±âÁ¸ ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ È¯°æ¹®Á¦°¡ ´ëµÎµÇ¸é¼ »ýºÐÇØ¼º ¹× Àç»ý °¡´ÉÇÑ ¼ÒÀç·ÎÀÇ ÀüȯÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ½Ä¹°À̳ª ¹Ì»ý¹°°ú °°Àº Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ» ¿ø·á·Î ÇÏ´Â ¹ÙÀÌ¿ÀÆú¸®¸Ó´Â ±âÁ¸ÀÇ È¼®¿¬·á ±â¹Ý Æú¸®¸Ó¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
Àμâ ȸ·Î ±âÆÇ(PCB) ¼ö¿ä Áõ°¡
Àü±â ¹× ÀüÀÚ(E&E) ºÐ¾ßÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ¼¼°è ½ÃÀåÀº Áö¼Ó °¡´ÉÇÑ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀº °ÅÀÇ ¸ðµç ÀüÀÚ±â±â¿¡ ÇʼöÀûÀÎ Àμâ ȸ·Î ±âÆÇ(PCB)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. Àç»ý °¡´É ÀÚ¿ø¿¡¼ ÃßÃâÇÑ ¹ÙÀÌ¿À Æú¸®¸Ó´Â ȯ°æÀû ÀÌÁ¡, ±â´ÉÀû Ư¼º ¹× ¼¼°è Áö¼Ó°¡´É¼º ÀÌ´Ï¼ÅÆ¼ºê¿ÍÀÇ Àϰü¼º ¶§¹®¿¡ PCB Á¦Á¶¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ½À´Ï´Ù.
PCB´Â Çö´ë ÀüÀÚ±â±âÀÇ ÇʼöǰÀ¸·Î, ÀüÀÚ ºÎǰÀ» ÀåÂøÇÏ°í »óÈ£ ¿¬°áÇϱâ À§ÇÑ ±â¹ÝÀ» Á¦°øÇϸç, PCB´Â ¼ÒºñÀÚ ÀüÀÚ±â±â, ÀÚµ¿Â÷ ÀüÀÚ±â±â, »ê¾÷±â±â, Åë½Å µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚ±â±â°¡ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ¼ÒÇüȵʿ¡ µû¶ó ÷´Ü PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¹ÙÀÌ¿À Æú¸®¸Ó ±â¹Ý ¼ÒÀç¿¡ ´ëÇÑ ºñÁî´Ï½º ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è PCB ½ÃÀåÀº ½º¸¶Æ®Æù, IoT ±â±â, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛÀÇ º¸±Þ¿¡ ÈûÀÔ¾î ¼ö½Ê¾ï ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 5G ±â¼ú°ú Àü±âÀÚµ¿Â÷(EV)ÀÇ Ã¤ÅÃÀº PCB »ý»êÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÀüÀÚ »ê¾÷Àº ȯ°æ ¹®Á¦¿Í ¾ö°ÝÇÑ ±ÔÁ¦¸¦ °í·ÁÇÏ¿© Áö¼Ó °¡´ÉÇÑ °üÇàÀ» äÅÃÇØ¾ß ÇÑ´Ù´Â ¾Ð¹Ú¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¿¡Æø½Ã ¼öÁö ¹× À¯¸® ¼¶À¯¿Í °°Àº ±âÁ¸ PCB Àç·á´Â ¼®À¯ÈÇÐÁ¦Ç°¿¡¼ À¯·¡ÇÏ°í »ýºÐÇØµÇÁö ¾Ê¾Æ ÀüÀÚ Æó±â¹°(e-waste) Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¿Á¼ö¼ö ÀüºÐ, »çÅÁ¼ö¼ö, ¼¿·ê·Î¿À½º µî Àç»ý °¡´ÉÇÑ ¿ø·á·Î ¸¸µç ¹ÙÀÌ¿À Æú¸®¸Ó´Â Áö¼Ó °¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. È¿°úÀûÀ¸·Î ÀçȰ¿ëµÇ´Â °ÍÀº 22.3%¿¡ ºÒ°úÇÕ´Ï´Ù.
