<2023> ¸®Æ¬ÀÌÂ÷ÀüÁö ¸®Æ¬Àλêö(LFP) ¾ç±Ø¼ÒÀç ±â¼úÇöȲ ¹× ½ÃÀåÀü¸Á
<2023> LFP Cathode Materials for Lithium-Ion Secondary Batteries: Status and Market Outlook
»óǰÄÚµå : 1356951
¸®¼­Ä¡»ç : SNE Research
¹ßÇàÀÏ : 2023³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® ¶Ç´Â ±¹¹® - 403 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
£Ü 7,500,000 £Ü 7,500,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

2021³âÀº Áß±¹ÀÇ ¸®Æ¬Àλêö(LFP, LiFePO4) ¹èÅ͸®¿¡ ´ëÇÑ °ü½ÉÀÌ Æø¹ßÇÑ ÇÑÇØ¿´°í ±× Ãß¼¼´Â 2023³â »ó¹Ý±â±îÁö °­ÇÏ°Ô »ó½ÂÇϰí ÀÖ½À´Ï´Ù.

Àü±âÂ÷¿¡¼­ žÀçµÇ´Â LFP ¹èÅ͸®ÀÇ ºñÁßµµ 2020³â 17%¿¡¼­ 2021³â 27%, 2022³â 36%±îÁö Áõ°¡ÇÏ¿´½À´Ï´Ù.

Áß±¹¿¡¼­ ÆÇ¸ÅµÈ LFP ¹èÅ͸® žÀç Àü±âÂ÷ÀÇ ºñÁßÀº 2020³â 9¿ù ÀÌÈÄ NCM(´ÏÄÌ¡¤ÄÚ¹ßÆ®¡¤¸Á°£) ȤÀº NCA(´ÏÄÌ¡¤ÄÚ¹ßÆ®¡¤¾Ë·ç¹Ì´½) µî »ï¿ø°è ¹èÅ͸®ÀÇ ºñÁßÀ» ¶Ù¾î³Ñ¾ú½À´Ï´Ù.

ÇöÀç LFP¹èÅ͸®ÀÇ ´ëºÎºÐÀº Áß±¹ ¾÷üµéÀÌ »ý»êÇϰí Àִµ¥ Å×½½¶ó»Ó ¾Æ´Ï¶ó Æø½º¹Ù°Õ, Æ÷µå, ½ºÅÚ¶õƼ½º µîµµ LFP¹èÅ͸®¿¡ °ü½ÉÀ» º¸À̰í ÀÖ½À´Ï´Ù.

¸®Æ¬ÀÌÂ÷ÀüÁö°¡ ´ë¿ë·®È­µÊ¿¡ µû¶ó ¸®Æ¬ÀÌÂ÷ÀüÁöÀÇ °¡°Ý ¹× ¾ÈÀü¼º °­È­°¡ Áß¿äÇÑ È­µÎ·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ È帧 ¼Ó¿¡¼­ ÀÌ¹Ì °³¹ßµÈ Áö ¸¹Àº ½Ã°£ÀÌ Áö³­ ¸®Æ¬Àλêö ÀüÁö°¡ »õ È­µÎ·Î ¶°¿À¸£°í Àִµ¥ ÀÌ´Â ÄÚ¹ßÆ®¸¦ »ç¿ëÇÏÁö ¾Ê¾Æ »ó´ëÀûÀ¸·Î Àú°¡¿¡ Á¦Á¶°¡ °¡´ÉÇϸç, °í¿Â ¹× °úÃæÀü »óÅ¿¡¼­µµ ±¸Á¶ºØ±«°¡ ÀϾÁö ¾Ê¾Æ ¼ö¸í ¹× ¾ÈÀü¼ºÀÌ ¿ì¼öÇϸç, ¶ÇÇÑ ¸®Æ¬Àλêö¿¡ °üÇÑ ÇÙ½ÉÆ¯Çã°¡ 22³â ´ëºÎºÐ ¸¸·áµÇ¾î ƯÇã·áÀÇ ÁöºÒÀ̳ª ƯÇãÄ§ÇØ¿¡ ´ëÇÑ À§ÇèÀÌ ¾øÀÌ ÆÇ¸Å°¡ °¡´ÉÇØÁú °ÍÀ̱⠶§¹®ÀÔ´Ï´Ù.

