Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) - ±â¼úº°, Æó±â¹° À¯Çüº°, ¿ëµµº°, Áö¿ªº°, °æÀï
Waste-to-Energy Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Technology, By Waste Type, By Application, By Region and Competition
»óǰÄÚµå : 1370835
¸®¼­Ä¡»ç : TechSci Research
¹ßÇàÀÏ : 2023³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 182 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,500 £Ü 6,267,000
Unprintable PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠺Ұ¡´ÉÇϸç, ÅØ½ºÆ®ÀÇ Copy&Pasteµµ ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 5,500 £Ü 7,660,000
PDF and Excel (Multi-User License) help
PDF ¹× Excel º¸°í¼­¸¦ ±â¾÷ÀÇ ÆÀÀ̳ª ±â°ü¿¡¼­ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,000 £Ü 11,142,000
PDF and Excel (Custom Research License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù. 80½Ã°£ÀÇ ¾Ö³Î¸®½ºÆ® ŸÀÓÀÌ Æ÷ÇԵǾî ÀÖ°í Copy & Paste °¡´ÉÇÑ PPT ¹öÀüµµ Á¦°øµË´Ï´Ù. ªÀº Bespoke ¸®¼­Ä¡ ÇÁ·ÎÁ§Æ® ¼öÇà¿¡ ¸Â´Â ¶óÀ̼±½ºÀÔ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀåÀº Æó±â¹° ¿¡³ÊÁöÈ­ °ø°ø ÁöÃâÀÇ ±ÞÁõ°ú ¼Ò°¢ ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÀÇÇØ ¿¹Ãø ±â°£ÀÎ 2024-2028³â¿¡ ¹ø¿µÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ ¼Ò°¢, °¡½ºÈ­, ¿­ºÐÇØ ¹× È£±â¼º ¹× Çø±â¼º ¼ÒÈ­¿Í °°Àº ±âŸ »ýÈ­ÇÐ °øÁ¤À» Æ÷ÇÔÇÑ ½Å¼ÓÇÏ°í °£´ÜÇÑ Æó±â¹° ¿¡³ÊÁö Àüȯ ¹æ¹ý¿¡ ´ëÇÑ °í°´ÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

µµ½Ã °íÇüÆó±â¹°(MSW)¿¡´Â Á¾ÀÌ, ÇÃ¶ó½ºÆ½, Á¤¿ø¾²·¹±â, ¸ñÁú°è Á¦Ç° µî ¿¡³ÊÁö ÇÔ·®ÀÌ ³ôÀº °ÍÀÌ ¼¯¿© ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹¿¡¼­´Â 100ÆÄ¿îµåÀÇ MSW Áß 85ÆÄ¿îµå¸¦ ¿¬·á·Î Å¿ö Àü·ÂÀ» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. Æó±â¹° ¿¡³ÊÁöÈ­ ½Ã¼³¿¡¼­´Â 2,000ÆÄ¿îµåÀÇ ¾²·¹±â¸¦ 300ÆÄ¿îµå¿¡¼­ 600ÆÄ¿îµåÀÇ Àç·Î ÀüȯÇÏ¿© ¾²·¹±âÀÇ ¾çÀ» 87%±îÁö ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¾²·¹±âÀÇ Ãʱâ 󸮿¡¼­ ¿¡³ÊÁö¸¦ ȸ¼öÇÏ¿© ¿­°ú Àü±âÀÇ ÇüÅ·Π¿¡³ÊÁö¸¦ »ý»êÇÏ´Â °úÁ¤À» Æó±â¹° ¿¡³ÊÁöÈ­(WtE)¶ó°í Çϸç, ´ëºÎºÐÀÇ WtE °øÁ¤Àº ¸Þź¿Ã, ¸Þź, ÇÕ¼º ¿¬·á, ¿¡Åº¿Ã°ú °°Àº °¡¿¬¼º ¿¬·á¸¦ »ý»êÇϰųª ¿­ ¿¬¼Ò¸¦ ÅëÇØ ¿­°ú Àü±â¸¦ Á÷Á¢ »ý»êÇÕ´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024-2028
½ÃÀå ±Ô¸ð 2022³â 371¾ï 5,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 568¾ï 6,000¸¸ ´Þ·¯
CAGR 2023-2028 7.31%
±Þ¼ºÀå ºÎ¹® ³ó¾÷ Æó±â¹°
ÃÖ´ë ½ÃÀå ¾Æ½Ã¾ÆÅÂÆò¾ç

