ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå ¿¹Ãø(-2032³â) : ·Îº¿ À¯Çü, ±¸¼º ¿ä¼Ò, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®
Telepresence Surgical Training Market Forecasts to 2032 - Global Analysis By Robot Type (Mobile Telepresence Robots and Stationary Telepresence Units), Component, Technology, Application, End User and By Geography
»óǰÄÚµå : 1813447
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,905,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,471,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,036,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,673,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀåÀº 2025³â 7¾ï 6,860¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È 15.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³» 2032³â±îÁö 21¾ï 760¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´×Àº °íÈ­Áú ºñµð¿À, Áõ°­Çö½Ç(AR), °¡»óÇö½Ç(VR)°ú °°Àº °í±Þ ¿ø°Ý Åë½Å ±â¼úÀ» »ç¿ëÇÏ¿© ¸ôÀÔÇü ½Ç½Ã°£ ¼ö¼ú Æ®·¹ÀÌ´×À» ÃËÁøÇÏ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. À̸¦ ÅëÇØ Àü¹® ¿Ü°úÀǻ簡 Áö¸®Àû °æ°è¸¦ ³Ñ¾î ¼ö¼úÀ» °üÂûÇÏ°í ¶óÀ̺ê Çǵå¹éÀ» Á¦°øÇÏ¸ç ¼ö¼úÀ» °¡»óÀ¸·Î ½Ã¿¬ÇÔÀ¸·Î½á ¿¬¼ö»ýÀ» ÁöµµÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº Àü¹® Áö½Ä¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» Çâ»ó½ÃŰ°í °øµ¿ ÇнÀÀ» Áö¿øÇϸç ÀüÅëÀûÀÎ ¼ö¼ú Æ®·¹ÀÌ´× ¸ðµ¨, ƯÈ÷ ¼­ºñ½º°¡ ¾î·Á¿î Áö¿ª°ú ¿ø°ÝÁöÀÇ ÇѰ踦 ÇØ°áÇÕ´Ï´Ù.

Journal of Telemedicine and Telecare ÀâÁö¿¡ µû¸£¸é TeleSTAR ÅÚ·¹ÇÁ·¹Àü½º ½Ã½ºÅÛÀ» »ç¿ëÇÑ XR ±â¹Ý Àΰø ³»ÀÌ ¼ö¼ú¿¡¼­ ÀÇ·á Àü¹®°¡, »ý¹° ÀÇÇÐ ¿£Áö´Ï¾î ¹× ÀÇÇлýÀ» Æ÷ÇÔÇÑ 150¸í ÀÌ»óÀÌ ÀúÁö¿¬ ¹× °íǰÁú ½ºÆ®¸®¹ÖÀ» »ç¿ëÇÏ¿© ¿ø°ÝÁö 5°÷¿¡¼­ ÈÆ·Ã¿¡ ¼º°øÇß½À´Ï´Ù.

·Îº¿ ½Ã½ºÅÛ, °í¼Ó ¹× ÀúÁö¿¬ ³×Æ®¿öÅ©ÀÇ ±Þ¼ÓÇÑ °³¹ß

·Îº¿ Ç÷§ÆûÀÇ ±Þ¼ÓÇÑ ÁøÈ­¿Í Ãʰí¼Ó¡¤ÀúÁö¿¬ Åë½Å ³×Æ®¿öÅ©ÀÇ ¹èÄ¡´Â ¼ö¼ú Æ®·¹ÀÌ´× È¯°æÀ» Å©°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Áö¿ªÀ» ³Ñ¾î ¿¬¼ö»ý°ú °­»ç °£ÀÇ ½Ç½Ã°£ »óÈ£ÀÛ¿ëÀ» °¡´ÉÇÏ°Ô Çϰí ÃÖ¼ÒÇÑÀÇ Áö¿¬À¸·Î Ãæ½Çµµ°¡ ³ôÀº ¼ö¼úÀ» ½Ã¹Ä·¹ÀÌÆ®ÇÕ´Ï´Ù. Çâ»óµÈ ¿¬°á¼ºÀº ¿øÈ°ÇÑ µ¥ÀÌÅÍ Àü¼Û, ºñµð¿À ½ºÆ®¸®¹Ö, ·Îº¿ ÀåºñÀÇ ¿ø°Ý Á¶ÀÛÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ 5G ÀÎÇÁ¶ó¿Í ¿§Áö ÄÄÇ»ÆÃÀÇ À¶ÇÕÀº ÀÇ·á ±³À°¿¡¼­ ÅÚ·¹ÇÁ·¹Àü½º ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÇÝÆ½ Çǵå¹éÀÇ ºÎÁ·°ú ±â¼úÀû º¹À⼺

