»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
4680 ¹èÅ͸®´Â Á÷°æ 46mm, ±æÀÌ 80mmÀÇ ´ëÇü ¿øÅëÇü ¸®Æ¬À̿ ÀüÁö·Î, Å×½½¶ó(Tesla)°¡ 2020³â 'Battery Day'¿¡¼ óÀ½ °ø°³ÇÑ ÀÌÈÄ Àü ¼¼°è ¹èÅ͸® ¹× Àü±âÂ÷ »ê¾÷ÀÇ ±â¼ú Çõ½ÅÀ» ¼±µµÇÏ´Â »ó¡ÀûÀÎ ¼¿ ÆûÆÑÅÍ·Î ºÎ»óÇÏ¿´½À´Ï´Ù. ±âÁ¸ 2170 ¹× 1865 ±Ô°Ý ´ëºñ ¿¡³ÊÁö ¹Ðµµ Áõ°¡, ¼¿ Á¶¸³ ¼ö °¨¼Ò, ¿°ü¸® È¿À² Çâ»ó, ºñ¿ë Àý°¨ µîÀÇ ´Ù¸éÀû ÀåÁ¡ÀÌ ºÎ°¢µÇ¸ç, Å×½½¶ó»Ó ¾Æ´Ï¶ó ÆÄ³ª¼Ò´Ð(Panasonic), LG¿¡³ÊÁö¼Ö·ç¼Ç, »ï¼ºSDI, CATL, EVE Energy µî ÁÖ¿ä ¼¿ Á¦Á¶»çµéµµ 4680 »ý»ê ´É·Â È®º¸¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
4680 ¹èÅ͸®´Â ƯÈ÷ Àü±âÂ÷ Ç÷§ÆûÀÇ ±¸Á¶Àû È¿À²¼º Çâ»óÀ» °¡´ÉÄÉ ÇÏ´Â ¼¿-Åõ-¼¨½Ã(Cell-to-Chassis) ¼³°è¿Í ³ôÀº Ãæ¹æÀü ¼º´ÉÀÇ ±¸ÇöÀÌ °¡´ÉÇÑ tabless Àü±Ø ±¸Á¶ µîÀÇ Çõ½ÅÀ» ¼ö¿ëÇϸç, EV È¿À² ¹× ºñ¿ë °æÀï·ÂÀ» ȹ±âÀûÀ¸·Î °³¼±ÇÒ ÇÙ½É ±â¼ú·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù.
4680¹èÅ͸®ÀÇ °¡Àå Æ¯Â¡ÀûÀÎ tabless Àü±Ø ±¸Á¶´Â Àü±ØÅÇÀÌ ¼¿ Ãø¸é¿¡ À§Ä¡ÇÏÁö ¾Ê°í Àü±Ø Àüü¿¡ °ÉÃÄ ºÐ»êµÈ ±¸Á¶¸¦ °®½À´Ï´Ù. µû¶ó¼ Àü·ù È帧ÀÇ ±ÕÀÏÈ·Î ÀúÇ× ºÐÆ÷°¡ ÆòÁØÈµÇ¾î ¹ß¿ÀÌ °¨¼ÒÇϰí, ¿ È®»êÀÇ È¿À²È·Î °íÃâ·Â Á¶°Ç¿¡¼µµ ¹ß¿À» ÁýÁß ¹æÁöÇÒ ¼ö ÀÖÀ¸¸ç, Á¦Á¶ °øÁ¤ ´Ü¼øÈ·Î Àü±Ø°ú ÅÇ ¿¬°á °øÁ¤ »ý·«À¸·Î ¼öÀ²ÀÌ Áõ°¡ÇÏ´Â ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. µû¶ó¼ ÆÄ¿ìÄ¡¼¿À̳ª °¢Çü ¼¿¿¡¼´Â ±¸ÇöÀÌ ¾î·ÆÁö¸¸, ¿øÅëÇü ¼¿ÀÇ °æ¿ì ƯÈ÷ ´ëÇüȵɼö·Ï tabless ¼³°èÀÇ ÀÌÁ¡ÀÌ ±Ø´ëȵ˴ϴÙ. Å×½½¶óÀÇ ÀÚü »ý»ê ¼¿Àº °Ç½Ä ÄÚÆÃ(dry electrode)°ú ÇÔ²² ÀÌ ±¸Á¶¸¦ Àû±Ø Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.
ÇÑÆí, Å×½½¶ó´Â Maxwell Technologies Àμö¸¦ ÅëÇØ µµÀÔÇÑ °Ç½Ä Àü±Ø ÄÚÆÃ ±â¼úÀ» 4680¿¡ Àû¿ëÇϰíÀÚ ÇÏ¿´½À´Ï´Ù. ÀÌ´Â ¿ë¸Å¸¦ »ç¿ëÇÏÁö ¾Ê°í °íü Àü±Ø Àç·á¸¦ °í¼Ó ¾ÐÂø ¹æ½ÄÀ¸·Î ÁýÀüü¿¡ ºÎÂøÇÏ´Â ¹æ½ÄÀ¸·Î, NMP Á¦°Å·Î ȯ°æ Ä£ÈÀû (NMP-free)ÀÎ °øÁ¤À¸·Î¼, °ÇÁ¶ °øÁ¤ »ý·«À¸·Î »ý»ê ½Ã°£ÀÌ ´ÜÃàµÇ°í, Àü±Ø ¹Ðµµ ¹× µÎ²² Áõ°¡°¡ °¡´ÉÇÏ°Ô µÇ¾î ¿¡³ÊÁö ¹Ðµµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â ÀåÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù.
´Ù¸¸ ¾ç»ê °úÁ¤¿¡¼ ÄÚÆÃ µÎ²² ±ÕÀϼº°ú °è¸é Á¢Âø ¾ÈÁ¤¼º ¹®Á¦·Î µµÀü °úÁ¦°¡ ³²¾Æ ÀÖÀ¸¸ç, ÀϺΠ±â¾÷µéÀº ½À½Ä °øÁ¤ ±â¹ÝÀÇ ´ë¾ÈÀû °í¼Ó ÄÚÆÃ ¼Ö·ç¼ÇÀ» °³¹ß ÁßÀÔ´Ï´Ù.
¿¡³ÊÁö¹Ðµµ¸¦ ±Ø´ëÈÇϱâ À§Çؼ °í¿¡³ÊÁö Ȱ¼º ¼ÒÀ縦 Àû¿ëÇϰí Àִµ¥, ¾ç±ØÀç´Â ÇÏÀÌ´ÏÄ̰è(Ni > 88%) NCM/NCA¸¦ Àû¿ëÇÏ¿© ¿¡³ÊÁö ¹Ðµµ¿Í ¼ö¸í Çâ»óÀ» µµ¸ðÇϰí, À½±ØÀç´Â ½Ç¸®ÄÜ Ã·°¡ Èæ¿¬(Si-C) ¶Ç´Â ¿ÏÀü ½Ç¸®Äܰè À½±ØÀÇ µµÀÔÀ¸·Î ±Þ¼ÓÃæÀü ´ëÀÀ·ÂÀ» Çâ»ó½Ã۰í, ÀüÇØÁúÀº °íÀü¾Ð ¾ÈÁ¤ ÷°¡Á¦ Àû¿ë ¶Ç´Â gel ÀüÇØÁú µµÀÔÀ¸·Î ¼ö¸í ¹× ¾ÈÁ¤¼º °³¼±À» ²ÒÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½Ç¸®ÄÜ À½±ØÀº ÆØÃ¢ Á¦¾î¿Í Àü±âÀüµµ¼º À¯Áö¸¦ À§ÇÑ ³ª³ëº¹ÇÕÈ ±â¼ú°ú ź¼Ò ¸ÅÆ®¸¯½º ±¸Á¶, °è¸é ¾ÈÁ¤È ÷°¡Á¦°¡ º´Çà °³¹ß ÁßÀÔ´Ï´Ù.