Æó±â¹° °ü¸® ±â¼úÀÇ µðÁöÅÐÈ­°¡ ½ÃÀå ±âȸ¸¦ ÃËÁø

¿Â½Ç°¡½º ¹èÃâ·® Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ °¢±¹ Á¤ºÎÀÇ ¾ö°ÝÇÑ ±ÔÁ¦°¡ ģȯ°æ ±â¼ú °³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Æó±â¹° ¿¡³ÊÁöÈ­ ±â¼úÀÇ µµÀÔ°ú ÇÔ²² ¼¼°è Á¤ºÎ´Â È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ Àç»ý ¿¡³ÊÁö¿ø¿¡ ÀÚ±ÝÀ» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¿À²ÀûÀÎ ¾²·¹±â ¼ö°Å ¹× 󸮸¦ Àå·ÁÇϱâ À§ÇØ °¢ Áö¿ª¿¡¼­ À¯¸®ÇÑ Àμ¾Æ¼ºê¿Í ÇÁ·Î±×·¥À» ½ÃÇàÇϰí ÀÖÀ¸¸ç, ¿¡³ÊÁö »ý»êÀ» À§ÇÑ ÀûÀýÇÑ ±â¼ú Ãâ½Ã¸¦ Áö¿øÇÒ °¡´É¼ºÀÌ ÀÖÀ¸¸ç, Æó±â¹° ¿¡³ÊÁö »ç¾÷¿¡ Å« ¼ºÀå ÀáÀç·ÂÀ» Á¦°øÇÕ´Ï´Ù.

½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ´Â Æó±â¹° °ü¸® ¼­ºñ½ºÀÇ È°¿ëµµ È®´ë

Æó±â¹° °ü¸®´Â ¸¹Àº ¼±Áø±¹¿¡¼­ Å« ¹®Á¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ³ó¾÷, Á¤ºÎ±â°ü, »ê¾÷ü¿¡¼­ ¹èÃâµÇ´Â ¾²·¹±â´Â 10¾ï ÅæÀÌ ³ÑÀ¸¸ç, ¼¼°è ¸¹Àº »ê¾÷°è°¡ WtE Àü·«À» ½ÇÇàÇÏ¿© ºñ¿ë Àý°¨À» À§ÇØ ¿¡³ÊÁö »ç¿ë·®À» ÁÙÀÌ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¿­È­Çаú °°ÀÌ Æó±â¹°À» ¿¡³ÊÁö·Î ÀüȯÇÏ´Â ±â¼úÀº ½Äǰ °¡°ø, À¯Á¦Ç°, Æó¼ö ó¸® »ê¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ¸ÅÃâÀ» âÃâÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ âÃâÇÏ¿© Æó±â¹° °ü¸®¸¦ º¯È­½ÃÅ´À¸·Î½á ÃÖÁ¾»ç¿ëÀÚ¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. È­ÇÐ ¹ÝÀÀÀ» ÅëÇØ °íü ¹× ¾×ü Æó±â¹°À» ÇÕ¼º °¡½º·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º °¡½º¸¦ ÅëÇØ Àü±â³ª °¡½º ¿¬·á¿Í °°Àº À¯¿ëÇÑ °øÁ¤À¸·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡½ºÈ­·ÎÀÇ ¿¬·á·Î »ç¿ëÇÏ¿© À¯¿ëÇÑ ¿¡³ÊÁö¿Í ¿­·Î ÀüȯÇÔÀ¸·Î½á ÀÌ·¯ÇÑ °øÁ¤¿¡¼­ ¹ß»ýÇÏ´Â °íÇü Æó±â¹°Àº ´õ ÀÌ»ó »ç¿ëÇÒ ¼ö ¾ø°Ô µÇ¾î ó¸® ºñ¿ë°ú ¸Å¸³ °ø°£À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ³«³óÀå¿¡¼­ »ç¿ëµÇ´Â Àü·ÂÀÇ ¾à 40%°¡ ³­¹æ Ȱµ¿¿¡ »ç¿ëµË´Ï´Ù. °á°úÀûÀ¸·Î ¾²·¹±â¿¡¼­ Àü±â¸¦ ¸¸µå´Â °ÍÀ» Æ÷ÇÔÇÑ È¿°úÀûÀÎ ±â¼úÀÇ ÀÚ·ÂÀº ¿¹Ãø ±â°£ Áß Æó±â¹° ¿¡³ÊÁö »ê¾÷ÀÇ Æó±â¹° ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Æó±â¹°·ÎºÎÅÍÀÇ Ã»Á¤¿¡³ÊÁö »ý»ê·® Áõ°¡·Î ½ÃÀå ¼ºÀå ÃËÁø