°¡º±°í ÄÄÆÑÆ®Çϸç ģȯ°æÀûÀÎ µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î À¯¿¬ÇÏ°í »ýºÐÇØ °¡´ÉÇÑ PCB·ÎÀÇ ÀüȯÀÌ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À Æú¸®¸Ó´Â À¯¿¬ÇÏ°í »ýºÐÇØ¼ºÀÌ ÀÖÀ¸¸ç ¹Ú¸·À¸·Î °¡°øÇÒ ¼ö ÀÖ¾î ÀÌ·¯ÇÑ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Ç÷º¼ºí PCB´Â ¿þ¾î·¯ºí ±â±â, Æú´õºí ½º¸¶Æ®Æù, ÀÇ·á±â±â µî¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ¹ÙÀÌ¿ÀÆú¸®¸Ó ±â¹Ý ¼ÒÀç¿¡ ´õ ¸¹Àº ±âȸ¸¦ Á¦°øÇÒ °ÍÀÔ´Ï´Ù. ģȯ°æ ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¹× ±ÔÁ¦ ´ç±¹ÀÇ ¿ä±¸´Â Á¦Á¶¾÷üµéÀÌ ¹ÙÀÌ¿ÀÆú¸®¸Ó¿Í °°Àº ģȯ°æ ¼ÒÀ縦 äÅÃÇϵµ·Ï À¯µµÇϰí ÀÖÀ¸¸ç, RoHS ¹× WEEE¿Í °°Àº À¯·´ ±ÔÁ¦´Â PCB »ý»ê¿¡ Áö¼Ó °¡´ÉÇÑ ¼ÒÀçÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇϰí ÀÖÀ¸¸ç, À¯·´¿¬ÇÕ(EU)ÀÇ 2050³â ¸ñÇ¥ÀÎ ¼øÈ¯ °æÁ¦ÀÇ ¸ñÇ¥´Â Àç»ý °¡´ÉÇÑ ÀÚ¿øÀÇ »ç¿ëÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå À̽´
¹ÙÀÌ¿À Æú¸®¸ÓÀÇ ³ôÀº »ý»ê ºñ¿ë
¹ÙÀÌ¿À Æú¸®¸ÓÀÇ ³ôÀº ºñ¿ëÀº Àü±â ¹× ÀüÀÚ ºÐ¾ßÀÇ ¼¼°è ¹ÙÀÌ¿À Æú¸®¸Ó ½ÃÀå ¼ºÀå¿¡ ¿©ÀüÈ÷ Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ȯ°æ Ä£ÈÀû ÀÎ ÀåÁ¡¿¡µµ ºÒ±¸ÇÏ°í ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ »ý»ê ºñ¿ëÀÌ »ó´ëÀûÀ¸·Î ³ô±â ¶§¹®¿¡ ƯÈ÷ ÀüÀÚÁ¦Ç°°ú °°Àº °¡°Ý¿¡ ¹Î°¨ÇÑ »ê¾÷¿¡¼´Â º¸±ÞÀÌ ¾î·Æ½À´Ï´Ù. ºñ¿ë ¹®Á¦´Â ¹ÙÀÌ¿À ¿ø·áÀÇ Á¶´Þ, Á¤Á¦, »ê¾÷ Ç¥ÁØÀ» ÃæÁ·½Ã۱â À§ÇÑ ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ Á¦Á¶¿Í °ü·ÃµÈ º¹ÀâÇÑ °øÁ¤¿¡ ±âÀÎÇÕ´Ï´Ù. ¹ÙÀÌ¿À Æú¸®¸Ó¿Í ±âÁ¸ Æú¸®¸ÓÀÇ °¡°Ý Â÷ÀÌ´Â ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÏ´Â Áß¿äÇÑ ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ±Øº¹Çϱâ À§Çؼ´Â »ý»ê °øÁ¤À» °£¼ÒÈÇϰí, ºñ¿ë È¿À²ÀûÀÎ Á¶´Þ ¹æ¹ýÀ» ã°í, »ý»ê ´É·ÂÀ» È®´ëÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.