¹èÅ͸®ÀÇ ¿ë·®ÀÌ Ä¿Áú¼ö·Ï ¿ÆøÁÖ(Runaway) ¹× ¾ÈÀü¼º ´ëÀÀ ±â¼úÀÌ ÇÊ¿äÇѵ¥, 4680µµ ´ëÇü ¼¿ Ư¼º»ó ´ÜÀ§ ¼¿ÀÇ ¿ÆøÁÖ ½Ã Àüü ¸ðµâÀÇ ¿¬¼â ¹ÝÀÀÀÌ ºü¸£°Ô ÀϾ ¼ö ÀÖ¾î, ¿ Â÷´Ü ¼³°è, PTC ¶Ç´Â ¿Ç»Áî ³»Àå, ³»È¼º ¼¿ ÄÉÀ̽º ¹× ³Ã°¢ °æ·Î ºÐ»ê ¼³°è µîÀÇ ¾ÈÀü ±â¼úÀÌ º´ÇàµË´Ï´Ù. ÆÄ¿ìÄ¡/°¢Çü ¼¿ ´ëºñ ±¸Á¶Àû ÇØ¼®ÀÌ º¹ÀâÇØÁö´Â ¸¸Å, ¼¿ ½Ã¹Ä·¹ÀÌ¼Ç ±â¹ÝÀÇ ±¸Á¶-¿-Àü±â ÅëÇÕ ¼³°è°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
Å×½½¶ó°¡ ½ÃÀÛÀº ÇÏ¿´Áö¸¸, 46¥Õ ´ëÇü ¼¿ °³¹ßÀº Çѱ¹, ÀϺ», Áß±¹¿¡¼ Ȱ¹ßÇÏ°Ô ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Å×½½¶ó´Â ÅØ»ç½º ±â°¡ÆÑÅ丮 ¹× º£¸¦¸° °øÀå¿¡¼ ÀÚü 4680 ¼¿ ¾ç»êÀ» ÁøÇàÁßÀ̸ç 24³â¿¡ ÀÌ¹Ì ¼¿ 1¾ï°³ »ý»ê µ¹ÆÄ ¹× Cyber truck¿¡ 2¼¼´ë CybercellÀ» Àû¿ëÇÏ¿© ÃæÀü¼Óµµ ¹× Ư¼ºÀ» °³¼±Çϰí ÀÖÀ¸¸ç, 26³â±îÁö °Ç½Ä ÄÚÆÃ ±â¹Ý ½Å±Ô 4680¼¿ NC05 µî ÃÖ¼Ò 4°³¸¦ º¯Çü °³¹ßÇÒ ¿¹Á¤ÀÔ´Ï´Ù. ÆÄ³ª¼Ò´ÐÀº ÀϺ» ¿ÍÄ«¾ß¸¶¿Í ¹Ì±¹ ³×¹Ù´Ù °øÀå¿¡¼ 4680 ½Ã»ý»ê ¹× °ø±ÞÁßÀ¸·Î ÇâÈÄ Kansas¿¡ 4680 ´ëÇü °øÀå ¸®³ëº£À̼ÇÀ» ¿Ï·áÇÏ¿´°í, Å×½½¶ó ¿Ü OEM ´ë»ó »ùÇøµ ¹× ½ÂÀÎ ÀýÂ÷¸¦ ÁøÇàÁßÀÔ´Ï´Ù.
±¹³» K-3»çÀÇ °æ¿ì, LG¿¡³ÊÁö¼Ö·ç¼ÇÀº ¡¯24.8¿ù ¿Àâ¿¡¼ Pilot ¾ç»êÀ» ½ÃÀÛÇÏ¿´°í, ¡¯26³â »ó¹Ý±â ¾ç»êÀ» ¸ñÇ¥·Î ¾Ö¸®Á¶³ª ½Å±Ô°øÀå¿¡¼ 4680 ÆÄÀÏ·µ »ý»ê ÁßÀÔ´Ï´Ù. »ï¼ºSDI´Â ¡¯25³â 1ºÐ±â¿¡ 46¥Õ ¼¿À» Àû¿ëÇÑ ¸¶ÀÌÅ©·Î ¸ðºô¸®Æ¼¿ë ÆÑÀ» ½ÃÀÛÀ¸·Î BMW µî À¯·´ OEM°ú 46¥Õ ´ëÇü ¿øÅëÇü ¹èÅ͸® Àû¿ë È®´ë¸¦ ÃßÁøÁß¿¡ ÀÖ½À´Ï´Ù. ÇÑÆí, Áß±¹ ¾÷ü(CATL, EVE µî)Àº 46°è ¼¿ °³¹ß ¹× ±¸Á¶Àû ȣȯ¼º Å×½ºÆ® ÁøÇà ÁßÀ̸ç BYD´Â LFP¸¦ ±â¹ÝÀ¸·Î ÇÑ À¯»ç ´ëÇü ¼¿ °³¹ßÀ» ÃßÁøÁßÀÔ´Ï´Ù.
¸¶Áö¸·À¸·Î 4680 ¹èÅ͸®´Â °í¿ë·®, °í¹Ðµµ, »ý»êºñ Àý°¨À̶ó´Â ÀáÀç·ÂÀ» °®ÃèÁö¸¸, ¾ç»ê ¾ÈÁ¤È¿Í ±â¼ú ¿Ï¼÷Ȱ¡ °ü°ÇÀ̸ç, 2025³â¿¡¼ 2026³â »çÀ̰¡ ºÐ¼ö·ÉÀ¸·Î, Tesla¿Í PanasonicÀÌ ¾ç»ê °æÇèÀ» ½×´Â ÇÑÆí, ±¹³» ¹èÅ͸®»çµµ º»°Ý °ø±Þ ü°è¸¦ ±¸ÃàÇÒ Àü¸ÁÀÔ´Ï´Ù.
ÇÑÆí, °æÀïÀº ´Ù±ØÈµÇ°í ÀÖÀ¸¸ç, LFP µî Ÿ ¹èÅ͸® ±â¼ú°úÀÇ °æÀï, ±×¸®°í Dry process ¿Ï·á ¿©ºÎ, ¼öÀ² °³¼±, ±¹»êÈ ¼öÁØÀÌ ÇâÈÄ »ê¾÷ ÁöÇüÀ» Á¿ìÇÒ °ÍÀ¸·Î º¸À̸ç, ÃÖÁ¾ÀûÀ¸·Î 4680 ¼¿ÀÌ Àü±âÂ÷ ½ÃÀåÀÇ °ÔÀÓüÀÎÀú·Î ÀÚ¸®Àâ±â À§Çؼ´Â, ±â¼ú ¿Ï¼ºµµ, ºñ¿ë °æÀï·Â, °ø±Þ¸Á ¾ÈÁ¤È¶ó´Â 3¹ÚÀÚ°¡ ¸ðµÎ ¸Â¾Æ¶³¾îÁ®¾ß ÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
º» ¸®Æ÷Æ®¿¡¼ SNE´Â 4680¿¡ °üÇÑ °¢ »çÀÇ ¹ßÇ¥ÀÚ·á¿Í ºÐÇØ ¹× ¼º´É test¿¡ °üÇÑ Èð¾îÁø ÀÚ·áµéÀ» ü°èÀûÀ¸·Î Á¤¸®ÇÏ¿´À¸¸ç, ÁÖ¿ä ³í¹®ÀÇ ¸®ºä¸¦ ÅëÇØ, 4680ÀÇ µµÀÔÀÌ ½ÇÁ¦ÀûÀ¸·Î ¾î´À Á¤µµ È¿°ú ¹× ¼º´É°³¼±ÀÌ ÀÖ´ÂÁö¸¦ ºÐ¼®ÇÏ¿´°í, 4680 Á¦Á¶¾÷üÀÇ ÇöȲ ¹× ÁÖ¿ä Á¦Ç°À» Á¤¸®ÇÔÀº ¹°·Ð Gigafactory°øÀåÀÇ ±Ô¸ð¿Í CybertruckÀÇ »ý»ê´ë¼ö ¹× »ý»ê·®°úÀÇ »ó°ü °ü°è µîÀ» Ç¥½ÃÇÏ¿©, 4680ÀÇ ¾ç»ê¼º¿¡ °üÇÑ Èï¹Ì ÀÖ´Â Á¤º¸¸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ ºÐ¾ßÀÇ ¿¬±¸ÀÚ ¹× °ü½É ÀÖ´Â ºÐµé¿¡°Ô Àü¹ÝÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇϰíÀÚ ÇÏ¿´½À´Ï´Ù.
º» º¸°í¼ÀÇ Strong Point´Â ´ÙÀ½°ú °°½À´Ï´Ù.
+
¨ç 4680¿¡ ´ëÇÑ °³¹ßµ¿Çâ ¹× Á¤º¸¸¦ Áý´ë¼ºÇÏ¿© ÀüüÀûÀÎ ÀÌÇØ ¹× ÆÄ¾ÇÀÌ ¿ëÀÌ
¨è 4680 ¼¿ ¹× ÆÑ ºÐÇØ º¸°í¼¸¦ »ó¼¼È÷ ºÐ¼® Á¤¸®ÇÏ¿© ÀÌÇØ·ÂÀ» ÁõÁø
¨é 4680 ¹èÅ͸® ½ÃÀå Àü¸Á°ú »ý»ê Àü¸Á ºÐ¼®À» ÅëÇØ ½ÃÀå±Ô¸ð¿Í ¼ºÀåÀ²À» ÆÄ¾Ç
¨ê ³í¹® ºÐ¼®À» ÅëÇÑ 4680¿¡ Àû¿ëÇÑ ¼ÒÀç ¹× ±â¼úÀÇ »ó¼¼ ºÐ¼®
(a)(c)ÃÑ ºñ¿ëÀ» Àç·áºñ, ÀΰǺñ, °¨°¡»ó°¢ºñ, ÀÚº»ºñ, ¿¡³ÊÁöºñ, °øÀå ¸éÀûºñ ¹× ±âŸ ºñ¿ëÀ¸·Î ºÐ·ùÇÏ¿© ºñÁßÀ» º¸¿©ÁÝ´Ï´Ù. Àç·áºñ°¡ °¡Àå Å« ºñÁß(72.0%)À» Â÷ÁöÇÕ´Ï´Ù. (b)(d) 2170 ¼¿ vs. 4680 ¼¿ÀÇ Àç·áºñ »ó¼¼ ºÐ¼®. ÀÌ µµ³Ó Â÷Æ®´Â Àç·áºñ¸¦ À½±Ø, ¾ç±Ø, ºÐ¸®¸·, ÀüÇØ¾×, ÇÏ¿ì¡À¸·Î ¼¼ºÐÈÇÕ´Ï´Ù. ¾ç±Ø°ú À½±Ø Àç·á°¡ ÁÖ¿ä Àç·áºñ ¿äÀÎÀÓÀ» ¸íÈ®È÷ º¸¿©ÁÝ´Ï´Ù.