°æÁ¦ ¼ºÀå, »ê¾÷ ¹ßÀü, µµ½ÃÈ­´Â Æó±â¹° »ý»ê, ȯ°æ ÆÄ±«, ÀÌ»êȭź¼Ò(CO2) ¹èÃâ·Î À̾îÁý´Ï´Ù. »ç¶÷µéÀÇ ½Ä½À°üÀÌ ±¤¹üÀ§ÇÏ°Ô º¯È­ÇÔ¿¡ µû¶ó »ó¾÷¿ë ¹× ÁÖ°Å¿ë ¾²·¹±â ¹ß»ý·®ÀÌ Å©°Ô Áõ°¡Çß½À´Ï´Ù. Æó±â¹° ¿¡³ÊÁöÈ­Àº ±ú²ýÇÑ ¼ö¿ä ´ëÀÀ ¿É¼Ç, ¿Â½Ç°¡½º(GHG) ¹èÃâÀ» ÁÙÀÌ´Â ¿¡³ÊÁö¿ø, ģȯ°æ »ê¾÷´ÜÁö ¼³°èÀÇ ¿ä¼Ò, ¶§·Î´Â »ç¿ë ÈÄ Æó±â¹°À» ó¸®ÇÏ´Â À¯ÀÏÇÑ ¹æ¹ýÀ¸·Î ÀÛ¿ëÇÏ¿© Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö »ýŰè·ÎÀÇ ÀüȯÀ» ´Þ¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¼¼°è ½ÃÀåÀ» Á¿ìÇÏ´Â Áß¿äÇÑ ¿äÀÎ Áß Çϳª´Â ¼¼°è ¿¡³ÊÁö ¼ö¿äÀÇ Áö¼ÓÀûÀÎ È®´ëÀÔ´Ï´Ù. ¿¹¸¦ µé¾î ¾Æ½Ã¾Æ°³¹ßÀºÇà(ADB)ÀÇ 'Æó±â¹°¿¡¼­ ¿¡³ÊÁö·ÎÀÇ Àüȯ(Waste-to-Energy cycle)Àº 2050³â±îÁö µµ½ÃÈ­, Àα¸ Áõ°¡, °æÁ¦ ¹ßÀüÀ¸·Î ÀÎÇØ 34¾ï ÅæÀÇ µµ½Ã ¾²·¹±â°¡ ¹ß»ýÇÒ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ÀÌ¿¡ µû¶ó ȯ°æ ¹®Á¦ ¹× Æó±â¹° °¨¼Ò¸¦ À§ÇÑ °³¹ß ÀýÂ÷¿¡ ¸¹Àº ÅõÀÚ°¡ ÀÌ·ç¾îÁú °ÍÀ̸ç, Æó±â¹° ¿¡³ÊÁö ºÎ¹®ÀÌ ¹øÃ¢ÇÒ ¼ö ÀÖ´Â ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù. º£Æ®³²ÀÇ ¼öµµ ÇϳëÀÌ´Â 2022³â 7¿ù, 2025³â±îÁö °¡Á¤¿¡¼­ ¹ß»ýÇÏ´Â °íÇü Æó±â¹°ÀÇ 80% ÀÌ»óÀ» Àü·ÂÀ¸·Î ÀçȰ¿ëÇÑ´Ù´Â ¸ñÇ¥¸¦ ¼¼¿ü½À´Ï´Ù. ÃÑ 10,500ÅæÀÇ ¾²·¹±â ó¸® ¿ë·®À» °¡Áø 6°³ÀÇ ÇÁ·ÎÁ§Æ® Á¦¾ÈÀÌ ½Ã¿¡ Á¦ÃâµÇ¾ú½À´Ï´Ù.