ÁÖ¿ä ½ÃÀå µ¿Çâ
Æ÷Àå¿¡ ¹ÙÀÌ¿ÀÆú¸®¸Ó »ç¿ë Áõ°¡
Àü±â ¹× ÀüÀÚ »ê¾÷¿¡¼ ¼¼°è ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀåÀº Æ÷Àå¿¡ ¹ÙÀÌ¿ÀÆú¸®¸ÓÀÇ »ç¿ë Áõ°¡¶ó´Â ´«¿¡ ¶ç´Â º¯È¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ȯ°æ¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡¿Í ģȯ°æ Æ÷Àå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¿¡ ´ëÇÑ ´ëÀÀÀÔ´Ï´Ù. ½Ä¹°À̳ª ¹Ì»ý¹°°ú °°Àº Àç»ý °¡´ÉÇÑ ÀÚ¿ø¿¡¼ ÃßÃâÇÑ ¹ÙÀÌ¿À Æú¸®¸Ó´Â ±âÁ¸ÀÇ ¼®À¯ ±â¹Ý ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ¿Á¼ö¼ö ÀüºÐÀ̳ª »çÅÁ¼ö¼ö µîÀ¸·Î ¸¸µç ¹ÙÀÌ¿ÀÆú¸®¸Ó ±â¹Ý Çʸ§À̳ª ÆûÀ» ÀüÀÚÁ¦Ç° Æ÷Àå¿¡ Àû¿ëÇÏ´Â ±â¾÷ÀÌ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ¼¶¼¼ÇÑ ÀüÀÚ ºÎǰÀ» È¿°úÀûÀ¸·Î º¸È£ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀüÀÚ Á¦Ç°ÀÇ Àü¹ÝÀûÀΠȯ°æ ¿µÇâÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
Áö¼Ó °¡´ÉÇϰí ÀçȰ¿ë °¡´ÉÇÑ Æ÷ÀåÀç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼ Àü±â ¹× ÀüÀÚ ºÐ¾ß¿¡¼ ¹ÙÀÌ¿ÀÆú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿ÀÆú¸®¸Ó´Â »ýºÐÇØ¼º, À¯¿¬¼º, °æ·®¼º°ú °°Àº À¯ÀÍÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖ¾î ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. °¡ÀüÁ¦Ç° Á¦Á¶¾÷üµéÀÌ Á¦Ç°ÀÇ È¯°æ ÀûÇÕ¼ºÀ» °Á¶ÇÔ¿¡ µû¶ó, Æ÷Àå¿¡ ¹ÙÀÌ¿ÀÆú¸®¸Ó¸¦ »ç¿ëÇÏ´Â °ÍÀº Àü±â ¹× ÀüÀÚ ºÐ¾ß¿¡¼ ¹ÙÀÌ¿ÀÆú¸®¸Ó ¼¼°è ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â Áß¿äÇÑ ¿äÀÎÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Áö¼Ó °¡´ÉÇÑ °üÇà¿¡ ´ëÇÑ ¾à¼ÓÀ» ¹Ý¿µÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ¹ÙÀÌ¿ÀÆú¸®¸Ó°¡ ÀÌ »ê¾÷¿¡¼ Æ÷Àå ¼Ö·ç¼ÇÀÇ ÁøÈ¿¡ ÀÖ¾î Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.
The global market for biopolymers in the electrical and electronics sector was valued at USD 82.85 million in 2024 and is projected to experience significant growth with a compound annual growth rate (CAGR) of 8.95% through 2030. This transformation is largely driven by an increased focus on sustainability, regulatory measures, and the rising demand for eco-friendly materials.
Market Overview | |
---|---|
Forecast Period | 2026-2030 |
Market Size 2024 | USD 82.85 Million |
Market Size 2030 | USD 138.88 Million |
CAGR 2025-2030 | 8.95% |
Fastest Growing Segment | Non-biodegradable Plastics |
Largest Market | Asia Pacific |
The adoption of biopolymers within the electrical and electronics industry has accelerated due to the urgent need for sustainable alternatives. Growing environmental concerns related to conventional plastics have triggered a shift toward biodegradable and renewable materials. Biopolymers, which are sourced from renewable resources like plants and microorganisms, are becoming viable alternatives to traditional fossil fuel-based polymers.