¸®Æ¬Àλêö ÀÌÂ÷ÀüÁöÀÇ Æ¯¼º ¹× Àå´ÜÁ¡À» ÀÌÇØÇϱâ À§Çؼ­´Â ¸®Æ¬ÀÌÂ÷ÀüÁö¿¡ °üÇÑ Ã¼°èÀûÀÎ Áö½Ä, Á¤º¸ ¹× ¸®Æ¬Àλêö ¾ç±ØÀçÀÇ ÀåÁ¡ ¹× ÇѰ迡 °üÇÑ Áö½ÄÀ» ½ÀµæÇÒ Çʿ䰡 ÀÖÀ¸¸ç, À̸¦ ¹ÙÅÁÀ¸·Î ÇâÈÄ ¸®Æ¬Àλêö ÀÌÂ÷ÀüÁöÀÇ °³¹ß ¹æÇâÀ» ÀÌÇØÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÇöÀç ¸®Æ¬ Àλêö ¹èÅ͸®´Â 400km °¡·®ÀÇ Ç׼ӰŸ®ÀÇ ´Þ¼ºÀÌ °¡´ÉÇϸç, ½ÇÁ¦ ¸®Æ¬Àλêö ¾ç±Ø¼ÒÀç°¡ Àû¿ëµÈ Å×½½¶ó 2021³â ¸ðµ¨3ÀÇ °æ¿ì ÁÖÇà°Å¸®°¡ 407 km¿¡ ´ÞÇÕ´Ï´Ù.

¶ÇÇÑ Àú°¡ÀΠö »ç¿ëÀ¸·Î °¡°Ý ¸é¿¡¼­µµ ¿ìÀ§¿¡ ÀÖÀ¸¸ç, ÃÖ±Ù ÄÚ¹ßÆ®, ´ÏÄÌ µîÀÇ »ï¿ø°è¿ë ¿øÀÚÀçÀÇ °¡°Ý ÆøµîÀ¸·Î ÀÌ·¯ÇÑ °¡°ÝÀûÀÎ ÀåÁ¡Àº ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ¾ÈÀü¼º¿¡ À־µµ 300µµÀÇ °í¿Â°ú 260% °úÃæÀü¿¡µµ È­À糪 Æø¹ß¹ÝÀÀÀÌ ÀϾÁö ¾Ê´Â µî Ãþ»ó±¸Á¶ÀÇ »ï¿ø°è ´ëºñ ¿Ã¸®ºó ±¸Á¶ÀÇ ¸®Æ¬Àλêö ¼ÒÀç°¡ ÀÌÁ¡À» °¡Áö°í ÀÖ¾î ¹èÅ͸® ¾÷ü³ª ¿Ï¼ºÂ÷ ¾÷ü¿¡¼­ ¾ÈÀü»ç°í¸¦ ´ëºñÇÒ Ãæ´ç±ÝÀ» ºñÃàÇÒ Çʿ䰡 ¾ø´Â ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù.

¾ÆÁ÷ ÇØ°áÇØ¾ß ÇÒ °úÁ¦°¡ ¸¹ÀÌ ³²¾ÆÀÖÀ¸³ª, Bulk ¸®Æ¬Àλêö¿¡ ´ëÇÑ ¼º´É±¸Çö, Graphene°úÀÇ È¿°úÀûÀÎ º¹ÇÕÈ­, LiMnPO4 µîÀÇ ¼º´É±¸ÇöÀÌ ÀÌ·ç¾îÁø´Ù¸é ¿Ã¸®ºó ¸®Æ¬Àλêö¿¡ À־ ¶ÇÇѹøÀÇ ÁøÀüÀÌ °¡´ÉÇÒ °ÍÀ¸·Î »ý°¢µË´Ï´Ù.

ÃÖ±Ù ¸Á°£À» È¥ÇÕÇÑ LMFP ¹èÅ͸®´Â ÀÌ·± ÇѰ踦 ±Øº¹ÇÒ ¼ö ÀÖ´Â ½Å±â¼ú·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù.

ºñ½ÁÇÑ °¡°ÝÀ¸·Îµµ ¿¡³ÊÁö ¹Ðµµ¸¦ 15-20%°¡·® ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. CATL°ú BYD, ±Å½Ã¾È µî Áß±¹ ¾÷üµéµµ À¯»çÇÑ ±â¼úÀ» Àû¿ëÇÑ LMFP ±â¹Ý ¹èÅ͸®¸¦ °³¹ßÇØ »ó¿ëÈ­ ´Ü°è¿¡ µé¾î¼¹½À´Ï´Ù

º» ¸®Æ÷Æ®¿¡¼­´Â ¸®Æ¬ÀÌÂ÷ÀüÁöÀÇ ¾ç±Ø¼ÒÀç Á¾·ù ¹× Ư¡À» »ìÆìº¸°í, ƯÈ÷ ÃÖ±Ù È­µÎ·Î ¶°¿À¸£°í ÀÖ´Â ¸®Æ¬Àλêö(LFP, LMFP) ¾ç±Ø¼ÒÀç¿¡ ´ëÇÑ Æ¯¼ºÀ» ÀÚ¼¼È÷ »ìÆìº¸°í, °³¹ß ÇöȲ ¹× Á¦Á¶ °øÁ¤ ±â¼ú¿¡ ´ëÇÏ¿© »ó¼¼È÷ °íÂûÇϰíÀÚ ÇÕ´Ï´Ù.