Á¶»ç ¹üÀ§

¼¼°èÀÇ Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀåÀ» ÀÌÇÏ Ä«Å×°í¸®·Î ºÐ·ùÇϰí, ¾÷°è µ¿Çâ¿¡ ´ëÇØ¼­µµ »ó¼úÇϰí ÀÖ½À´Ï´Ù.

Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå, ±â¼úº°

Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå : Æó±â¹° À¯Çüº°

Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå : ¿ëµµº°

Æó±â¹° ¿¡³ÊÁö ½ÃÀå : Áö¿ªº°

°æÀï ±¸µµ

ÀÌ¿ë °¡´ÉÇÑ Ä¿½ºÅ͸¶ÀÌÁî :

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå °í°´ÀÇ ¼Ò¸®

Á¦5Àå ¼¼°èÀÇ Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå Àü¸Á

Á¦6Àå ºÏ¹Ì Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå Àü¸Á

Á¦7Àå ¾Æ½Ã¾ÆÅÂÆò¾ç Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå Àü¸Á

Á¦8Àå À¯·´ Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå Àü¸Á

Á¦9Àå ³²¹Ì Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå Àü¸Á

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Æó±â¹° ¿¡³ÊÁöÈ­ ½ÃÀå Àü¸Á

Á¦11Àå ½ÃÀå ¿ªÇÐ

Á¦12Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

Á¦13Àå ±â¾÷ °³¿ä

Á¦14Àå Àü·«Àû Á¦¾È

Á¦15Àå Á¶»çȸ»ç ¼Ò°³¡¤¸éÃ¥»çÇ×

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Waste-to-Energy Market is expected to thrive during the forecast period 2024-2028 due to a surge in Waste-to-Energy public spending and a demand for incineration processes. Additionally, a rise in customer preference for quick and simple Waste-to-Energy conversion methods including incineration, gasification, pyrolysis, and other biochemical processes like aerobic and anaerobic digestion.

Municipal solid waste (MSW) is a mix of items with high energy content, including paper, plastic, yard trash, and wood-based products. For example, in the US, 85 pounds of every 100 pounds of MSW can be burned as fuel to produce power. Waste-to-energy facilities transform 2,000 pounds of garbage to ash that weighs between 300 and 600 pounds, resulting in an 87% reduction in waste volume.

The process of recovering energy and the method of producing energy in the form of heat or electricity from the initial treatment of trash are known as waste to energy (WtE). The majority of WtE processes either generate a combustible fuel commodity, such as methanol, methane, synthetic fuels, or ethanol, or produce heat or electricity directly through thermal combustion.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 37.15 Billion
Market Size 2028USD 56.86 Billion
CAGR 2023-20287.31%
Fastest Growing SegmentAgricultural Waste
Largest MarketAsia-Pacific

Digitalization in Waste Management Techniques to Spur Market Opportunities

Government regulations that are strict in response to rising greenhouse gas emissions spur the development of green technology. Along with the introduction of Waste-to-Energy technology, governments all over the world are spending money on renewable energy sources to lessen their reliance on fossil fuels. Additionally, advantageous incentives and programmes have been implemented in every region to encourage efficient garbage collection and processing, generating a large growth potential for the waste to energy business as it might assist in launching the right technology for energy production.

The standard of best practise is the development of organised uniform streams of trash at the source, opportunities for dispersed recycling and upcycling activities. As a result, increased community involvement in waste collecting and trading of these sorted items is made possible through digitalization.