´ëÇü tabless ¿øÅëÇü ¸®Æ¬ À̿ ÀüÁöÀÇ Á¦Á¶ °øÁ¤ (ĵ ¹× ¿£µåĸ Æ÷ÇÔ). ÀÌ ±×¸²Àº ¼¿ Á¦Á¶ÀÇ ÇÙ½É ´Ü°è¸¦ ½Ã°¢ÀûÀ¸·Î º¸¿©ÁÝ´Ï´Ù. ÁÂÃø »ó´Ü: tabless Á©¸® ·Ñ Á¦Á¶ (A1) - ÁýÀüü plate¿Í ÇÔ²² Á©¸® ·ÑÀÌ Çü¼ºµÇ´Â °úÁ¤À» º¸¿©ÁÝ´Ï´Ù. ·¹ÀÌÀú ¿ëÁ¢ Ç¥½Ã°¡ ÀÖ½À´Ï´Ù. ¿ìÃø »ó´Ü: ĵÀÇ µö µå·ÎÀ×(°Ã¶) ¶Ç´Â Ãæ°Ý ¾ÐÃâ(¾Ë·ç¹Ì´½) (A2) - ÇÏ¿ì¡ÀÌ Çü¼ºµÇ´Â °úÁ¤À» º¸¿©ÁÝ´Ï´Ù. Áß¾Ó: ¼¿ Á¶¸³ (B) - Á©¸® ·ÑÀÌ ÇϿ졿¡ »ðÀÔµÇ°í ´Ù¾çÇÑ ¿ëÁ¢ °øÁ¤À» ÅëÇØ Á¶¸³µÇ´Â ´Ü°è. ·¹ÀÌÀú ¹× ÃÊÀ½ÆÄ ¿ëÁ¢ Ç¥½Ã°¡ ÀÖ½À´Ï´Ù. ÇÏ´Ü: ¸¶¹«¸® (C) - Á¶¸³µÈ ¼¿ÀÌ ÃÖÁ¾ÀûÀ¸·Î °Ë»ç ¹× 󸮵Ǵ ´Ü°è.
¸ñÂ÷
1. 4680 ¿øÅëÇü ¹èÅ͸® °³¿ä
1.1. Tesla Battery Day(¡¯20. 9.22) ¿ä¾à ¹× Key findings
1.2. ¹èÅ͸® ¼¿ µðÀÚÀÎ
1.3. ¹èÅ͸® ¼¿ °øÁ¤
1.3.1. ÄÚÆÃ °øÁ¤
1.3.2. ±Ç¼± °øÁ¤
1.3.3. Á¶¸³ °øÁ¤
1.3.4. ȼº(Formation) °øÁ¤
1.4. ½Ç¸®ÄÜ À½±ØÀç
1.5. Hi-Ni ¾ç±ØÀç
1.6. ¼¿-Â÷·® integration
1.7. ÀüÁö ÄÚ½ºÆ® °³¼±
1.8. 4680 ¹èÅ͸® °³¹ß
1.8.1. 4680 ¹èÅ͸® »ç¾ç
1.8.2. Tesla ¹èÅ͸® °ø±ÞÀÚ
1.8.3. ±Û·Î¹ú 4680 ¹èÅ͸® °³¹ß ¹× »ý»ê ÇöȲ
1.9. ±Û·Î¹ú 46xx ¹èÅ͸® »ý»ê CAPA
1.9.1. ½Å±Ô 46xx ¼¿ µðÀÚÀÎ(ÀåÁ¡°ú ´ÜÁ¡)
2. 4680 ¹èÅ͸® ¼¿ °³¹ß
2.1. 4680 ÄÚ½ºÆ® Àý°¨ ¹× È¿À²¼º Áõ´ë Àü·«
2.2. ¾ÈÀü ¿ä±¸»çÇ×ÀÇ ¿ä±¸ Áõ°¡(4680 ¿ °ü¸® ¾÷±×·¹À̵å)
2.3. ±Þ¼Ó ÃæÀüÀº ¹Ì·¡ Æ®·»µå: 4680ÀÇ ³ôÀº ÃæÀü ¼ÓµµÀÇ ÀåÁ¡
2.4. ¼±µÎ ±â¾÷µéÀÇ ½ÃÀå ÁøÃâ °æÀï
2.5. ¾÷üº° 46xx ¹èÅ͸® »ó¼¼ spec.
3. 4680 ¹èÅ͸® »ó¼¼ ±â¼ú
3.1. ¾ç±ØÀç
3.1.1. Ultra ÇÏÀÌ´ÏÄ̰è Àû¿ë
3.1.2. »ý»ê CAPA ±¸Ãà
3.1.3. »ý»ê±â¼ú ¾÷±×·¹À̵å
3.2. À½±ØÀç
3.2.1. ½Ç¸®ÄÜ ±â¹Ý °³¹ß
3.2.2. ½Ç¸®ÄÜ ±â¹Ý °³¹ß ŸÀÓ¶óÀÎ
3.2.3. ½Ç¸®ÄÜ À½±Ø modification: ³ª³ëÈ, ź¼Òº¹ÇÕü, pre-lithiation
3.2.4. ½Ç¸®ÄÜ À½±Ø »ê¾÷È °¡¼Ó
3.3. ±âŸ ÀüÁö ¼ÒÀç
3.3.1. SWCNT µµÀüÀç
3.3.2. Steel ¹èÅ͸® ĵ
3.3.3. Al ¹èÅ͸® ĵ
3.3.3.1. Al housing ¼¿ ¼³°è ÄÁ¼Á
3.3.3.2. 46xx ´ëÇü ¿øÅëÇü ¼¿
3.3.3.3. 46xx Á©¸® ·Ñ ÄÁ¼Á
3.3.3.4. Á©¸® ·Ñ ¿ Àü´Þ ¹× ¿ ºÐÆ÷
3.3.3.5. Á©¸® ·Ñ ¼³°è ÄÁ¼ÁÀÇ ¿ ½Ã¹Ä·¹À̼Ç
3.3.3.6. 46xx ¼¿ ³Ã°¢ ¼º´É °³¼±
3.4. (4680) »ý»ê ÇÁ·Î¼¼½º °³¼±
3.4.1. 4680 ¹èÅ͸® °øÁ¤ ±â¼ú
3.4.2. 4680 »ý»ê°øÁ¤ Â÷º°È
3.4.2.1. °Ç½Ä Àü±Ø ÄÚÆÃ
3.4.2.2. °Ç½Ä°øÁ¤ ÀÏ·Ê (Huaqi New Energy)
3.4.2.3. Àü±Ø ¹× ÅÇ ÀÏüÇü Àý´Ü
3.4.2.4. ·¹ÀÌÀú ¿ëÁ¢ ³À̵µ »ó½Â
3.4.2.5. ÀÏüÇü Die casting°ú CTC
4. 4680 ¹èÅ͸® ºÐÇØ ¹× ºÐ¼®
4.1. °³¿ä
4.2. ¹èÅ͸® ºÐÇØ ¹× ºÐ¼®
4.3. Tesla 4680 ¹èÅ͸® ¼¿, ÆÑ »ó¼¼ engineering ºÐ¼®
4.3.1. Tesla 4680 ÀüÁö ¼³°è Data (w/o tab)
4.3.2. ÆÑ ±¸Á¶(¼¿ ¹æÇâ)
4.3.3. 4680 ÆÑ¿¡ ´ëÇØ Á¦¾ÈµÈ Á¶¸³ ¹æ¹ý
4.3.4. ¡¸Tesla Model 3¡¹¿ë 4680 ÆÑ ºÐ¼®: ¿¹»ó ÃæÀü ½Ã°£, Àü·Â ¹× Å©±â
4.3.4.1. ÆÑ ºÐ¼® °á°ú ¿ä¾à
4.3.4.2. ¿ ¹æÃâ°ü·Ã »ó¼¼ discussion
4.3.5. Tesla Model 3 ¹èÅ͸® ÁýÀüü
5. Tesla 4680 ¿øÅëÇü ¼¿ ºÐÇØ ¹× ÀüÁöƯ¼º ¿¬±¸
5.1. ¿ä¾à
5.2. ¿¬±¸ÀÇ Àüü °³¿ä
5.3. ÀÌÀü ¿¬±¸
5.4. »ó¼¼ ºÐ¼®
5.5. ½ÇÇè
5.5.1. Å×½ºÆ® ¼¿ °³¿ä
5.5.2. ¼¿ ºÐÇØ ¹× ¹°Áú ÃßÃâ
5.5.3. ±¸Á¶ ¹× ¿ø¼Ò ºÐ¼®
5.5.4. 3-Àü±Ø ºÐ¼®
5.5.5. Àü±âÀû Ư¼º
5.5.6. Thermal investigation
5.6. Results & Discussion
5.6.1. Cell & jelly roll ±¸Á¶
5.6.2. Àü±Ø¼³°è
5.6.3. Àç·á Ư¼º
5.6.4. 3-Àü±Ø ºÐ¼®
5.6.5. ¿ë·® ¹× ÀÓÇÇ´ø½º ºÐ¼®
5.6.6. À¯»ç OCV, DVA ¹× ICA
5.6.7. HPPC(Hybrid Pulse Power Characterization)
5.6.8. Thermal cell ¼öÁØ Á¶»ç
5.7. °á·Ð
6. 4680 ¹èÅ͸® ¼º°ø¿¡ ÇÊ¿äÇÑ ±â¼úµé
6.1. Multi tab 񃬣
6.2. Tab ¿ëÁ¢ ±â¼ú
6.3 ¾ç±ØÀç, À½±ØÀç
6.4. ³Ã°¢ ±â¼ú
7. 4680 vs. 18650, 2170°úÀÇ ºñ±³: ¿¡³ÊÁö ¹Ðµµ Çâ»ó°ú ¼¿ ÄÚ½ºÆ® Àý°¨
7.1. °³¿ä
7.2. 4680: ¿¡³ÊÁö ¹Ðµµ, ±Þ¼Ó ÃæÀü ¼º´É ¹× »ý»ê ÄÚ½ºÆ® Àý°¨
7.2.1. 4680ÀÇ ¿¡³ÊÁö ¹Ðµµ´Â blade ¹èÅ͸® ¹× °¢Çü Hi-Ni ¹èÅ͸®º¸´Ù Çâ»ó.
7.2.2. ±Þ¼Ó ÃæÀü ¼Óµµ Çâ»ó
7.2.3. °Ç½Ä Àü±Ø: Ç¥ÁØÈµÈ »ý»ê ÃËÁø ¹× ÄÚ½ºÆ® ´Ù¿î
7.3. °í³óµµ ÀüÇØÁú Àû¿ë
7.3.1. GWh´ç 4680 ÀüÇØÁú¾ç °¨¼Ò
7.3.2. °í³óµµ ÀüÇØÁú°ú LiFSI ÷°¡
7.3.3. ºÒ¼Ò°è ¿ëÁ¦(FEC) ÷°¡: NCM811/SiOx ¹èÅ͸® ¼º´É Çâ»ó
7.4. 4680 ÀüÇØ¾× ÁÖ¿ä ±â¾÷
8. Tesla 4680 ¸ðµâ¿ë ¹èÅ͸® ¿ °ü¸® ½Ã½ºÅÛ(BTMS)¼³°è
8.1. ¼·Ð
8.2. EV ¹èÅ͸® ¿ °ü¸® ½Ã½ºÅÛ (BTMS)ÀÇ Çʿ伺
8.3. ¹èÅ͸® ³Ã°¢ ¹æ¹ý
8.4. ¹®Çå °ËÅä (Literature Review)
8.5. 4680 ¼¿ ¸ðµâ¿¡ ¾×ü ³Ã°¢°ú È÷Æ® ÆÄÀÌÇÁ¸¦ °áÇÕÇÑ ¹æ¹ý·Ð, °á°ú ¹× °á·Ð
8.6. Á¦¾ÈµÈ ³Ã°¢ ½Ã½ºÅÛÀÇ ¿ ºÐ¼®
8.7. °á°ú ¹× ³íÀÇ
8.8. °á·Ð
9. 4680¼¿ ¿°ü¸®: ¼¿ ¼³°è ¹× cooling
9.1. °³¿ä
9.2. ¼·Ð
9.2.1. ÀÌÀü ¿¬±¸
9.2.2. º» ¿¬±¸°¡ ±â¿©ÇÑ ºÎºÐ
9.3. Experimental (½ÇÇè)
9.3.1. Reference cell (ÂüÁ¶ ¼¿):
9.3.2. Thermal battery test bench (¿ ¹èÅ͸® ½ÃÇè´ë)
9.3.3. Test procedure (½ÃÇè ÀýÂ÷)
9.4. ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨
9.4.1. Housing & cooler
9.4.2. Jelly roll
9.4.3. ¾ç±Ø ¹× À½±Ø ÅÇ
9.4.4. ¸ðµ¨ º¸Á¤ ¹× °ËÁõ
9.5. ½Ã¹Ä·¹ÀÌ¼Ç °á°ú
9.5.1. ÅÇ µðÀÚÀÎÀÇ ¿µÇâ
9.5.2. ÇÏ¿ì¡ Àç·áÀÇ ¿µÇâ
9.5.3. ÅÇ µðÀÚÀΰú ÇÏ¿ì¡ Àç·áÀÇ »óÈ£ÀÛ¿ë
9.6. °á·Ð
10. ¿øÅëÇü LIB ¼¿ÀÇ ¼³°è, Ư¼º ¹× Á¦Á¶
10.1. °³¿ä
10.2. ½ÇÇèÀç·á ¹× ¹æ¹ý
10.2.1. ¼¿ µðÀÚÀÎ
10.2.2. ¼¿ ¼Ó¼º
10.3. ½ÇÇè°á°ú ¹× °íÂû
10.3.1. ¿øÅëÇü LIB ¼¿ ¼³°è
10.3.2. Á©¸® ·Ñ ¼³°è
10.3.2.1. ±âÇÏÇÐ(Geometry)
10.3.3. ÅÇ µðÀÚÀÎ
10.3.4. ¼¿ ¼Ó¼º
10.3.4.1. ¿¡³ÊÁö ¹Ðµµ
10.3.4.2. ¼¿ ÀúÇ×
10.3.4.3. ¼¿ ¿Àû °Åµ¿
10.3.5. Á©¸® ·Ñ Á¦Á¶
10.4. °á·Ð
11. Tabless ¿øÅëÇü LIB ¼¿ÀÇ ¼¿ size ¹× housing ÀçÁúÀÇ ¿µÇâ
11.1. °³¿ä
11.2. ½ÇÇè
11.2.1 Reference cell
11.2.2. ¸ðµ¨¸µ
11.2.2.1. ¼¿ Ä¡¼ö ¹× ÇÏ¿ì¡ Àç·áÀÇ ÇÔ¼ö·Î¼ ±¸Á¶ ±¸¼º ¿ä¼ÒÀÇ ±âÇÏÇÐÀû ¸ðµ¨
11.2.2.2. Á©¸® ·Ñ Àü±ØÃþ
11.2.2.3. Áß°ø ÄÚ¾î(Hollow core)
11.2.2.4. Tabless µðÀÚÀÎ
11.2.3. ¼¿ Housing
11.2.4. ¿-Àü±â-Àü±âÈÇÐ ÇÁ·¹ÀÓ¿öÅ©
11.2.4.1. Boundary conditions°ú discretization(ÀÌ»êÈ)
11.3. °á°ú ¹× ³íÀÇ
11.3.1. ¿¡³ÊÁö¹Ðµµ
11.3.1.1. ¼¿ Á÷°æÀÇ ¿µÇâ
11.3.1.2. ¼¿ ³ôÀÌÀÇ ¿µÇâ
11.3.1.3. Housing Àç·áÀÇ ¿µÇâ
11.3.2. ±Þ¼Ó ÃæÀü ¼º´É
11.3.2.1. ¿Àü´Þ°è¼ö Á¦¾î ¾Ë°í¸®ÁòÀ» ±¸Çö
11.3.2.2. Ãà ³Ã°¢¿¡ µû¸¥ ¼¿ ³ôÀÌ ¹× ÇÏ¿ì¡ ÀçÁúÀÇ ¿µÇâ
11.3.2.3. Ãà ³Ã°¢¿¡ µû¸¥ ¼¿ Á÷°æ ¹× ÇÏ¿ì¡ ÀçÁúÀÇ ¿µÇâ
11.3.2.4. ÅÇ µðÀÚÀÎÀÇ ¿µÇâ°ú Á÷·Ä ÀúÇ×ÀÇ ½ºÄÉÀϸµ
11.3.2.5. ±Þ¼ÓÃæÀü ±â´É¿¡ ´ëÇÑ ¼¿ Å©±â ¹× ÇÏ¿ì¡ Àç·áÀÇ ¿µÇâ
11.3.2.6. ³×ÀÏ ±âÇÏÇÐ ¹× ¿ ÆøÁÖ °³½Ã ¸Å°³º¯¼ö
11.3.2.7. °¡¼Ó ¼Óµµ ¿·®ÃøÁ¤¹ý (EV-ARC)
11.4. °á·Ð
12. ´ëÇü tabless ¿øÅëÇü LIB¼¿ÀÇ ¿ ÆøÁÖ ¹× ¿ ÀüÆÄ Ư¼ºÈ
12.1. ´ëÇü tabless ¿øÅëÇü LIBÀÇ ¿ ÆøÁÖ(TR) ¹× ¿ ÀüÆÄ(TP) Ư¼º ¿¬±¸
12.2. ¼·Ð: »õ·Î¿î ¼¿ ¼³°èÀÇ Çʿ伺°ú ¹è°æ
12.2.1. ½ÇÇè ´ë»ó ¼¿°ú ¼¿ ±¸Á¶ Çõ½Å ¿ä¼Ò
12.2.2. Al ÇÏ¿ì¡ÀÇ ÇѰè¿Í ¾ÈÀü¼º À̽´
12.2.3. ¿ ÆøÁÖ Æ¯¼º ½ÇÇè ¹× trigger ¹æ¹ý
12.2.4. Potting ÈÇÕ¹°°ú ¿ ÀüÆÄ ¾ïÁ¦ È¿°ú
12.2.5. ¹Ì·¡ ¿¬±¸ ¹æÇâ
12.3. ½ÇÇè
12.3.1. ´ëÇü tabless ¿øÅëÇü ¸®Æ¬ À̿ ÀüÁö Á¶»ç
12.3.2. ¾Ë·ç¹Ì´½ ÇÏ¿ì¡À» °®Ãá ¿øÅëÇü ¼¿ÀÇ Æ®¸®°Å ¹æ¹ý¿¡ ´ëÇÑ Áß¿äÇÑ Æò°¡
12.3.2.1. Áß±¹ÀÇ ¾ÈÀü ±Ô¹ü GB 38 031-2020°ú OEMÀÇ Ã¥ÀÓ
12.3.2.2. ¿ ÆøÁÖ trigger ¹æ½ÄÀÇ ºñ±³: Walker µîÀÇ FTRC ¿¬±¸ ºÐ¼®
12.3.2.3. Æ®¸®°Å Àû¿ë ÇѰè: ´ëÇü ¼¿ ¹× ¾Ë·ç¹Ì´½ ÇÏ¿ì¡ ±¸Á¶
12.3.2.4. ¾Ë·ç¹Ì´½ ¼¿ÀÇ ÆÄ¼Õ ¸ÞÄ¿´ÏÁò°ú ³»ºÎ ´Ü¶ô
12.3.2.5. ½ÇÇè¿¡¼ÀÇ Çö½ÇÀûÀÎ ´ë¾È: Ãà ¹æÇâ ¸ø °üÅë
12.3.2.8. ¾Ð·Â è¹ö ±â¹Ý Å×½ºÆ® º¥Ä¡ ±¸¼º
12.3.2.9. ¿ ÀüÆÄ Å×½ºÆ® (¼Ò±Ô¸ð ¸ðµâ)
12.3.2.10. ¹æ»çÇü ¸ø ¹× ±Ý¼ÓÆÇ Å×½ºÆ®
12.3.2.11. ±â°èÀû º¯ÇüÀ» ÅëÇÑ ÆøÁÖ À¯µµ
12.3.3. EV-ARC ½ÇÇè ¹× Æò°¡
12.3.3.1. ¹ß¿ ºÐÇØ ¹ÝÀÀÀÇ ½ÃÀÛ ¹× Ãʱ⠰¨Áö ¿Âµµ
12.3.3.2. ¹ß¿ ¹ÝÀÀ ¸ÞÄ¿´ÏÁò
12.3.3.3. °¨Áö ¿Âµµ ºÐ»êÀÇ ¿øÀÎ ºÐ¼®
12.3.3.4. °ø°£ ¿Âµµ ºÐÆ÷ ºÐ¼®
12.3.3.5. ´ë·® ¹æÃâ ¹× ¿£Å»ÇÇ Æò°¡
12.3.3.6. Àü¾Ð °ÇÏ ¹× Åëdz ¸ÞÄ¿´ÏÁò
12.3.3.7. ¿ ÆøÁÖ ÈÄ ¼¿ ³»ºÎ Áú·® ºÐÆ÷ À籸¼º ¿ä¾à
12.3.3.8. Æ®¸®°Å ¼¿ÀÇ ¿ ÆøÁÖ Æ¯¼º ºÐ¼®
13. Tesla 4680 ¼¿°ú BYD Blade ¼¿ÀÇ ºñ±³ ºÐ¼®
13.1. ¼·Ð
13.2. °á°ú ¹× Åä·Ð
13.2.1. ±â°è ¼³°è ¹× »ý»ê °øÁ¤
13.3.2. ¼¿ ÇÏ¿ì¡
13.3.3. Àü±Ø ±¸¼º
13.3.4. Àü±Ø Á¢ÃË ±â¼ú (Contact Technology)
13.3.5. Àü±Ø ±¸Á¶ ¹× ÃøÁ¤
13.3.6. ¼¿ Á¦Á¶ °øÁ¤ È帧 (Process Flow)
13.3.7. Àç·á ±¸¼º ¹× ºñ¿ë ºÐ¼® (Materials & Costs)
13.3.8. Àü±âÀû ¼º´É (Electrical Performance)
13.3.9. ¼¿ ¿ È¿À² ¹× ÀúÇ× (Thermal Behavior)
13.3.10. ¿ ºÐ¼®(Thermal analysis)
14. Tabless ¿øÅëÇü LIB: ¸ðµ¨¸µÀ» ÅëÇÑ ¼¿ Ä¡¼ö ¹× ÇÏ¿ì¡ Àç·áÀÇ ¿µÇâ ¿¬±¸
14.1. ¼·Ð
14.2. Tabless ¿øÅëÇü LIBÀÇ Á¦Á¶ °øÁ¤ ºÐ¼®
14.2.1. ´ëÇü ¿øÅëÇü ¼¿ ±â¼úÀÌ Á¦Á¶¿¡ ¹ÌÄ¡´Â ¿µÇâ
14.2.2. Ãß°¡ ºÐ¼® ¹× ¸ðµ¨ ÆÄ¶ó¹ÌÅÍȸ¦ À§ÇÑ ÂüÁ¶ ¼¿
14.2.3. ´ëÇü tabless ¿øÅëÇü ¼¿ÀÇ Á¦Á¶
14.2.3.1. Á¦Á¶ ´Ü°è ºÐ·ù (Categorizing the manufacturing steps)
14.2.3.2. A1) Tabless Á©¸® ·Ñ Á¦Á¶
14.2.3.3. A2) ÇÏ¿ì¡ Á¦Á¶
14.2.3.4. B) Á¶¸³ (Assembly)
14.3. ¸ðµ¨¸µ (Modeling)
14.3.1. °øÁ¤ ±â¹Ý ºñ¿ë ¸ðµ¨(Process-based cost model, PBCM)
14.3.2. ±âÇÏÇÐÀû ¸ðµ¨ (Geometrical model)
14.3.3. °øÁ¤ ¸ðµ¨ (Process model)
14.3.3.1. A1) tabless Á©¸® ·Ñ Á¦Á¶
14.3.3.2. A2) ÇÏ¿ì¡ Á¦Á¶
14.3.3.3. B) Á¶¸³ (Assembly)
14.3.4. ¿î¿µ ¸ðµ¨ (Operations model)
14.3.5. À繫 ¸ðµ¨ (Financial model)
14.4. °á°ú ¹× Åä·Ð (Results and discussion)
14.4.1. À¯È¿¼º °ËÁõ (Validation)
14.4.1.1. ¿¹½ÃÀû ºñ¿ë ºÐ¼®: 2170 vs. 4680
14.4.1.2. ºÒÈ®½Ç¼º ºÐ¼® (Uncertainty analysis)
14.4.2. ¼¿ Å©±âÀÇ ¿µÇâ
14.4.2.1. ¼¿ Á÷°æÀÇ ¿µÇâ
14.4.2.2. ¼¿ ³ôÀÌÀÇ ¿µÇâ
14.4.2.3. ÇÊ¿ä ¼¿ °³¼öÀÇ ¿µÇâ
14.4.3. Housing Àç·áÀÇ ¿µÇâ
14.5. °á·Ð
15. ¿øÅëÇü LIB Á¦Á¶ ºñ¿ë ºñ±³: Tabless Àü±Ø vs. standard Àü±Ø
15.1. Àüü ¿ä¾à: Å×½½¶óÀÇ Tabless Àü±Ø ¼³°è°¡ ¹èÅ͸® Á¦Á¶¿¡ ¹ÌÄ¡´Â ¿µÇâ
15.2. ¼·Ð
15.2.1. ¹èÅ͸® ¼³°è ºñ±³ ¹× °øÁ¤ °í·Á »çÇ×
15.2.1.1. Standard Àü±Ø ¼³°è
15.2.1.2. Tabless Àü±Ø µðÀÚÀÎ
15.2.1.3. Standard Àü±Ø
15.2.1.4. Á¦Á¶ °øÁ¤ °í·Á »çÇ×
15.3. ¹æ¹ý·Ð
15.3.1. ºñ¿ë ¸ðµ¨¸µ ¹æ¹ý
15.3.2. Æ÷ÇÔµÈ ºñ¿ë ¿ä¼Ò
15.3.3. ¸ðµ¨ÀÇ ¸Å°³º¯¼öÈ
15.3.3.1. Coater
15.3.3.2. Ç÷¡±× Çü¼º
15.4. °á°ú
15.4.1. »ý»ê·® °è»ê
15.4.1.1. Ç¥ÁØ Àü±Ø °øÁ¤
15.4.1.2. ÅǸ®½º Àü±Ø °øÁ¤
15.4.2. ±âÁØ »ç·ÊÀÇ ºñ¿ë ¿ä¼Ò ºÐ¼®
15.4.3. ¼±ÅÃµÈ ¸Å°³º¯¼öÀÇ ¹Î°¨µµ ºÐ¼®
15.5. °á·Ð
16. 4680 ¼¿ ¾÷üµéÀÇ ÇöȲ
16.1. Tesla
16.2. Panasonic
16.3. LGES
16.4. »ï¼ºSDI
16.5 SK On
16.6. EVE
16.7. BAK
16.8. CATL
16.9. Gotion Hi-TECH
16.10. SVOLT
16.11. CALB
16.12. Envision AESC
16.13. LISHEN
16.14. Easpring(ã®Î¡Ðü)
16.15. ±Ý¾ç
16.16. BMW
16.17. µ¿¿ø½Ã½ºÅÛÁî
16.18 ¼º¿ì
16.19. TCC steel
16.20. µ¿±¹»ê¾÷
16.21 ½ÅÈï¿¡½ºÀ̾¾
16.22. »ó½ÅÀ̵ðÇÇ
16.23. LTÁ¤¹Ð
16.24. NIO
17. 4680 battery ƯÇãºÐ¼®
17.1. Tabless Àü±ØÀ» ±¸ºñÇÑ ÀüÁö
17.2. Tesla: Tabless ¿¡³ÊÁöÀúÀå µð¹ÙÀ̽ºµé ¹× ±× Á¦Á¶ ¹æ¹ýµé
17.3. TeslaÀÇ °Ç½Ä Àü±Ø °øÁ¤ ƯÇã(1): ¹Ì¸³ÀÚ ºñ¼¶À¯È ¹ÙÀδõ
17.4. TeslaÀÇ °Ç½ÄÀü±Ø °øÁ¤ ½Å±Ô ƯÇã(2): °Ç½ÄÀü±Ø¿ë Á¢Âø ºÎµ¿Å¸· Á¶¼º¹° ¹× ±× Á¦Á¶¹æ¹ý
17.5 LG¿£¼Ö: ÅǸ®½º°ü·Ã ƯÇã(Àü±Ø Á¶¸³Ã¼, ¹èÅ͸® ¹× À̸¦ Æ÷ÇÔÇÏ´Â ¹èÅ͸® ÆÑ ¹× ÀÚµ¿Â÷)
17.6. Murata: Tabless battery
17.7 Jiangsu Zenergy Battery
17.8 EVE Energy(Tab ÆòÅºÈ ÀåÄ¡)6
17.9 Microvast Inc. (Tab plate & wound battery)
18. 4680 ¹èÅ͸® ½ÃÀåÀü¸Á
18.1. Àü¹ÝÀûÀÎ ½ÃÀå Àü¸Á
18.2. 4680¿ë ¼ÒÀç ¹× °øÁ¤±â¼ú Àü¸Á
18.3. ÈÇлê¾÷: ½Ç¸®ÄÜ-ź¼Ò À½±Ø, PTFE, LiFSI ¹× ±âŸ Àç·á
18.3.1. ½Ç¸®ÄÜ-ź¼Ò À½±Ø Àç·á
18.3.2. PTFE, LiFSI ¹× ±âŸ ÷°¡Á¦
18.3.3. ºñö±Ý¼Ó: ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌ ¼ö¿ä
18.3.4. Hi-Ni ¾ç±Ø + ½Ç¸®Äܰè À½±Ø
18.4. 4680¸¦ µÑ·¯½Ñ Á¤Ã¥, ¼ö¿ä Àü¸Á ¹× CAPA Àü¸Á
18.4.1. 4680 ¿øÅëÇü ¹èÅ͸® »ê¾÷ üÀÎ
18.4.2. Áß±¹ 4680 ¿øÅëÇü ¹èÅ͸® »ê¾÷ ÇöȲ ºÐ¼®
18.4.3. 4680 ¿øÅëÇü ¹èÅ͸® ½ÃÀå ±¸Á¶
18.4.4. ¿øÅëÇü ¹èÅ͸® äÅÃÀ² °¨¼Ò °æÇâ
18.4.5. ÀÌÂ÷ÀüÁö ¾÷üµéÀÌ ½Å±Ô form factor °³¹ß
18.4.6. ¿øÅëÇü 4680(46xxx) °³¹ß ÇöȲ ¹× »ý»ê Àü¸Á
18.4.7. Áß±¹ 4680 ¿øÅëÇü ¹èÅ͸® »ê¾÷ ¹ßÀü Ãß¼¼ ºÐ¼®
18.4.8. EV¿ë 46xx ¹èÅ͸® ¼ö¿ä Àü¸Á
19. Tesla 4680 cell »ý»ê °ü·Ã Åë°è Àü¸Á
19.1. 4680 GIGA TEXAS »ý»ê ÃßÁ¤Ä¡
19.2. Tesla 4680 ¹èÅ͸® »ý»ê ŸÀÓ¶óÀÎ ¹× ÁÖ¿ä ÀÌÁ¤Ç¥
19.3. Tesla 4680 ¹èÅ͸® ÇÁ·Î±×·¥ ÃֽŠÇöȲ Á¤¸®
19.4. Å×½½¶ó 4680 ¹èÅ͸® ¼¿ ºñ¿ë ±¸Á¶
19.5. 4680 ¼¿ »ý»ê È¿À²È ¹× ºñ¿ë Àý°¨ ¿ä¼Ò
19.6. Tesla 4680 ¼¿ °³¹ß ÇöȲ
19.7. Tesla 4680 ¹èÅ͸® ¹× super charger ³×Æ®¿öÅ© ÃÖ±Ù µ¿Çâ
19.8. Tesla ¹èÅ͸® »ý»ê ¹× ¸®Æ¬ Á¤Á¦ »ç¾÷ »ó¼¼ Á¤¸®
19.9. 4680 cell »ý»ê CAPA vs. Cybertruck »ý»ê´ë¼ö
19.10. 4680¼¿ ¿¬°£ CAPA vs. daily »ý»ê·®°úÀÇ °ü°è
19.11. 4680 ¼¿ »ý»ê CAPA vs. »ý»ê ½Ã°£ ÃßÀÌ
19.12. Tesla Giga Factory P/P line(Á¶¸³°øÁ¤) ÁÖ¿ä °øÁ¤ ¸ðÀ½
The 4680 battery is a large cylindrical lithium-ion cell with a diameter of 46 mm and a length of 80 mm. Since Tesla first unveiled it at its 2020 Battery Day, it has emerged as a symbolic cell form factor leading technological innovation across the global battery and electric vehicle industries. Compared to the existing 2170 and 1865 formats, the 4680 highlights multidimensional advantages such as higher energy density, reduced cell assembly count, improved thermal management efficiency, and lower costs.
Accordingly, not only Tesla but also major cell manufacturers including Panasonic, LG Energy Solution, Samsung SDI, CATL, and EVE Energy are racing to secure 4680 production capacity.
The 4680 battery particularly enables enhanced structural efficiency of EV platforms through Cell-to-Chassis (CtC) design and incorporates innovations such as the tabless electrode structure, which makes it possible to achieve high charge/discharge performance. These advances position the 4680 as a key technology that can drastically improve EV efficiency and cost competitiveness.
The most distinctive feature of the 4680, the tabless electrode structure, distributes the current-collecting tabs across the entire electrode instead of placing them at the cell's edges. This leads to more uniform current flow, reducing resistance distribution, suppressing heat generation, and improving thermal diffusion efficiency, thereby preventing localized overheating under high-power conditions. Additionally, the simplified manufacturing process eliminates the need for electrode-tab connection steps, boosting yield. While this architecture is difficult to implement in pouch or prismatic cells, in cylindrical cells-especially large ones-its advantages are maximized. Tesla's in-house cells actively leverage this structure along with dry electrode coating.
Meanwhile, Tesla sought to apply the dry electrode coating technology introduced via its acquisition of Maxwell Technologies to the 4680. This method, which attaches solid electrode materials to the current collector by high-speed pressing without using solvents, is an environmentally friendly (NMP-free) process. It shortens production time by eliminating drying, allows thicker and denser electrodes, and thereby improves energy density. However, challenges remain in mass production, such as ensuring coating thickness uniformity and interfacial adhesion stability. Some companies are therefore developing alternative high-speed coating solutions based on wet processes.
To maximize energy density, high-energy active materials are being applied: cathodes employ high-nickel (Ni > 88%) NCM/NCA to enhance both density and lifespan; anodes use silicon-composite graphite (Si-C) or fully silicon-based designs to boost fast-charging capability; electrolytes incorporate high-voltage stabilizing additives or gel electrolytes to improve durability and stability. In particular, silicon anodes face expansion control and conductivity challenges, tackled by nanocomposite technologies, carbon-matrix architectures, and interfacial stabilization additives.
As capacity increases, so does the need for thermal runaway and safety countermeasures. Due to the large-cell nature of the 4680, a single-cell failure can quickly cascade across the module. Accordingly, safety technologies such as thermal barriers, built-in PTC/thermal fuses, flame-retardant cell casings, and dispersed cooling pathways are being developed. Since structural analysis becomes more complex than in pouch or prismatic cells, simulation-based integrated structural-thermal-electrical design is expanding.
Although Tesla pioneered the concept, development of 46-Phi large-format cells is now actively underway in Korea, Japan, and China. Tesla is mass-producing 4680 cells at its Texas Gigafactory and Berlin plant, surpassing 100 million units in 2024. The company has applied the second-generation "Cybercell" to the Cybertruck to improve charging speed and performance, and by 2026 plans to develop at least four new variants-including the NC05-based on dry coating. Panasonic is conducting pilot production and supply from its Wakayama (Japan) and Nevada (U.S.) facilities, and has completed renovations for a large 4680 plant in Kansas. It is also undergoing sampling and approval processes with OEMs beyond Tesla.
Among Korean "K-3" companies: LG Energy Solution began pilot production at Ochang in August 2024 and is preparing for mass production at its new Arizona plant by the first half of 2026. Samsung SDI, starting in Q1 2025, will apply 46-Phi cells in micromobility packs and expand adoption with European OEMs such as BMW. Meanwhile, Chinese companies including CATL and EVE are testing 46-series cells for structural compatibility, while BYD is developing similar large cells based on LFP chemistry.
Ultimately, while the 4680 holds strong potential in terms of high capacity, high density, and cost reduction, the keys remain mass-production stabilization and technological maturity. The period between 2025 and 2026 is expected to be a watershed, as Tesla and Panasonic accumulate production experience while Korean firms build out full-scale supply systems.
Competition, however, is diversifying. Rivalry with other battery technologies such as LFP, the completion of dry processes, yield improvements, and levels of localization will shape the industry landscape. For the 4680 to truly establish itself as a game-changer in the EV market, the trifecta of technical completeness, cost competitiveness, and supply chain stability must be achieved.
This report by SNE systematically compiles scattered data from corporate announcements, teardown studies, and performance tests related to the 4680. It also reviews key academic papers to assess the actual effectiveness and performance improvements of the 4680, summarizes the status and main products of manufacturers, and presents correlations between Gigafactory scale, Cybertruck production volumes, and cell output-providing valuable insights on manufacturability for researchers and stakeholders.
The strong points of this report are as follows:
1. Comprehensive consolidation of development trends and information on the 4680, enabling easy overall understanding
2. Detailed analysis of 4680 cell and pack teardown reports, enhancing comprehension
3. Market and production outlook analysis for the 4680, clarifying market size and growth rates
4. In-depth review of materials and technologies applied in the 4680, based on academic papers
(a)(c) The total cost is classified into material costs, labor costs, depreciation, capital costs, energy costs, plant area costs, and other expenses, with their respective proportions shown. Material cost accounts for the largest share (72.0%).
(b)(d) Detailed material cost analysis of 2170 cells vs. 4680 cells. This donut chart breaks down material costs into anode, cathode, separator, electrolyte, and housing. It clearly shows that cathode and anode materials are the main cost drivers.
Manufacturing process of large tabless cylindrical lithium-ion cells (including can and end cap).
This figure visually illustrates the key steps of cell manufacturing:
Top left: Tabless jelly-roll fabrication (A1) - shows how the jelly roll is formed together with the current collector plate. Laser welding is indicated.
Top right: Can deep drawing (steel) or impact extrusion (aluminum) (A2) - illustrates the process of forming the housing.
Center: Cell assembly (B) - the jelly roll is inserted into the housing and assembled through various welding processes. Laser and ultrasonic welding are indicated.
Bottom: Finishing (C) - the fully assembled cell undergoes final inspection and treatment.
Table of Contents
1. Overview of 4680 Cylindrical Battery
1.1. Summary and Key Findings of Tesla Battery Day (Sep 22, 2020)
1.2. Battery Cell Design
1.3. Battery Cell Manufacturing Process
1.3.1. Coating Process
1.3.2. Winding Process
1.3.3. Assembly Process
1.3.4. Formation Process
1.4. Silicon Anode Material
1.5. High-Nickel Cathode Material
1.6. Cell-to-Vehicle Integration
1.7. Battery Cost Reduction
1.8. 4680 Battery Development
1.8.1. Specifications of 4680 Battery
1.8.2. Tesla Battery Suppliers
1.8.3. Global Development and Production Status of 4680 Batteries
1.9. Global 46xx Battery Production Capacity
1.9.1. Advantages and Disadvantages of New 46xx Cell Design
2. Development of 4680 Battery Cells
2.1. Cost Reduction and Efficiency Enhancement Strategy
2.2. Increasing Safety Requirements (Thermal Management Upgrade)
2.3. Fast Charging as a Future Trend: Advantages of 4680's High Charging Speed
2.4. Market Entry Competition Among Leading Companies
2.5. Detailed Specifications of 46xx Batteries by Company
3. Detailed Technology of 4680 Battery
3.1. Cathode Materials
3.1.1. Ultra High-Nickel Application
3.1.2. Production Capacity Expansion
3.1.3. Manufacturing Technology Upgrade
3.2. Anode Materials
3.2.1. Silicon-Based Development
3.2.2. Silicon Development Timeline
3.2.3. Silicon Anode Modifications: Nanostructuring, Carbon Composites, Pre-lithiation
3.2.4. Commercialization Acceleration of Silicon Anode
3.3. Other Battery Materials
3.3.1. SWCNT Conductive Additives
3.3.2. Steel Battery Can
3.3.3. Aluminum Battery Can
3.3.3.1. Al Housing Cell Design Concept
3.3.3.2. 46xx Large Cylindrical Cell
3.3.3.3. 46xx Jelly Roll Concept
3.3.3.4. Jelly Roll Thermal Transfer and Distribution
3.3.3.5. Thermal Simulation of Jelly Roll Concept
3.3.3.6. Cooling Performance Enhancement for 46xx Cells
3.4. Improvements in 4680 Manufacturing Process
3.4.1. Process Technologies for 4680
3.4.2. Differentiation in Production Process
3.4.2.1. Dry Electrode Coating
3.4.2.2. Example Dry Process (Huaqi New Energy)
3.4.2.3. Integrated Electrode and Tab Cutting
3.4.2.4. Increased Laser Welding Difficulty
3.4.2.5. Integrated Die Casting and CTC
4. 4680 Battery Teardown and Analysis
4.1. Overview
4.2. Teardown and Analytical Process
4.3. Detailed Engineering Analysis of Tesla 4680 Cells and Packs
4.3.1. Tesla 4680 Cell Design Data (w/o Tab)
4.3.2. Pack Structure (Cell Orientation)
4.3.3. Proposed Assembly Methods for 4680 Pack
4.3.4. Analysis of 4680 Pack for Model 3: Expected Charge Time, Power, and Dimensions
4.3.4.1. Summary of Pack Analysis
4.3.4.2. Thermal Dissipation Discussion
4.3.5. Current Collector for Model 3 Battery
5. Teardown and Electrochemical Study of Tesla 4680 Cell
5.1. Summary
5.2. Study Overview
5.3. Previous Research
5.4. Detailed Analysis
5.5. Experiments
5.5.1. Overview of Test Cell
5.5.2. Cell Disassembly and Material Extraction
5.5.3. Structural and Elemental Analysis
5.5.4. Three-Electrode Analysis
5.5.5. Electrical Characteristics
5.5.6. Thermal Investigation
5.6. Results & Discussion
5.6.1. Cell and Jelly Roll Structure
5.6.2. Electrode Design
5.6.3. Material Properties
5.6.4. Three-Electrode Analysis
5.6.5. Capacity and Impedance Analysis
5.6.6. Quasi-OCV, DVA and ICA
5.6.7. HPPC (Hybrid Pulse Power Characterization)
5.6.8. Thermal Characterization at Cell Level
5.7. Conclusion
6. Technologies Required for 4680 Battery Success
6.1. Multi-Tab Technology
6.2. Tab Welding Technology
6.3. Cathode & Anode Materials
6.4. Cooling Technology
7. Comparison of 4680 with 18650 & 2170: Energy Density and Cost Reduction
7.1. Overview
7.2. 4680: Energy Density, Fast Charging, and Cost Reduction
7.2.1. Energy Density vs. Blade & Prismatic Hi-Ni Batteries
7.2.2. Improvement in Fast Charging Speed
7.2.3. Dry Electrode: Production Standardization and Cost Down
7.3. Use of High-Concentration Electrolyte
7.3.1. Electrolyte Reduction per GWh
7.3.2. High-Concentration Electrolyte with LiFSI Additive
7.3.3. Fluorinated Solvent (FEC): Performance Boost in NCM811/SiOx
7.4. Major Electrolyte Companies for 4680
8. Design of Battery Thermal Management System (BTMS) for Tesla 4680 Module
8.1. Introduction
8.2. Need for BTMS in EV Batteries
8.3. Cooling Methods
8.4. Literature Review
8.5. Liquid Cooling + Heat Pipe for 4680 Module: Method, Results, Conclusion
8.6. Thermal Analysis of Proposed Cooling System
8.7. Results & Discussion
8.8. Conclusion
9. Thermal Management of 4680 Cells: Design and Cooling
9.1. Overview
9.2. Introduction
9.2.1. Previous Research
9.2.2. Contributions of This Study
9.3. Experimental
9.3.1. Reference Cell
9.3.2. Thermal Battery Test Bench
9.3.3. Test Procedure
9.4. Simulation Model
9.4.1. Housing & Cooler
9.4.2. Jelly Roll
9.4.3. Cathode and Anode Tabs
9.4.4. Model Calibration and Validation
9.5. Simulation Results
9.5.1. Impact of Tab Design
9.5.2. Impact of Housing Materials
9.5.3. Interaction between Tab Design and Housing Material
9.6. Conclusion
10. Design, Properties, and Manufacturing of Cylindrical LIB Cells
10.1. Overview
10.2. Experimental Materials and Methods
10.2.1. Cell Design
10.2.2. Cell Properties
10.3. Experimental Results and Discussion
10.3.1. Design of Cylindrical LIB Cell
10.3.2. Jelly Roll Design
10.3.3. Tab Design
10.3.4. Cell Characteristics
10.3.4.1. Energy Density
10.3.4.2. Cell Resistance
10.3.4.3. Thermal Behavior
10.3.5. Jelly Roll Manufacturing
10.4. Conclusion
11. Effects of Cell Size and Housing Materials in Tabless Cylindrical LIB Cells
11.1. Overview
11.2. Experiment
11.2.1. Reference Cell
11.2.2. Modeling
11.2.2.1. Geometrical Modeling
11.2.2.2. Jelly Roll Electrode Layers
11.2.2.3. Hollow Core
11.2.2.4. Tabless Design
11.2.3. Cell Housing
11.2.4. Thermo-Electrochemical Framework
11.2.4.1. Boundary Conditions and Discretization
11.3. Results and Discussion
11.3.1. Energy Density
11.3.1.1. Effect of Diameter
11.3.1.2. Effect of Height
11.3.1.3. Effect of Housing Material
11.3.2. Fast Charging Performance
11.3.2.1. Heat Transfer Algorithm
11.3.2.2. Effect of Axial Cooling (Height/Housing)
11.3.2.3. Effect of Axial Cooling (Diameter/Housing)
11.3.2.4. Tab Design & Series Resistance Scaling
11.3.2.5. Overall Effect on Fast Charging
11.4. Conclusion
12. Thermal Runaway & Propagation in Large Tabless Cylindrical LIB Cells
12.1. Study on TR & TP Characteristics
12.2. Introduction: Need for New Design
12.2.1. Test Cell & Innovations
12.2.2. Limitations of Al Housing
12.2.3. TR Test Methods
12.2.4. Potting Compounds
12.2.5. Future Research
12.3. Experiment
12.3.1. Tabless Cell Investigation
12.3.2. Trigger Methods in Al Housing
12.3.2.1. China Safety Standards
12.3.2.2. FTRC Comparison
12.3.2.3. Large Cell Triggering Limits
12.3.2.4. Rupture Mechanism & Short Circuit
12.3.2.5. Axial Nail Penetration
12.3.2.6. Trigger Parameters & Geometry
12.3.2.7. Accelerated Calorimetry (EV-ARC)
12.3.2.8. Pressure Chamber Bench
12.3.2.9. Small Module TP Test
12.3.2.10. Radial Nail & Plate Test
12.3.2.11. Mechanical Triggering
12.3.3. EV-ARC Evaluation
12.3.3.1. Decomposition & Detection Temp
12.3.3.2. Reaction Mechanism
12.3.3.3. Dispersion Analysis
12.3.3.4. Temperature Distribution
12.3.3.5. Enthalpy Estimation
12.3.3.6. Voltage & Venting
12.3.3.7. Post-TR Mass Mapping
12.3.3.8. TR Cell Characteristics
13. Comparative Analysis: Tesla 4680 vs. BYD Blade Cell
13.1. Introduction
13.2. Results & Discussion
13.2.1. Mechanical Design & Process
13.2.2. Cell Housing
13.2.3. Electrode Composition
13.2.4. Contact Technology
13.2.5. Electrode Structure & Measurement
13.2.6. Manufacturing Process Flow
13.2.7. Materials & Cost Analysis
13.2.8. Electrical Performance
13.2.9. Thermal Efficiency & Resistance
13.2.10. Thermal Analysis
14. Modeling Study: Cell Size & Housing Impact in Tabless Cylindrical LIB
14.1. Introduction
14.2. Process Analysis
14.2.1. Manufacturing Impact
14.2.2. Reference Cell
14.2.3. Manufacturing Classification
14.2.3.1. Tabless Jelly Roll
14.2.3.2. Housing
14.2.3.3. Assembly
14.3. Modeling
14.3.1. Process-Based Cost Model
14.3.2. Geometrical Model
14.3.3. Process Model
14.3.4. Operations Model
14.3.5. Financial Model
14.4. Results & Discussion
14.4.1. Validation
14.4.2. Cell Size Effects
14.4.2.1. Diameter
14.4.2.2. Height
14.4.2.3. Cell Count
14.4.3. Housing Material Effects
14.5. Conclusion
15. Cost Comparison: Tabless vs. Standard Electrode Cylindrical LIB
15.1. Summary: Tesla's Tabless Design
15.2. Introduction
15.2.1. Design Comparison & Process Considerations
15.3. Methodology
15.3.1. Cost Modeling
15.3.2. Included Elements
15.3.3. Parameterization
15.4. Results
15.4.1. Output Calculation
15.4.2. Baseline Cost Analysis
15.4.3. Sensitivity Analysis
15.5. Conclusion
16. Status of 4680 Cell Manufacturers
16.1. Tesla
16.2. Panasonic
16.3. LGES
16.4. Samsung SDI
16.5. SK On
16.6. EVE
16.7. BAK
16.8. CATL
16.9. Gotion Hi-TECH
16.10. SVOLT
16.11. CALB
16.12. Envision AESC
16.13. LISHEN
16.14. Easpring (Dangsheng Technology)
16.15. Kumyang
16.16. BMW
16.17. Dongwon Systems
16.18. Sungwoo
16.19. TCC Steel
16.20. Dongkuk Industries
16.21. Shinheung SEC
16.22. Sangsin EDP
16.23. LT Precision
16.24. NIO
17. Patent Analysis on 4680 Batteries
17.1. Battery with Tabless Electrode
17.2. Tesla: Tabless Energy Storage Devices and Manufacturing Methods
17.3. Tesla Dry Electrode Process Patent (1): Fine Particle Non-Fibrous Binder
17.4. Tesla Dry Electrode Process Patent (2): Adhesive Passivation Film Composition for Dry Electrodes
17.5. LG Energy Solution: Tabless-Related Patents (Electrode Assembly, Battery, Battery Pack, and Vehicle)
17.6. Murata: Tabless Battery
17.7. Jiangsu Zenergy Battery
17.8. EVE Energy (Tab Flattening Device)
17.9. Microvast Inc. (Tab Plate & Wound Battery)
18. Market Outlook for 4680 Batteries
18.1. Overall Market Outlook
18.2. Materials and Process Technology Forecast for 4680
18.3. Chemical Industry: Silicon-Carbon Anode, PTFE, LiFSI, and Other Materials
18.3.1. Silicon-Carbon Anode Materials
18.3.2. PTFE, LiFSI, and Other Additives
18.3.3. Non-Ferrous Metals: Lithium, Cobalt, Nickel Demand
18.3.4. Hi-Ni Cathode + Silicon-Based Anode
18.4. Policy, Demand, and CAPA Forecasts Surrounding 4680
18.4.1. 4680 Cylindrical Battery Industry Chain
18.4.2. Analysis of China's 4680 Battery Industry Status
18.4.3. Market Structure of 4680 Cylindrical Batteries
18.4.4. Declining Trend in Cylindrical Battery Adoption
18.4.5. New Form Factor Development by Battery Manufacturers
18.4.6. Development and Production Forecast for 4680 (46xxx) Batteries
18.4.7. Development Trend of China's 4680 Battery Industry
18.4.8. Demand Forecast for EV 46xx Batteries
19. Forecast of Tesla 4680 Cell Production
19.1. Estimated Production at GIGA TEXAS
19.2. Tesla 4680 Battery Production Timeline and Key Milestones
19.3. Summary of Latest Tesla 4680 Battery Program
19.4. Cost Structure of Tesla 4680 Battery Cells
19.5. Efficiency Improvements and Cost Reduction Factors
19.6. Current Status of Tesla 4680 Cell Development
19.7. Recent Developments in Tesla 4680 and Supercharger Network
19.8. Summary of Tesla's Battery Production and Lithium Refining Business
19.9. 4680 Cell Production Capacity vs. Cybertruck Output
19.10. Annual 4680 CAPA vs. Daily Production Output
19.11. 4680 CAPA vs. Production Time Trends
19.12. Major Assembly Processes at Tesla Giga Factory P/P Line