¿©±â¿¡ ¸®Æ¬Àλêö(LFP, LMFP) ¾ç±Ø¼ÒÀç ½ÃÀå¿¡ ´ëÇÑ Àü¸Á°ú ÁÖ¿ä ¾÷ü Á¤º¸¿¡ ´ëÇÏ¿© Á¤¸®ÇÏ¿´À¸¸ç, ¸®Æ¬Àλêö(LFP, LMFP) Àû¿ë ¿Ï¼ºÂ÷ ¾÷ü¿Í ¹èÅ͸® ¾÷ü ÇöȲ¿¡ ´ëÇÏ¿©µµ ´Ù·ç¾ú½À´Ï´Ù.

º» º¸°í¼­ÀÇ Strong Point´Â

¸ñÂ÷

¸®Æ÷Æ® °³¿ä

<2023³âÆÇ> ¸®Æ¬ÀÌÂ÷ÀüÁö ¸®Æ¬Àλêö(LFP) ¾ç±Ø¼ÒÀç ±â¼úÇöȲ ¹× ½ÃÀåÀü¸Á

1. ¸®Æ¬ÀÌÂ÷ÀüÁö °³¿ä

2. ¸®Æ¬ÀÌÂ÷ÀüÁö ¾ç±Ø¼ÒÀç Á¾·ù ¹× Ư¡

3. ¸®Æ¬Àλêö°è(LFP/LMFP) ¾ç±Ø¼ÒÀç ±â¼ú°³¹ß ÇöȲ

4. ¸®Æ¬Àλêö ¾ç±Ø¼ÒÀç ½ÃÀå ¹× ¾÷ü ÇöȲ

5. Âü°í ¹®Çå

¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The year 2021 was a year of explosive interest in lithium iron phosphate (LFP, LiFePO4) batteries in China, and the trend has been strong through the first half of 2023. The share of LFP batteries in electric vehicles also increased from 17% in 2020 to 27% in 2021 and 36% in 2022.

The share of LFP battery-powered electric vehicles sold in China has surpassed the share of NCM (nickel-cobalt-manganese) or NCA (nickel-cobalt-aluminum) batteries since September 2020.

Currently, most LFP batteries are produced by Chinese companies, but Tesla, as well as Volkswagen, Ford, and Stellantis, are also showing interest in LFP batteries.

Lithium iron phosphate (LiFePO4) batteries are gaining attention for large-scale applications due to their cost-effectiveness, safety, and extended service life. Unlike traditional lithium-ion batteries, LiFePO4 batteries can be produced inexpensively without using cobalt. They exhibit robust safety features, maintaining performance even in high temperatures and during overcharging. Furthermore, the expiration of key patents around 2022 eliminates concerns about patent fees or infringement risks, paving the way for broader adoption. To grasp the characteristics, advantages, and disadvantages of lithium iron phosphate (LiFePO4) secondary batteries, a comprehensive understanding of lithium-ion batteries and insights into the strengths and limitations of LiFePO4 cathode materials is crucial. This knowledge forms the foundation for anticipating the future development direction of LiFePO4 secondary batteries.

Lithium iron phosphate batteries, like the ones in the 2021 Tesla Model 3, currently offer a range of about 400 kilometers, with the Model 3 achieving 407 kilometers. Their cost advantage, stemming from the use of inexpensive iron, is amplified amid rising prices of raw materials for ternary systems like cobalt and nickel. The safety edge of lithium iron phosphate, with its olivine structure, is evident in its resistance to fire or explosion reactions even at 300 degrees Celsius and 260% overcharging. This characteristic eliminates the need for contingency funds to address safety incidents, benefiting battery companies and automakers.

Although there are still many challenges to be addressed, it is thought that another breakthrough in olivine lithium iron phosphate is possible if the performance of bulk lithium iron phosphate, effective compounding with graphene, and the performance of LiMnPO4 are realized.

Recently, LMFP batteries with manganese mixed have been attracting attention as a new technology that can overcome these limitations. The energy density can be increased by about 15-20% at a similar price. Chinese companies such as CATL, BYD, and Guoxuan have also developed LMFP-based batteries with similar technologies and entered the commercialization stage.

This report delves into the types and traits of lithium-ion battery cathode materials, focusing on the noteworthy lithium iron phosphate (LFP, LMFP) cathodes. We will provide a detailed examination of their characteristics, alongside a discussion on development status and manufacturing processes. Moreover, this report explores the market outlook and major companies in lithium iron phosphate (LFP, LMFP) cathode materials, providing insights into the current status of LFP-equipped automakers and battery companies.

The strong point of this report is:

Table of Contents

1. Lithium-ion Battery Overview

2. Types and Characteristics of Lithium-ion Battery Cathode Materials

3. Status of the development of lithium iron phosphate (LFP/LMFP) cathode materials

4. LFP Market and Company Status

5. References

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â