To ensure efficiency and minimal human operation, waste management facilities equipped with a Programmable Logic Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) monitoring system can be automatically monitored and operated from a centralised control station. As a result, the use of digital technologies in garbage collection and disposal operations will supply information and enhance data quality and give process operators better insights into a waste stream.

Increasing Application of Waste Management Services to Fuel Market Growth

Waste management continues to be a big issue in many developed nations. Agriculture, governmental, and industrial operations produce more than a billion tonnes of garbage. By implementing WtE strategies, numerous industries all over the world are focusing on lowering energy usage to cut costs. Techniques for converting waste into energy, such as thermochemicals, can assist end users in changing waste management to create revenue-generating opportunities for a variety of applications, including food processing, dairy farming, and wastewater treatment industries. By using chemical reactions, the procedures turn solid and liquid waste into syngas. Throughsyngas items like electricity and gas fuel can be converted into useful process.

By using them as fuel for gasifiers and converting them into useful energy and heat, the solid waste produced through such a process is no longer unusable, which lowers the cost of disposal and landfilling space. Additionally, around 40% of the electricity used in various dairy farms is used for heating activities. As a result, the magnetism of effective technologies, including the creation of electricity from trash, is projected to fuel waste growth in the Waste-to-Energy industry during the projection period.

Increase in Production of Clean Energy from Waste Drives Market Growth

Economic growth, rising industry, and urbanisation lead to waste production, environmental hazards, and carbon dioxide (CO2) emissions. Due to widespread changes in people's dietary habits, commercial and residential trash generation has considerably increased. Waste to energy can help achieve the transition to a sustainable energy ecosystem by serving as a clean demand response option, an energy source to lower greenhouse gas (GHG) emissions, a factor in the design of eco-industrial parks, and occasionally the only method for treating end-of-life waste. One of the key factors influencing the global market is the consistently expanding demand for energy worldwide. For instance, the Asian Development Bank's Waste-to-Energy cycle estimates that by 2050, urbanisation, population expansion, and economic development will cause 3.4 billion tonnes of municipal garbage to be created. As a result, substantial investments are being made in development procedures to reduce environmental issues and waste, creating chances for the waste to energy sector to flourish. Hanoi, the capital of Vietnam, set a goal in July 2022 to recycle at least 80% of household solid waste into electricity by the year 2025. Six project ideas totaling roughly 10,500 tonnes of trash handling capacity have been submitted to the city.

Market Segmentation

Global waste-to-energy market is segmented based on technology, waste type, application, and region. Based on technology, the market is bifurcated into thermochemical and biochemical. Based on waste type, the market is segmented into municipal solid waste, process waste, agricultural waste, and others. Based on application, the market is bifurcated into electricity and heat. Based on region, the market is segmented into North America, Asia-Pacific, Europe, South America, Middle East & Africa.

Market player

Major players in the Global Waste-to-Energy Market are Veolia Environnement SA, Hitachi Zosen Corporation, Wheelabrator Technologies Holdings Inc., Babcock & Wilcox Enterprises, Inc., Mitsubishi Heavy Industries Ltd, Waste Management Inc., Covanta Holding Corp., and China Everbright Group.

Report Scope:

In this report, the Global Waste-to-Energy Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below.

Waste-to-Energy Market, By Technology:

Waste-to-Energy Market, By Waste Type:

Waste-to-Energy Market, By Application:

Waste-to-Energy Market, By Region:

Competitive Landscape

Available Customizations:

Table of Contents

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Voice of Customers

5. Global Waste-to-Energy Market Outlook

6. North America Waste-to-Energy Market Outlook

7. Asia-Pacific Waste-to-Energy Market Outlook

8. Europe Waste-to-Energy Market Outlook

9. South America Waste-to-Energy Market Outlook

10. Middle East & Africa Waste-to-Energy Market Outlook

11. Market Dynamics

12. Market Trends & Developments

13. Company Profiles

14. Strategic Recommendations

15. About Us & Disclaimer

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â