¿Ü°úÀÇ»ç´Â Á¶Á÷ÀÇ ÀúÇ×, ¾Ð·Â ¹× ±â±¸ÀÇ °¨µµ¸¦ Æò°¡Çϱâ À§ÇØ Ã˰¢ÀûÀÎ ´Ü¼­¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÁö¸¸, ÀÌ´Â °¡»ó ȯ°æ¿¡¼­ ÀçÇöÇÏ±â ¾î·Æ½À´Ï´Ù. °Ô´Ù°¡ º¹ÀâÇÑ Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î ½Ã½ºÅÛÀ» ÅëÇÕÇϱâ À§Çؼ­´Â Àü¹®ÀûÀÎ ±â¼úÀû Àü¹® Áö½ÄÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ º¸±ÞÀÇ ¹æÇذ¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ·Îº¿ Ç÷§Æû°ú Æ®·¹ÀÌ´× ¸ðµâ °£ÀÇ È£È¯¼º ¹®Á¦´Â ´õ¿í µµÀÔÀ» º¹ÀâÇÏ°Ô ÇÕ´Ï´Ù.

AI³ª ½Ã¹Ä·¹À̼ǰúÀÇ ÅëÇÕÀ¸·Î ÆÛÁö´Â ÀÌ¿ë »ç·Ê

AI¸¦ Ȱ¿ëÇÑ ºÐ¼®À» ÅëÇØ ÇлýÀÇ ½ÇÀûÀ» Æò°¡Çϰí, ÀýÂ÷ ½Ç¼ö¸¦ ÆÄ¾ÇÇϰí, °³ÀÎÈ­µÈ Çǵå¹éÀ» Á¦°øÇÔÀ¸·Î½á ÇнÀ ¼º°ú¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÅÚ·¹ÇÁ·¹Àü½º ½Ã½ºÅÛ°ú ÅëÇÕµÈ ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§ÆûÀº ¿ªµ¿ÀûÀÎ ½Ã³ª¸®¿À ¸ðµ¨¸µÀ» °¡´ÉÇÏ°Ô Çϸç, ÈÆ·Ã»ýÀÌ ÅëÁ¦µÈ ȯ°æ¿¡¼­ ƯÀÌÇÑ ¼ö¼ú°ú º¹ÀâÇÑ ¼ö¼úÀ» ¿¬½ÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¶ÇÕÀº ¼­·Î ´Ù¸¥ Àü¹® ºÐ¾ßÀÇ Àü¹®°¡µéÀÌ ¿ø°ÝÀ¸·Î °øµ¿ ÈÆ·Ã°ú Áöµµ¸¦ ÇÒ ¼ö Àֱ⠶§¹®¿¡ ºÐ¾ß Ⱦ´ÜÀûÀÎ Çù¾÷À» ÃËÁøÇÕ´Ï´Ù.

µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á

»çÀ̹ö º¸¾È°ú ȯÀÚ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ µÑ·¯½Ñ ¿ì·Á´Â ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀåÀÇ ½É°¢ÇÑ À§ÇùÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº Á¾Á¾ Ŭ¶ó¿ìµå ±â¹Ý ³×Æ®¿öÅ©¸¦ ÅëÇØ ½Ç½Ã°£ ¼ö¼ú ÇÇµå ¹× È¯ÀÚ ±â·ÏÀ» ºñ·ÔÇÑ ¹Î°¨ÇÑ ÀÓ»ó Á¤º¸¸¦ Àü¼ÛÇÕ´Ï´Ù. À§¹ÝÀ̳ª ¹«´Ü ¾×¼¼½º°¡ ÀÖÀ¸¸é Á¦µµÀÇ ¹«°á¼ºÀÌ ¼Õ»óµÇ¾î ±ÔÁ¦ ±ÔÁ¤ Áؼö¸¦ À§¹ÝÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¸»ç ¼ÒÇÁÆ®¿þ¾î ¹× ¿ø°Ý ¾×¼¼½º µµ±¸¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ¾ÇÀÇÀûÀÎ ÇàÀ§ÀÚ¿¡°Ô ¾Ç¿ëµÉ ¼ö ÀÖ´Â Ãë¾àÁ¡ÀÌ µµÀԵ˴ϴÙ.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼ö¼ú Æ®·¹À̴׿¡ ÅÚ·¹ÇÁ·¹Àü½º ±â¼úÀ» ä¿ëÇÏ´Â °è±â°¡ µÇ¾ú½À´Ï´Ù. ¿©Çà Á¦ÇѰú »çȸÀû °Å¸® È®º¸°¡ Àǹ«È­µÇ°í ÀÖ´Â °¡¿îµ¥ ÀÇ·á±â°üÀº ±â¼ú °³¹ßÀÇ ¿¬¼Ó¼ºÀ» È®º¸Çϱâ À§ÇØ ¿ø°Ý ÇнÀ Ç÷§ÆûÀ¸·Î ÃàÁ·À» ¿Å°å½À´Ï´Ù. ÅÚ·¹ÇÁ·¹Àü½º ½Ã½ºÅÛÀº ¹°¸®ÀûÀÎ ±ÙÁ¢¼º ¾øÀÌ ½Ç½Ã°£ Áöµµ¿Í ÀýÂ÷ÀÇ ½Ã¿¬À» °¡´ÉÇÏ°Ô Çϰí, Áß´ÜµÈ ´ë¸é Æ®·¹ÀÌ´× ÇÁ·Î±×·¥¿¡ ÀÇÇØ »ý±ä °¸À» ¸Þ¿ì´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ ÆÒµ¥¹ÍÀº È®Àå °¡´ÉÇϰí ź·ÂÀûÀÎ ±³À° ÀÎÇÁ¶óÀÇ Çʿ伺À» °­Á¶ÇÏ°í °¡»ó ½Ã¹Ä·¹À̼ǰú ·Îº¿ ÀÎÅÍÆäÀ̽º¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¸¦ ÃËÁøÇß½À´Ï´Ù.

¸ð¹ÙÀÏ ÅÚ·¹ÇÁ·¹Àü½º ·Îº¿ ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á

¸ð¹ÙÀÏ ÅÚ·¹ÇÁ·¹Àü½º ·Îº¿ ºÐ¾ß´Â ¹ü¿ë¼º°ú ¼ö¼ú Æ®·¹ÀÌ´× È¯°æ¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ·Îº¿Àº ¼ö¼ú½Ç°ú ½Ã¹Ä·¹ÀÌ¼Ç ½ÇÇè½Ç ³»¿¡¼­ÀÇ À̵¿À» °¡´ÉÇÏ°Ô ÇÏ¸ç °­»ç¿Í Æ®·¹ÀÌ´Ï °£ÀÇ ½Ç½Ã°£ »óÈ£ÀÛ¿ëÀ» ÃËÁøÇÕ´Ï´Ù. ¹°¸®Àû °ø°£À» À̵¿ÇÏ°í ¶óÀÌºê ½Ãû°¢ Çǵå¹éÀ» Á¦°øÇÏ´Â ´É·ÂÀº ¿ø°Ý ÈÆ·Ã ¼¼¼ÇÀÇ ÇöÀå°¨À» ³ôÀÔ´Ï´Ù. ±³À°±â°üÀº ´Ù¾çÇÑ ¼ö¼ú Àü¹® ºÐ¾ß¿Í ±³À° Çü½Ä¿¡ À¯¿¬ÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ´Â ¸ð¹ÙÀÏ Ç÷§ÆûÀ» ¼±È£ÇÕ´Ï´Ù.

¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ½ºÅ³ Æò°¡¡¤ÀÎÁ¤ ºÐ¾ßÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±â¼ú Æò°¡ ¹× ÀÎÁõ ºÐ¾ß´Â Ç¥ÁØÈ­µÈ ¿Ü°ú ¼ö¼ú ´É·Â Æò°¡¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ¹× ºÐ¼® µµ±¸¿Í ÅëÇÕµÈ ÅÚ·¹ÇÁ·¹Àü½º Ç÷§ÆûÀº °´°üÀûÀÎ ¼º´É ÃßÀû, ÀýÂ÷ Á¡¼ö ¹× ÀÚµ¿ Çǵå¹éÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ÀÚ°Ý Áõ¸í ÇÁ·Î¼¼½º¸¦ Áö¿øÇÏ°í ±³À°»ýÀÌ ¾ö°ÝÇÑ ÀÓ»ó ±âÁØÀ» ÃæÁ·ÇÏ´ÂÁö ±â°üÀÌ È®ÀÎÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °á°ú ±â¹Ý ±³À° ¹× ¼¼°è ÀÎÁõ ÇÁ·¹ÀÓ¿öÅ©·ÎÀÇ ÀüȯÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÷´Ü ÀÇ·á ÀÎÇÁ¶ó¿Í ·Îº¿ ¼ö¼ú ½Ã½ºÅÛÀÇ Á¶±â µµÀÔÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´ÙÀÇ ÁÖ¿ä Çмú±â°ü°ú º´¿øÀº ÅÚ·¹ÇÁ·¹Àü½º Ç÷§ÆûÀ» ±³À° Ä¿¸®Å§·³¿¡ Àû±ØÀûÀ¸·Î ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇÏÀÌÅ×Å© ±â¾÷°ú ÀÇ·á ¼­ºñ½º Á¦°ø¾÷üÀÇ Çù¾÷Àº Â÷¼¼´ë ±³À° ¼Ö·ç¼ÇÀÇ °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß¿¡¼­ ºÏ¹ÌÀÇ ¸®´õ½ÊÀ» °­È­Çϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °Ç°­ °ü¸® Á¢±Ù¼º È®´ë, ÀÇ·á ±³À° ÅõÀÚ Áõ°¡, ¼÷·ÃµÈ ¼ö¼ú Àü¹®°¡ ¼ö¿ä Áõ°¡ µîÀ» ¹ÙÅÁÀ¸·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µî ±¹°¡¿¡¼­´Â ³ëµ¿·Â ºÎÁ·¿¡ ´ëóÇϱâ À§ÇØ ÅÚ·¹ÇÁ·¹Àü½º¿Í ½Ã¹Ä·¹ÀÌ¼Ç ±â¼úÀ» µµÀÔÇÑ Æ®·¹ÀÌ´× ÀÎÇÁ¶óÀÇ Çö´ëÈ­°¡ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ °Ç°­°ú ±¹°æÀ» ³Ñ¾î ±³À°À» ÃßÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºêµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå : ·Îº¿ À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå : ±¸¼º ¿ä¼Òº°

Á¦7Àå ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå : ±â¼úº°

Á¦8Àå ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ÅÚ·¹ÇÁ·¹Àü½º ¼ö¼ú Æ®·¹ÀÌ´× ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Telepresence Surgical Training Market is accounted for $768.6 million in 2025 and is expected to reach $2,107.6 million by 2032 growing at a CAGR of 15.5% during the forecast period. Telepresence surgical training refers to the use of advanced remote communication technologies such as high-definition video, augmented reality (AR), and virtual reality (VR) to facilitate immersive, real-time surgical education. It enables expert surgeons to mentor trainees across geographic boundaries by observing procedures, providing live feedback, and demonstrating techniques virtually. This approach enhances access to specialized knowledge, supports collaborative learning, and addresses limitations in traditional surgical training models, particularly in underserved or remote regions

According to Journal of Telemedicine and Telecare, XR-based cochlear implant surgeries using the TeleSTAR telepresence system, over 150 individuals including healthcare professionals, biomedical engineers, and medical students were successfully trained across five remote locations with low latency and high-quality streaming.

Market Dynamics:

Driver:

Rapid development of robotic systems, high-speed and low-latency networks

The rapid evolution of robotic platforms and the deployment of ultra-fast, low-latency communication networks are significantly transforming surgical training environments. These technologies enable real-time interaction between trainees and instructors across geographies, simulating high-fidelity surgical procedures with minimal delay. Enhanced connectivity supports seamless data transmission, video streaming, and remote control of robotic instruments. Moreover, the convergence of 5G infrastructure and edge computing is accelerating the adoption of telepresence systems in medical education.

Restraint:

Lack of haptic feedback & technical complexities

Surgeons rely heavily on haptic cues to assess tissue resistance, pressure, and instrument sensitivity elements that are difficult to replicate in virtual environments. Additionally, the integration of complex hardware and software systems demands specialized technical expertise, which can hinder widespread adoption. Compatibility issues between robotic platforms and training modules further complicate deployment.

Opportunity:

Integration with AI and simulation expanding use cases

AI-driven analytics can assess trainee performance, identify procedural errors, and offer personalized feedback, thereby enhancing learning outcomes. Simulation platforms integrated with telepresence systems allow for dynamic scenario modeling, enabling trainees to practice rare or complex surgeries in a controlled environment. This convergence is also facilitating cross-disciplinary collaboration, where experts from different specialties can co-train or mentor remotely.

Threat:

Data security and privacy concerns

Concerns surrounding cybersecurity and patient data privacy are emerging as significant threats to the telepresence surgical training market. These platforms often transmit sensitive clinical information, including live surgical feeds and patient records, across cloud-based networks. Any breach or unauthorized access could compromise institutional integrity and violate regulatory compliance. Moreover, the increasing reliance on third-party software and remote access tools introduces vulnerabilities that can be exploited by malicious actors.

Covid-19 Impact:

The COVID-19 pandemic acted as a catalyst for the adoption of telepresence technologies in surgical training. With travel restrictions and social distancing mandates in place, medical institutions pivoted toward remote learning platforms to ensure continuity in skill development. Telepresence systems enabled real-time mentoring and procedural demonstrations without physical proximity, helping bridge the gap created by suspended in-person training programs. Additionally, the pandemic underscored the need for scalable and resilient training infrastructures, prompting increased investment in virtual simulation and robotic interfaces.

The mobile telepresence robots segment is expected to be the largest during the forecast period

The mobile telepresence robots segment is expected to account for the largest market share during the forecast period due to their versatility and adaptability in surgical training environments. These robots facilitate real-time interaction between instructors and trainees, allowing movement within operating rooms or simulation labs. Their ability to navigate physical spaces and provide live audiovisual feedback enhances the realism of remote training sessions. Institutions favor mobile platforms for their flexibility in accommodating various surgical specialties and training formats.

The skill assessment & certification segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the skill assessment & certification segment is predicted to witness the highest growth rate driven by the growing demand for standardized surgical competency evaluation. Telepresence platforms integrated with AI and analytics tools are enabling objective performance tracking, procedural scoring, and automated feedback. These capabilities support credentialing processes and help institutions ensure that trainees meet rigorous clinical standards. The shift toward outcome-based education and global accreditation frameworks is further propelling growth in this segment.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed to its advanced healthcare infrastructure and early adoption of robotic surgical systems. Leading academic institutions and hospitals in the U.S. and Canada are actively integrating telepresence platforms into their training curricula. Additionally, collaborations between tech companies and healthcare providers are accelerating the deployment of next-generation training solutions, reinforcing North America's leadership in this domain.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by expanding healthcare access, rising investments in medical education, and increasing demand for skilled surgical professionals. Countries like China, India, and South Korea are rapidly modernizing their training infrastructure, incorporating telepresence and simulation technologies to address workforce shortages. Government initiatives promoting digital health and cross-border education are also contributing to market expansion.

Key players in the market

Some of the key players in Telepresence Surgical Training Market include Intuitive Surgical, Inc., Medtronic plc, CMR Surgical, Surgical Science, VirtaMed AG, CAE Healthcare, 3D Systems, Stryker Corporation, Johnson & Johnson, Asensus Surgical, Inc., ImmersiveTouch, Inc., Zimmer Biomet, OSSimTech, Avra Robotics, Inc., Stereotaxis, Inc., Medrobotics Corporation, Smith & Nephew plc, PROCEPT BioRobotics, Siemens Healthineers, and Renishaw plc.

Key Developments:

In June 2025, ImmersiveTouch, Inc. announced the acquisition of a majority stake in HealthpointCapital marking a private-equity investment in the extended-reality surgical-training platform.

In May 2025, Medtronic announced intent to separate its Diabetes business into a distinct company, describing the strategic rationale, expected financial impacts and an ~18-month timeline.

In April 2025, CMR Surgical closed a $200M+ financing round (equity + debt) to accelerate growth and expansion of its Versius robotic platform into new markets. The financing was presented as support for U.S. rollout and scale-up of manufacturing and commercial operations.

Robot Types Covered:

Components Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Telepresence Surgical Training Market, By Robot Type

6 Global Telepresence Surgical Training Market, By Component

7 Global Telepresence Surgical Training Market, By Technology

8 Global Telepresence Surgical Training Market, By Application

9 Global Telepresence Surgical Training Market, By End User

10 Global Telepresence Surgical Training Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â