### Key Market Drivers
#### Growing Demand for Printed Circuit Boards (PCBs)
The global market for biopolymers in the electrical and electronics (E&E) sector is expanding significantly, propelled by the demand for sustainable, high-performance materials. A primary driver of this growth is the increasing need for printed circuit boards (PCBs), which are essential for virtually all electronic devices. Biopolymers derived from renewable resources are increasingly being integrated into PCB manufacturing due to their environmental benefits, functional properties, and alignment with global sustainability initiatives.
PCBs are integral to modern electronics, providing the foundation for mounting and interconnecting electronic components. They are widely used in consumer electronics, automotive electronics, industrial equipment, and telecommunications. As electronic devices become more complex and miniaturized, the demand for advanced PCBs has grown, creating opportunities for biopolymer-based materials. The global PCB market is worth billions, driven by the proliferation of smartphones, IoT devices, and renewable energy systems. Additionally, the adoption of 5G technology and electric vehicles (EVs) is further boosting PCB production.
The electronics industry faces mounting pressure to adopt sustainable practices, given environmental concerns and stringent regulations. Traditional PCB materials, such as epoxy resins and fiberglass, are derived from petrochemicals and are non-biodegradable, contributing to the growing issue of electronic waste (e-waste). Biopolymers, sourced from renewable inputs like corn starch, sugarcane, and cellulose, offer a sustainable alternative. E-waste is one of the fastest-growing segments of global solid waste, with around 62 million tonnes generated in 2022, though only 22.3% of this waste was effectively recycled.
There is a noticeable shift toward flexible and biodegradable PCBs, driven by the demand for lightweight, compact, and environmentally friendly devices. Biopolymers are ideal for these applications due to their flexibility, biodegradability, and ability to be processed into thin films. Flexible PCBs are increasingly used in wearable devices, foldable smartphones, and medical equipment. The global flexible electronics market is expected to see significant growth, creating further opportunities for biopolymer-based materials. Consumer and regulatory demands for greener electronics are pushing manufacturers to adopt eco-friendly materials like biopolymers. European regulations, such as RoHS and WEEE, are accelerating the adoption of sustainable materials in PCB production, with the European Union's goal of a circular economy by 2050 further promoting the use of renewable resources.
### Key Market Challenges
#### High Production Costs of Biopolymers
The high cost of biopolymers remains a significant challenge to the growth of the global biopolymers market in the electrical and electronics sector. Despite their eco-friendly advantages, the production costs of biopolymers are relatively high, making widespread adoption difficult, particularly in price-sensitive industries like electronics. The cost issues stem from the complex processes involved in sourcing bio-based feedstocks, refining, and manufacturing biopolymers to meet industry standards. The price disparity between biopolymers and conventional polymers is a key deterrent, limiting market expansion. Overcoming this challenge will require focused efforts in research and development to streamline production processes, find cost-effective sourcing methods, and scale manufacturing capabilities.
### Key Market Trends
#### Increasing Use of Biopolymers in Packaging
The global biopolymers market in the electrical and electronics industry is undergoing a notable shift, with an increasing use of biopolymers in packaging. This trend is a response to growing environmental awareness and the demand for eco-friendly packaging solutions. Biopolymers, derived from renewable resources like plants and microorganisms, offer a sustainable alternative to traditional petroleum-based plastics. For example, companies are incorporating biopolymer-based films and foams from sources like corn starch and sugarcane into the packaging of electronic devices. These materials not only offer effective protection for sensitive electronic components but also help reduce the overall environmental impact of electronic products.
The growing emphasis on sustainable, recyclable packaging materials aligns with consumer preferences and is driving demand for biopolymers in the electrical and electronics sector. Additionally, biopolymers often exhibit beneficial properties such as biodegradability, flexibility, and light weight, making them suitable for various industry applications. As consumer electronics manufacturers increasingly highlight the eco-friendliness of their products, the use of biopolymers in packaging is expected to become a key factor propelling the growth of the global market for biopolymers in electrical and electronics. This trend not only reflects a commitment to sustainable practices but also positions biopolymers as a crucial element in the evolution of packaging solutions in the industry.
In this report, the Global Biopolymers in Electrical & Electronics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Biopolymers in Electrical & Electronics Market.
Global Biopolymers in Electrical & Electronics market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report: