±º¿ë ¹èÅ͸® ½ÃÀå : À¯Çüº°, ÆûÆÑÅͺ°, ¹èÅ͸® ±â¼úº°, Àü¾Ðº°, Ç÷§Æûº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)
Military Battery Market by Type, Form Factor, Battery Technology, Voltage, Platform, Application, End-User - Global Forecast 2025-2030
»óǰÄÚµå : 1808493
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 195 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,559,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,997,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,128,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,836,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

±º¿ë ¹èÅ͸® ½ÃÀåÀº 2024³â 15¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 16¾ï 7,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 5.41%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 21¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 15¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 16¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 21¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 5.41%

¿î¿µ»óÀÇ Á¦¾à°ú »õ·Î¿î ¿ì¼±¼øÀ§¸¦ °­Á¶Çϸ鼭 °¢ Ç÷§ÆûÀÇ ¼º°øÀûÀÎ ÀÓ¹« ¼öÇàÀ» À§ÇØ Åº·ÂÀûÀÎ ±º¿ë ¹èÅ͸® ½Ã½ºÅÛÀÇ Àü·«Àû Á߿伺À» °­Á¶ÇÏ´Â ±ÇÀ§ ÀÖ´Â ¼Ò°³¼­

±¹¹æ ºÐ¾ß¿¡¼­´Â ¿¡³ÊÁö¸¦ Àü·Â Áõ°­Á¦·Î Ãë±ÞÇÏ´Â °æÇâÀÌ °­ÇØÁö°í ÀÖÀ¸¸ç, ¹èÅ͸®´Â Ãֽм¾¼­, ¾×Ãß¿¡ÀÌÅÍ, ÃßÁø º¸Á¶ ÀåÄ¡, Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ºÐ»êÇü Àü·ÂÀ» Á¦°øÇÔÀ¸·Î½á ±× º¯È­ÀÇ Á߽ɿ¡ ¼­ ÀÖ½À´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü±â ¿¡³ÊÁö ÀúÀåÀº °øÁß, Áö»ó, ÇØ»ó °¢ Ç÷§ÆûÀÇ »ì»ó ´É·Â, »ýÁ¸ ´É·Â, ÀÓ¹« ³»±¸¼ºÀ» µÞ¹ÞħÇÕ´Ï´Ù. ÀÛÀü ȯ°æÀÌ ´õ¿í ¾ö°ÝÇØÁö°í ÀÚÀ² ½Ã½ºÅÛÀÌ ±ÞÁõÇÔ¿¡ µû¶ó ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ¿¹Ãø °¡´ÉÇÑ ¿­ °Åµ¿, ¾ÈÀüÇÑ µ¥ÀÌÅÍ ÀÎÅÍÆäÀ̽º, °ß°íÇÑ ¼ö¸íÁÖ±â Áö¿ø¿¡ ´ëÇÑ ¿ä±¸»çÇ×ÀÌ Á¡Á¡ ´õ ±î´Ù·Î¿öÁö°í ÀÖ½À´Ï´Ù.

ÃÖ±Ù ±â¼ú Çõ½Å°ú °ø±Þ¸Á À籸ÃàÀÌ ±¹¹æ ¹èÅ͸® ½Ã½ºÅÛÀÇ ±â´ë ¼º´É°ú ¾ÈÀü ÇÁ·ÎÅäÄÝ, ¼ö¸íÁֱ⠰æÁ¦¼ºÀ» ¾î¶»°Ô ÀçÁ¤ÀÇÇϰí Àִ°¡?

¹æÀ§ Á¶Á÷ÀÌ ¹èÅ͸® ½Ã½ºÅÛÀ» ½Äº°, ȹµæ, À¯Áöº¸¼öÇÏ´Â ¹æ½ÄÀ» º¯È­½ÃŰ´Â Çõ½ÅÀû º¯È­ÀÇ ¹°°áÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ¼¿ È­ÇÐ ¹× ÆûÆÑÅÍ Çõ½Å¿¡ À־ÀÇ Ã·´Ü ÆÐŰ¡Àº ¿¡³ÊÁö ¹× Àü·ÂÀÇ ÀýÃæÁ¡À» ´õ °¡º±°í ÄÄÆÑÆ®ÇÑ ÆÐŰÁö·Î °³¼±Çϰí, ´õ ±ä ³»±¸¼º°ú Á¦ÇÑµÈ Ç÷§Æû¿¡ ´õ °£´ÜÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. µ¿½Ã¿¡ ¿¡³ÊÁö ¹Ðµµ°¡ ³ô¾ÆÁú¼ö·Ï °íÀåÀÇ ¿µÇâÀÌ Ä¿Áö±â ¶§¹®¿¡ ¿­ °ü¸®¿Í ¾ÈÀü °øÇÐÀÌ ÃÖÀü¼±¿¡ ¶Ù¾îµé¾î Áø´Ü, ¼¿ ¸ð´ÏÅ͸µ, ºÀ¼â Àü·« °³¼±¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ÀÇ °ü¼¼ Á¶Ä¡°¡ ¹æ»ê ¹èÅ͸® »ýŰè Àü¹ÝÀÇ Á¶´Þ ¾È¹«, »ê¾÷ ¼Ò½Ì ¹× Àü·«Àû ź·Â¼º¿¡ ¹ÌÄ¡´Â ´©Àû ¿µÇâ ¿¹Ãø

2025³â ÀüÈÄ·Î ½ÃÇàµÉ °ü¼¼ Á¶Ä¡´Â ±¹¹æ ¹èÅ͸® ÇÁ·Î±×·¥¿¡ º¹ÀâÇÑ ÆÄ±Þ È¿°ú¸¦ °¡Á®¿Í ÅõÀÔ ºñ¿ë, °ø±Þ¾÷ü ¼±Á¤ °è»ê, Á¶´Þ ¸®½ºÅ© ÇÁ·ÎÆÄÀÏ¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù. ƯÁ¤ ºÎǰ ¹× Á¶¸³Ç°¿¡ ´ëÇÑ °ü¼¼ ÀÎ»ó¿¡ ´ëÀÀÇÏ¿©, ¿øÃ»¾÷ü¿Í ¼­ºê½Ã½ºÅÛ °ø±Þ¾÷ü´Â ÀÚÀç Á¶´Þ Àü·«À» Àç°ËÅäÇϰí, °¡´ÉÇÑ °æ¿ì ±¹³» Á¶´ÞÀ» ¿ì¼±½ÃÇϸç, °ü¼¼ÀÇ ¿µÇâÀ» ¹Þ´Â °üÇÒ±Ç ¹Û¿¡¼­ ´ëü °ø±Þ¾÷ü¸¦ ½Å¼ÓÇÏ°Ô ÀÎÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Á¤À» ÅëÇØ ´Ü±âÀûÀ¸·Î °ü¼¼ º¯µ¿¿¡ ³ëÃâµÉ À§ÇèÀº ÁÙ¾úÁö¸¸, °ø±Þ °è¾à ÀçÇù»ó ¹× »õ·Î¿î ǰÁú º¸Áõ °æ·Î¸¦ ±¸ÃàÇÏ´Â °úÁ¤¿¡¼­ °úµµ±âÀû ¸¶ÂûÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼³°è ¿ì¼±¼øÀ§ °áÁ¤ ¹× Á¶´Þ Æ®·¹À̵å¿ÀÇÁ¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇϱâ À§ÇØ À¯Çü, ÆûÆÑÅÍ, È­ÇÐ Àü¾Ð Ç÷§Æû, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ Â÷¿øÀ» ÅëÇÕÇÑ ¼¼ºÐÈ­ ÅëÂû·Â Á¦°ø

¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ¹èÅ͸®¸¦ µÑ·¯½Ñ ´Ù¾çÇÑ Ãø¸é¿¡¼­ ±â¼úÀû, Á¶´ÞÀû Àǹ̸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. ºñÃæÀü½Ä ¿É¼ÇÀº À¯Åë±âÇѰú ½Å·Ú¼ºÀÌ Áß¿äÇÑ ÀÏȸ¿ë ¶Ç´Â ºñ»ó¿ë ¿ëµµ¿¡ ÀûÇÕÇÑ ¹Ý¸é, ÃæÀü½Ä ¾ÆÅ°ÅØÃ³´Â ÅëÇÕ ÃæÀü ½Ã½ºÅÛ, ÄÁµð¼Å´× ¾Ë°í¸®Áò ¹× À¯Áöº¸¼ö ¿øÄ¢À» º¯°æÇÏ´Â Áö¼Ó¼º ±ÔÁ¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÆûÆÑÅÍ¿¡ µû¶ó ¿øÅëÇü, ÆÄ¿ìÄ¡Çü, »ç°¢Çü ÆÐŰÁö °£ÀÇ Æ®·¹À̵å¿ÀÇÁ´Â ºÎÇÇ È¿À²¼º, ±â°èÀû °ß°í¼º, ¹æ¿­ Àü·«¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¿øÅëÇü ¼¿Àº Á¾Á¾ Á¦Á¶ °¡´É¼º°ú ÀÔÁõµÈ ¿­ °Åµ¿À» Á¦°øÇÏ´Â ¹Ý¸é, ÆÄ¿ìÄ¡Çü ¹× »ç°¢Çü Æ÷¸ËÀº °ø°£ Á¦¾àÀûÀÎ ÅëÇÕ°ú ÃÖÀûÈ­µÈ ÆÐŰ¡À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¹ÌÁÖ, À¯·´, Áßµ¿/¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ¼ö¿ä µ¿Àο¡ ´ëÇÑ °ø±Þ¸Á ÅäÆú·ÎÁö ¹× »ê¾÷Á¤Ã¥¿¡ ´ëÇÑ Áö¿ªº° Â÷º°È­µÈ ÀÎÅÚ¸®Àü½º Á¦°ø

Áö¿ª ¿ªÇÐÀº ±¹¹æ ¹èÅ͸® ÇÁ·Î±×·¥ÀÇ Àü·«Àû ¿ì¼±¼øÀ§¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­ ±¹¹æ Á¶´ÞÀº ±¹³» °ø±Þ¾÷üÀÇ ½Å¼ÓÇÑ ÀÚ°Ý ÀÎÁõ, ±¹³» ÄÁÅÙÃ÷ ±ÔÁ¦ Áؼö, ±âÁ¸ À¯Áöº¸¼ö ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕÀ» Áß¿ä½ÃÇÕ´Ï´Ù. »ê¾÷ Á¤Ã¥Àº ¹Ì¼Ç Å©¸®Æ¼Äà ºÎǰÀÇ »ý»ê ¿¬¼Ó¼ºÀ» º¸ÀåÇϱâ À§ÇØ ´Ï¾î¼î¾î¸µ°ú Àη °³¹ßÀ» Àå·ÁÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­´Â ´Ù¾çÇÑ ±ÔÁ¦ »óȲ°ú ¾ó¶óÀ̾ð½ºÀÇ »óÈ£¿î¿ë¼ºÀ» °í·ÁÇÏ¿© ÀϰüµÈ Ç¥ÁØ, ´Ù±¹Àû Á¶´Þ ÇÁ·Î±×·¥, ¼öÃâ °ü¸® ü°è°¡ Á¶´Þ °áÁ¤À» Çü¼ºÇÏ´Â ¹Ý¸é, Àü·«Àû ÀÚÀ²¼ºÀ» À¯ÁöÇϱâ À§ÇØ ÁÖ±ÇÀû »ý»ê ´É·ÂÀ» ¿ì¼±½ÃÇÏ´Â ±¹³» ½ÃÀåµµ ÀÖ½À´Ï´Ù.

¼öÁ÷ÅëÇÕ ÆÄÆ®³Ê½Ê ¸ðµ¨, ÅõÀÚ ¿ì¼±¼øÀ§, ¾ÖÇÁÅ͸¶ÄÏ ¼­ºñ½º Â÷º°È­ µî ¹èÅ͸® ½Ã½ºÅÛ °ø±Þ¾÷ü¿¡¼­ ³ªÅ¸³ª´Â ÁÖ¿ä ±â¾÷Àü·« ÆÐÅÏ

±º¿ë ¹èÅ͸® ºÐ¾ßÀÇ ±â¾÷ Çຸ¸¦ º¸¸é ¼öºñ¿Í °ø°ÝÀÇ Àü·«Àû ¿òÁ÷ÀÓÀÌ È¥ÀçµÇ¾î ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº ±âÁ¸ °ø±Þ¾÷üµéÀº °¡Ä¡»ç½½ÀÇ ´õ ¸¹Àº ºÎºÐÀ» È®º¸Çϱâ À§ÇØ ¼öÁ÷Àû ÅëÇÕÀ» Ãß±¸Çϰí ÀÖÀ¸¸ç, ¼¿ Á¦Á¶, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, ½Ã½ºÅÛ ÅëÇÕ ¼­ºñ½º¿¡ ÁýÁßÇÏ¿© ¿£µå Åõ ¿£µå ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. µ¿½Ã¿¡ Àü¹® ±â¾÷µéÀº °í±Þ ¿­ °ü¸®, °í¼Ó ÃæÀü ¾ÆÅ°ÅØÃ³, °ß°íÇÑ ÆÐŰ¡°ú °°Àº Æ´»õ ¿ìÀ§¿¡ ÁýÁßÇÏ¿© Ç÷§Æû ÅëÇÕ ¿ä¿øÀ¸·Î¼­ÀÇ ÁöÀ§¸¦ È®º¸Çß½À´Ï´Ù. ÇÁ¶óÀÓ°ú ±â¼ú Á¦°ø¾÷ü °£ÀÇ ÆÄÆ®³Ê½Ê ¸ðµ¨Àº Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖÀ¸¸ç, Àå±â °ø±Þ °è¾àÀº ÀÎÁõ Áֱ⸦ °¡¼ÓÈ­ÇÏ´Â °øµ¿ °³¹ß °è¾àÀ¸·Î º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù.

¹æ»ê ¾÷°è ¸®´õµéÀÌ °ø±Þ ź·Â¼ºÀ» °­È­Çϰí, ±â¼ú äÅÃÀ» °¡¼ÓÈ­Çϸç, Á¶´Þ °üÇàÀ» ¿î¿µ ³»±¸¼º ¿ä±¸»çÇ×°ú ÀÏÄ¡½Ãų ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ±ÇÀå»çÇ×À» Á¦½ÃÇÕ´Ï´Ù.

¾÷°è ¸®´õ´Â ÇÁ·Î±×·¥ÀÇ ¼º°ú¸¦ °­È­ÇÏ°í ¿î¿µ ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ Çö½ÇÀûÀÎ Çൿ Æ÷Æ®Æú¸®¿À¸¦ Ãß±¸ÇØ¾ß ÇÕ´Ï´Ù. ù°, °ø±Þ¾÷ü ´Ùº¯È­¸¦ ¿ì¼±½ÃÇϰí, ±¹³» ¹× µ¿¸Í±¹ °ø±Þ¿øÀ» Æ÷ÇÔÇÑ ÀÚ°Ý ÀÎÁõ ÆÄÀÌÇÁ¶óÀÎÀ» ±¸ÃàÇÏ¿© ¹«¿ª Á¶Ä¡ ¹× ¿øÀÚÀç ÁýÁß¿¡ Á÷¸éÇßÀ» ¶§ ¼±ÅñÇÀ» º¸ÀåÇÕ´Ï´Ù. µÑ°, °¡¼ÓÈ­µÈ °ËÁõ ÀÎÇÁ¶ó¿Í µðÁöÅÐ Æ®À© ±â´É¿¡ ÅõÀÚÇÏ¿© ÀÎÁõ¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» ´ÜÃàÇϰí, ¹Ì¼Ç ÇÁ·ÎÆÄÀÏ¿¡ µû¸¥ ¿­Àû ¹× ±â°èÀû ¼º´ÉÀÇ ½Å·Ú¼ºÀ» ³ôÀÔ´Ï´Ù. ¼Â°, ´Ü±âÀûÀÎ ´Ü°¡°¡ ¾Æ´Ñ ¼ö¸íÁֱ⠼º´É°ú »óÈ£¿î¿ë¼º¿¡ º¸»óÇϵµ·Ï Á¶´Þ °è¾àÀ» Á¶Á¤ÇÏ¿© °ø±Þ¾÷ü°¡ ´õ ³ôÀº Æò±Õ °íÀå °£°Ý°ú °ß°íÇÑ À¯Áöº¸¼ö °èȹÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï Àμ¾Æ¼ºê¸¦ ºÎ¿©ÇÕ´Ï´Ù.

1Â÷ ¹× 2Â÷ Á¶»ç Á¢±Ù¹ý °ËÁõ °úÁ¤°ú Á¶»ç °á°úÀÇ ¾ö°Ý¼º°ú Ÿ´ç¼ºÀ» º¸ÀåÇϱâ À§ÇØ »ç¿ëÇÑ ºÐ¼®Àû ¾ÈÀüÀåÄ¡¸¦ »ó¼¼ÇÏ°Ô ¼³¸íÇÑ ¹æ¹ý·ÐÀû °³¿ä

º» Á¶»ç¿¡¼­´Â 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç¸¦ ÅëÇÕÇÏ¿© ¾ö°ÝÇÏ°í ¿ËÈ£ÇÒ ¼ö ÀÖ´Â Á¶»ç °á°ú¸¦ º¸ÀåÇÕ´Ï´Ù. 1Â÷ Á¶»ç¿¡´Â ÇÁ·Î±×·¥ °ü¸®ÀÚ, ½Ã½ºÅÛ ¿£Áö´Ï¾î, Á¶´Þ ´ã´çÀÚ, °ø±Þ¾÷ü °æ¿µÁø°úÀÇ ¹Ý±¸Á¶È­µÈ ÀÎÅͺ䰡 Æ÷ÇԵǸç, °¡´ÉÇϸé Á¦Á¶ ¹× Å×½ºÆ® ½Ã¼³¿¡ ´ëÇÑ ÇöÀå °ßÇÐÀÌ Ãß°¡µË´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â ±â¼ú Ç¥ÁØ, ±ÔÁ¦ Áöħ, »ê¾÷ Ȱµ¿¿¡ ´ëÇÑ ¿ÀǼҽº Á¤º¸, º¥´õÀÇ ±â¼ú ¹®¼­¸¦ Ȱ¿ëÇÏ¿© ¼º´É Ư¼º ¹× ÀÎÁõ °æ·Î¿¡ ´ëÇÑ ÁÖÀåÀ» °ËÁõÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¤º¸ ¼Ò½º¸¦ Ⱦ´ÜÇÏ´Â µ¥ÀÌÅÍ »ï°¢Ãø·®ÀÌ °¢ ºÐ¼® ÆÇ´ÜÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

±¹¹æ ¹èÅ͸® ¿ª·® ÀüȯÀ» °ü¸®ÇÏ´Â ÀÌÇØ°ü°èÀÚµéÀ» À§ÇÑ Àü·«Àû ÀÇ¹Ì¿Í ¿î¿µ ¿ì¼±¼øÀ§ ¹× ´ÙÀ½ ´Ü°è¸¦ ÃßÃâÇÑ °£°áÇÑ °á·ÐÀ» Á¾ÇÕÇß½À´Ï´Ù.

°á·ÐÀûÀ¸·Î, ÁøÈ­ÇÏ´Â ±º¿ë ¹èÅ͸® »óȲ¿¡¼­ ÀÌÇØ °ü°èÀÚ´Â ±â¼ú Çõ½Å°ú °ø±Þ¸Á º¹¿ø·Â ¹× ¼ö¸íÁֱ⠻ç°í¸¦ ÅëÇÕÇÏ´Â ½Ã½ºÅÛ ¼öÁØÀÇ °üÁ¡À» äÅÃÇØ¾ß ÇÕ´Ï´Ù. »õ·Î¿î È­ÇÐ ¹°Áú°ú ÆûÆÑÅÍ´Â ¿î¿µ °¡´É¼ºÀ» ³ÐÇôÁÖÁö¸¸, µ¿½Ã¿¡ ´õ ³ôÀº ¼öÁØÀÇ ¿­ °ü¸®, ¾ö°ÝÇÑ ÀÎÁõ ¹× À¯Áöº¸¼ö ÆÐ·¯´ÙÀÓÀ» ¿ä±¸ÇÕ´Ï´Ù. 2020³â´ë Á߹ݿ¡ Á¦Á¤µÈ ¹«¿ª Á¶Ä¡¸¦ Æ÷ÇÔÇÑ ÁöÁ¤ÇÐÀû ¿äÀΰú Á¤Ã¥ °áÁ¤Àº °ø±Þ¸Á À籸ÃàÀ» °¡¼ÓÈ­ÇÏ°í ±¹³» ¹× °ü·Ã Á¦Á¶ ´É·ÂÀÇ Àü·«Àû Á߿伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ±º¿ë ¹èÅ͸® ½ÃÀå : À¯Çüº°

Á¦9Àå ±º¿ë ¹èÅ͸® ½ÃÀå : ÆûÆÑÅͺ°

Á¦10Àå ±º¿ë ¹èÅ͸® ½ÃÀå : ¹èÅ͸® ±â¼úº°

Á¦11Àå ±º¿ë ¹èÅ͸® ½ÃÀå : Àü¾Ðº°

Á¦12Àå ±º¿ë ¹èÅ͸® ½ÃÀå : Ç÷§Æûº°

Á¦13Àå ±º¿ë ¹èÅ͸® ½ÃÀå : ¿ëµµº°

Á¦14Àå ±º¿ë ¹èÅ͸® ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ ±º¿ë ¹èÅ͸® ½ÃÀå

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±º¿ë ¹èÅ͸® ½ÃÀå

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±º¿ë ¹èÅ͸® ½ÃÀå

Á¦18Àå °æÀï ±¸µµ

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Military Battery Market was valued at USD 1.59 billion in 2024 and is projected to grow to USD 1.67 billion in 2025, with a CAGR of 5.41%, reaching USD 2.18 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.59 billion
Estimated Year [2025] USD 1.67 billion
Forecast Year [2030] USD 2.18 billion
CAGR (%) 5.41%

An authoritative introduction framing the strategic importance of resilient military battery systems for mission success across platforms while highlighting operational constraints and emergent priorities

The defense sector increasingly treats energy as a force multiplier, and batteries occupy the center of that transformation by providing the distributed power that enables modern sensors, actuators, propulsion auxiliaries, and communications. Reliable electrical energy storage underpins lethality, survivability, and mission endurance across airborne, ground, and maritime platforms. As operational environments grow more contested and autonomous systems proliferate, requirements for higher energy density, predictable thermal behavior, secure data interfaces, and robust lifecycle support have become non-negotiable.

This analysis positions battery systems not merely as commodity components but as integrated subsystems that must satisfy stringent performance specifications, certification pathways, and sustainment paradigms. It synthesizes engineering trends, procurement drivers, and industrial dynamics to help decision-makers prioritize investments and design choices. By reframing batteries in terms of platform-level outcomes rather than simple cell metrics, the introduction prepares stakeholders to reconcile immediate operational needs with longer-term resilience and sustainability objectives.

How recent technological breakthroughs and supply chain reconfiguration are redefining performance expectations safety protocols and lifecycle economics of defense battery systems

A wave of transformative shifts is altering how defense organizations specify, acquire, and sustain battery systems. Advances in cell chemistry and form-factor innovation have pushed energy and power trade-offs in favor of lighter, more compact packages, enabling longer endurance and simplified integration on constrained platforms. At the same time, thermal management and safety engineering have moved to the forefront as higher energy densities increase the consequences of failure, prompting investments in improved diagnostics, cell monitoring, and containment strategies.

Concurrently, supply chain reconfiguration has accelerated, driven by geopolitical tensions, raw material concentration, and a renewed focus on domestic industrial capacity. These dynamics are catalyzing diversification efforts, nearshoring of critical manufacturing steps, and strategic partnerships between traditional defense contractors and specialist battery developers. Digitalization and predictive maintenance capabilities are maturing, allowing operators to shift from calendar-based replacement cycles to condition-based logistics. As a result, procurement frameworks and qualification regimes are evolving to reward modularity, interoperability, and lifecycle cost transparency rather than lowest-unit price alone. Together, these shifts create an environment where technical innovation, supply resilience, and systems thinking determine competitive advantage.

Projected cumulative consequences of United States tariff measures in 2025 on procurement choreography industrial sourcing and strategic resilience across the defense battery ecosystem

Tariff measures enacted in and around 2025 have produced a complex set of ripple effects for defense battery programs, affecting input costs, supplier selection calculus, and procurement risk profiles. In response to elevated duties on certain components and assemblies, prime contractors and subsystem suppliers reassessed bill-of-material strategies, prioritized domestic content where feasible, and accelerated qualification of alternative vendors outside tariff-impacted jurisdictions. These adjustments reduced near-term exposure to tariff volatility but introduced transitional friction as supply contracts were renegotiated and new quality assurance pathways established.

The tariffs also sharpened strategic emphasis on inventory policies and program-level buffers, with some programs electing to increase strategic stocks of critical cell chemistries and electronic control modules to hedge delivery risk. At the same time, cost pressure from tariffs heightened incentives for vertical integration and long-term supplier partnerships, as firms sought to insulate margins and secure priority allocations. International partners adjusted procurement timelines and technical specifications to maintain interoperability while minimizing tariff-related cost growth, which in turn influenced design choices that favor alternative materials, standardized interfaces, and longer service life. Overall, the tariffs accelerated structural shifts toward localized value creation, deeper supplier collaboration, and greater emphasis on procurement resilience across the defense battery ecosystem.

Integrated segmentation insights synthesizing type form factor chemistry voltage platform application and end-user dimensions to inform design prioritization and procurement trade-offs

Segmentation analysis reveals distinct technical and procurement implications across multiple dimensions of the battery landscape. Based on Type, the distinction between Non-rechargeable and Rechargeable systems drives contrasting lifecycle models: non-rechargeable options remain relevant for single-use or emergency applications where shelf life and reliability are critical, whereas rechargeable architectures require integrated charging systems, conditioning algorithms, and sustainment provisions that change maintenance doctrine. Based on Form Factor, trade-offs among Cylindrical, Pouch, and Prismatic packages affect volumetric efficiency, mechanical robustness, and thermal dissipation strategies; cylindrical cells often offer manufacturability and proven thermal behavior, while pouch and prismatic formats enable space-constrained integrations and optimized packaging.

Based on Battery Technology, the coexistence of Lead-Acid Batteries, Lithium-Based Batteries, and Nickel-Based Batteries reflects a spectrum of cost, energy density, and environmental handling requirements; legacy lead-acid chemistry retains value for heavy-duty, cost-sensitive applications, whereas lithium-based solutions dominate where energy-to-weight ratio is paramount, and nickel-based chemistries persist in niche applications requiring specific robustness characteristics. Based on Voltage, segmenting across 12 to 24 V, Less than 12 V, and More than 24 V yields clear implications for power electronics, distribution architectures, and interoperability with platform subsystems, informing both connector standards and protection schemes. Based on Platform, differences across Airborne, Ground, and Marine introduce unique mechanical, thermal, and safety constraints that dictate cell selection, packaging, and certification pathways.

Based on Application, distinctions among Aircraft, Energy Storage, Land Vehicles, Naval Vessels, and Portable Equipment provide granular guidance for engineering priorities. Aircraft applications subdivide into Fighter Jets, Helicopters, and Unmanned Aerial Vehicles, each with unique weight, vibration, and shock tolerance criteria. Energy Storage applications further split into Base Stations, Mobile Power Units, and Renewable Integration Systems, which emphasize lifecycle cost, rapid deployment, and grid interfacing respectively. Land Vehicles include Armored Personnel Carriers, Tactical Vehicles, and Tanks, where ruggedness and EMI resilience are essential. Naval Vessels span Submarines, Surface Ships, and Unmanned Vessels, requiring long-duration performance and compliance with marine-specific safety standards. Portable Equipment, including Communication Devices, Night Vision Systems, and Portable Sensors, prioritizes miniaturization, low-temperature performance, and predictable discharge profiles. Based on End-User, requirements from the Air Force, Army, and Navy generate divergent procurement cadences, certification expectations, and sustainment footprints, which together determine supplier qualification priorities and the shape of aftermarket support.

Regionally differentiated intelligence on demand drivers supply chain topology and industrial policy across the Americas Europe Middle East Africa and Asia-Pacific theatres

Regional dynamics materially influence strategic priorities for defense battery programs. In the Americas, defense procurement places a premium on rapid qualification of domestic suppliers, compliance with domestic content regulations, and integration with existing sustainment infrastructure; industrial policies tend to incentivize nearshoring and workforce development to ensure production continuity for mission-critical components. In Europe, Middle East & Africa, varying regulatory frameworks and alliance interoperability considerations produce a landscape where harmonized standards, multinational procurement programs, and export control regimes shape sourcing decisions, while some national markets prioritize sovereign production capabilities to preserve strategic autonomy.

Asia-Pacific exhibits intense demand driven by fleet modernization, expanding unmanned system deployment, and significant investments in indigenous battery manufacturing capacity. This region emphasizes scale, rapid iteration of cell chemistries, and deep integration between civil and defense supply chains. Across these theatres, differences in industrial policy, logistics infrastructure, and regulatory compliance create distinct opportunities and constraints. Consequently, companies must calibrate their manufacturing footprints, certification strategies, and supplier networks to align with regional operational needs and policy incentives, while also planning for cross-border interoperability and lifecycle support obligations.

Key corporate strategic patterns observed among battery system suppliers including vertical integration partnership models investment priorities and aftermarket service differentiation

Corporate behavior in the military battery space reveals a blend of defensive and offensive strategic moves. Many established suppliers are pursuing vertical integration to capture more of the value chain, focusing on cell manufacturing, battery management systems, and system integration services to offer end-to-end solutions. At the same time, specialist firms concentrate on niche advantages such as advanced thermal management, rapid charge architectures, and ruggedized packaging to earn positions on platform integration rosters. Partnership models between primes and technology providers are increasingly common, where long-term supply agreements are complemented by co-development arrangements that accelerate qualification cycles.

Investment priorities consistently favor certification capabilities, in-field diagnostics, and aftermarket sustainment services, as these areas offer differentiation and recurring revenue. Companies that build robust testing infrastructures and transparent quality systems secure preferred supplier status for complex programs. Meanwhile, smaller innovators are leveraging agility to iterate on cell chemistries and form factors, making them attractive acquisition targets for larger defense contractors seeking to close technology gaps. Overall, competitive advantage accrues to organizations that combine technical depth, supply chain control, and demonstrable lifecycle support.

Actionable recommendations for defense industry leaders to bolster supply resilience accelerate technology adoption and align procurement practices with operational endurance requirements

Industry leaders should pursue a portfolio of pragmatic actions to strengthen program outcomes and reduce operational risk. First, prioritize supplier diversification and qualification pipelines that include both domestic and allied sources, thereby creating optionality in the face of trade actions or raw material concentration. Second, invest in accelerated validation infrastructure and digital twin capabilities that reduce qualification time and provide greater confidence in thermal and mechanical performance under mission profiles. Third, align procurement contracts to reward lifecycle performance and interoperability rather than short-term unit price, incentivizing suppliers to deliver higher mean time between failures and robust sustainment plans.

Additionally, commit resources to workforce development and cross-disciplinary engineering teams that can bridge electrochemical, mechanical, and systems-integration challenges. Embed cybersecurity requirements into battery management systems from design inception and require secure firmware update pathways as part of supplier qualifications. Finally, adopt environmental and end-of-life strategies that prioritize recycling, remanufacturing, and material traceability to reduce strategic exposure to constrained raw materials and to meet evolving regulatory expectations. These measures will improve program resilience, lower total cost of ownership in practice, and create a competitive moat rooted in technical and logistical excellence.

Methodological overview detailing primary and secondary research approaches validation processes and analytical safeguards used to ensure rigor and relevance in findings

This research integrates primary and secondary methods to ensure a rigorous and defensible set of findings. Primary inputs include semi-structured interviews with program managers, systems engineers, procurement officials, and supplier executives, supplemented by site visits to manufacturing and testing facilities where feasible. Secondary research draws on technical standards, regulatory guidance, open-source intelligence regarding industrial activity, and vendor technical documentation to verify claims about performance characteristics and qualification pathways. Data triangulation across these sources underpins each analytical judgment.

Analytical safeguards include validation workshops with independent subject-matter experts and iterative cross-checks between supply chain mappings and procurement timelines. Segmentation logic follows a platform-centric approach, ensuring that application-level constraints drive technical evaluation rather than abstract cell metrics alone. Limitations are openly documented, including areas where confidential program constraints or proprietary supplier data restricted visibility. Where necessary, scenario-based sensitivity testing is used to explore contingency outcomes and to stress-test recommended mitigation measures.

Concise concluding synthesis that distills strategic implications operational priorities and next steps for stakeholders managing the transition in defense battery capabilities

In conclusion, the evolving military battery landscape requires stakeholders to adopt a systems-level perspective that blends technical innovation with supply chain resilience and lifecycle thinking. Emerging chemistries and form factors expand operational possibilities but also demand more sophisticated thermal management, certification rigor, and maintenance paradigms. Geopolitical factors and policy decisions, including trade measures enacted in the mid-2020s, have hastened supply chain reconfiguration and elevated the strategic importance of domestic and allied manufacturing capacity.

Segmentation and regional analysis underscore that one-size-fits-all solutions are no longer viable: platform type, application-specific constraints, and end-user priorities drive distinct engineering and procurement choices. Companies that integrate vertical capabilities, demonstrate strong aftermarket support, and build transparent quality systems will win long-term program trust. For program owners, aligning procurement incentives with lifecycle performance and investing in accelerated qualification capabilities will reduce risk and improve operational availability. Taken together, these insights provide a framework for informed action in a rapidly changing domain.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Military Battery Market, by Type

9. Military Battery Market, by Form Factor

10. Military Battery Market, by Battery Technology

11. Military Battery Market, by Voltage

12. Military Battery Market, by Platform

13. Military Battery Market, by Application

14. Military Battery Market, by End-User

15. Americas Military Battery Market

16. Europe, Middle East & Africa Military Battery Market

17. Asia-Pacific Military Battery Market

18. Competitive Landscape

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â