Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¿µ»ó Áø´Ü¿ë AI ½ÃÀåÀº 2025³â 16¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È CAGR 35.4%·Î ¼ºÀåÇØ 2032³â±îÁö 136¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿µ»ó Áø´Ü¿ë AI´Â °í±Þ ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´× ¸ðµ¨À» »ç¿ëÇÏ¿© ÀÇ·á ¿µ»ó¸¦ ºÐ¼®Çϰí Á¤È®¼º, È¿À²¼º, ÀÓ»ó °áÁ¤À» Çâ»ó½Ãŵ´Ï´Ù. AI ½Ã½ºÅÛÀº ºñÁ¤»ó °¨Áö, ÇØºÎÇÐÀû ±¸Á¶ ¼¼ºÐÈ, MRI, CT, ¿¢½º·¹ÀÌ µîÀÇ ¸ð´Þ¸®Æ¼¿¡ °ÉÄ£ ÈÁú Çâ»óÀ» Áö¿øÇÕ´Ï´Ù. ·çƾ ÀÛ¾÷À» ÀÚµ¿ÈÇÏ°í ¹Ì¹¦ÇÑ ÆÐÅÏÀ» ÆÄ¾ÇÇÔÀ¸·Î½á AI´Â ¹æ»ç¼±°ú ÀÇ»çÀÇ Áúº´ Á¶±â ¹ß°ß, Ä¡·á °èȹ ¹× ¿öÅ©Ç÷ΠÃÖÀûȸ¦ Áö¿øÇÏ¸ç ±Ã±ØÀûÀ¸·Î ½Å¼ÓÇÑ Áø´Ü°ú º¸´Ù °³ÀÎÈµÈ È¯ÀÚ °ü¸®¿¡ ±â¿©ÇÕ´Ï´Ù.
European Radiology¿¡ µû¸£¸é 99°³»ç°¡ °³¹ßÇÑ Áø´Ü ¹æ»ç¼±Çп¡¼ 269°³ÀÇ AI ¾ÖÇø®ÄÉÀ̼ÇÀÌ È®ÀεǾú½À´Ï´Ù. ÀÌ ¾ÖÇø®ÄÉÀ̼ÇÀº ÁַΠƯÁ¤ ¿µ»ó ¾ç½Ä ¹× ÇØºÎÇÐ ¿µ¿ª¿¡¼ÀÇ Áö°¢°ú Ã߷аú °°Àº Á¼Àº ÀÛ¾÷¿¡ ÁßÁ¡À» µÓ´Ï´Ù.
Á¤È®Çϰí È®Àå °¡´ÉÇÑ Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
AI ¾Ë°í¸®ÁòÀº ÇöÀç MRI, CT, ¿¢½º·¹ÀÌ µîÀÇ ¸ð´Þ¸®Æ¼¿¡¼ ¾òÀº ¾öû³ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ³î¶ó¿î Á¤È®µµ·Î ºÐ¼®Çϰí Áø´Ü ¿À·ù¸¦ ÁÙÀ̰í ÀÓ»óÀû ÀÇ»ç°áÁ¤À» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù. º´¿ø ¹× ¿µ»ó ¼¾ÅÍ´Â ¿öÅ©Ç÷ο츦 °£¼ÒÈÇϰí, 󸮷®À» Çâ»ó½Ã۰í, Áø´Ü Á¤È®µµ¸¦ ³ôÀ̱â À§ÇØ AI µµ±¸¸¦ äÅÃÇÕ´Ï´Ù. ÀÌ ½ÃÇÁÆ®´Â ¶ÇÇÑ AI¸¦ ÀÓ»ó ÀÚ»êÀ¸·Î °ËÁõÇÏ´Â ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú »óȯÀÇ Æ²¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù.
³ôÀº µµÀÔ ¹× ÅëÇÕ ºñ¿ë
±× º¯ÈÀÇ °¡´É¼º¿¡µµ ºÒ±¸Çϰí, ¿µ»ó ½Ã½ºÅÛ¿¡ AI¸¦ ÅëÇÕÇÏ´Â °ÍÀº ¸¹Àº ÀÇ·á ¼ºñ½º Á¦°ø¾÷ü¿¡°Ô ¿©ÀüÈ÷ ÀçÁ¤ÀûÀ¸·Î ¾î·Æ½À´Ï´Ù. AI Áö¿ø Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º, Ŭ¶ó¿ìµå ½ºÅ丮Áö ¹× »çÀ̹ö º¸¾È°ú °°Àº ÀÎÇÁ¶ó ¾÷±×·¹À̵忡 ´ëÇÑ ¼±Çà ÅõÀڴ ƯÈ÷ Áß±Ô¸ð ¹× ÇöÁö ½Ã¼³¿¡ ÀÖ¾î ¾öû³ ÀÏÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AIÀÇ Ãâ·ÂÀ» Á¶ÀÛ ÇØ¼®Çϱâ À§ÇÑ ÀÎÀçÀ°¼ºµµ ¿î¿ëºñ¿ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº ƯÈ÷ ÇコÄÉ¾î ¿¹»êÀÌ Á¦ÇÑµÈ Áö¿ªÀ̳ª IT »ýŰ谡 ºÐ¿µÈ Áö¿ª¿¡¼´Â µµÀÔÀÇ ºÎÁ·ÀÌ µË´Ï´Ù.
ÀÓ»ó ¿öÅ©Ç÷οì¿Í ¸ÖƼ¸ð´Þ AIÀÇ ÅëÇÕ
AI°¡ ¿£µå Åõ ¿£µå Áø´Ü ¿öÅ©Ç÷ο쿡 ÅëÇյǴ °æ¿ì°¡ ´Ã¾î³ª°í ÀÖ¾î, ¿µ»ó Áø´Ü ½Ã½ºÅÛ, ÀüÀÚ ÀÇ·á ±â·Ï(EHR), ÀÓ»ó ÆÇ´Ü Áö¿ø Åø °£ÀÇ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±³È¯ÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ¿µ»ó µ¥ÀÌÅÍ¿Í À¯Àüü, º´¸®ÇÐ, ȯÀÚ ÀÌ·ÂÀ» °áÇÕÇÑ ¸ÖƼ¸ð´Þ AIÀÇ ½ÃÀÛÀº °³ÀÎÈ Áø´ÜÀÇ »õ·Î¿î ÀáÀç·ÂÀ» À̲ø¾î ³Â½À´Ï´Ù. º¥´õ´Â ½Ç½Ã°£ ¹æ¾î, ¿¹Ãø ºÐ¼® ¹× Àå±â ȯÀÚ ¸ð´ÏÅ͸µÀ» Áö¿øÇÏ´Â »óÈ£ ¿î¿ë °¡´ÉÇÑ Ç÷§ÆûÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ À¶ÇÕÀº Áø´Ü Á¤È®µµ¸¦ ÀçÁ¤ÀÇÇϰí AI °³¹ßÀÚ¿Í ÀÇ·á Á¦°ø¾÷ü¿¡°Ô »õ·Î¿î ¼öÀÍ¿øÀ» ¿ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¾Ë°í¸®ÁòÀÇ ¹ÙÀ̾¿Í ¼³¸í °¡´É¼ºÀÇ ºÎÁ·
¿µ»ó ÇØ¼®ÀÇ ÆíÇâÀº ¿ÀÁøÀ̳ª Ä¡·á Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖÀ¸¸ç À±¸®Àû, ¹ýÀû ¿ì·Á¸¦ À¯¹ßÇÕ´Ï´Ù. ¶ÇÇÑ ¸¹Àº AI ½Ã½ºÅÛÀº "ºí·¢ ¹Ú½º"·Î ÀÛµ¿ÇÏ¸ç °á·Ð¿¡ À̸£´Â ¹æ¹ýÀÇ Åõ¸í¼ºÀÌ Á¦ÇѵǾî ÀÖ½À´Ï´Ù. ÀÌ ¼³¸í °¡´É¼º ºÎÁ·Àº ÀÓ»óÀÇÀÇ ½Å·Ú¸¦ ¼Õ»ó½ÃŰ°í ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀ» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ·Á¸é °ß°íÇÑ °ËÁõ ÇÁ·ÎÅäÄÝ, Á¾ÇÕÀûÀÎ ±³À° µ¥ÀÌÅÍ ¼¼Æ® ¹× ÇØ¼® °¡´ÉÇÑ AI ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¹ßÇØ¾ß ÇÕ´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ¿µ»ó Áø´Ü, ƯÈ÷ ÈäºÎ CT¿Í X-¼± ºÐ¼®¿¡¼ AIÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇß½À´Ï´Ù. ÀΰøÁö´É µµ±¸´Â COVID °ü·Ã ÀÌ»ó °ËÃâ, ȯÀÚ Ä¡·á ¹× Áúº´ ÁøÇà ¸ð´ÏÅ͸µÀ» À§ÇØ ºü¸£°Ô µµÀԵǾú½À´Ï´Ù. ±×·¯³ª °ø±Þ¸Á È¥¶õ°ú À¯Åë ´ëÀÀ¿¡ ´ëÇÑ ÀÚ¿ø ÀçºÐ¹è·Î ÀÎÇØ COVID ÀÌ¿ÜÀÇ ¿µ»ó 󸮷®ÀÌ ÀϽÃÀûÀ¸·Î µÐȵǾú½À´Ï´Ù. À¯Çà ÈÄ¿¡´Â ´ëºñ¿Í µðÁöÅÐ Çõ½ÅÀÌ Á߽õǰí È®Àå °¡´ÉÇÑ Å¬¶ó¿ìµå ±â¹Ý ¿µ»ó ó¸® Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí AIÀÇ µµÀÔÀÌ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¼ÒÇÁÆ®¿þ¾î ºÐ¾ß´Â Áö´ÉÀûÀÎ ¿µ»ó ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ´Â Áß½ÉÀûÀÎ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀº µö·¯´× ¸ðµ¨, ÀÚ¿¬ ¾ð¾î ó¸® ¹× ¿¹Ãø ºÐ¼®À» ÅëÇÕÇÏ°í º¹ÀâÇÑ ¿µ»ó µ¥ÀÌÅͷκÎÅÍ ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº Ŭ¶ó¿ìµå ±â¹ÝÀÌ ´Ã¾î³ª¸ç ¿©·¯ ½Ã¼³¿¡ È®Àå °¡´ÉÇÏ°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ¾÷µ¥ÀÌÆ®¿Í ¾Ë°í¸®ÁòÀÇ °È·Î ÁøÈÇÏ´Â ÀÓ»ó ¿ä±¸¿¡ ´ëÇÑ ÀûÀÀ¼ºÀÌ È®º¸µÇ°í ¼ÒÇÁÆ®¿þ¾î°¡ AI ÁÖµµ Áø´ÜÀÇ ¹éº»ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È MRI(Àڱ⠰ø¸í ¿µ»ó Áø´Ü) ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È MRI(Àڱ⠰ø¸í ¿µ»ó Áø´Ü) ºÐ¾ß´Â ¶Ù¾î³ ¿¬Á¶Á÷ ÄÜÆ®¶ó½ºÆ®¿Í ½Å°æÇÐ, Á¾¾çÇÐ, ½ÉÀ庴Çп¡¼ÀÇ ¿ëµµ È®´ë¿¡ ÀÇÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ÅëÇÕÀº ¿µ»ó ºÐÇÒ ÀÚµ¿È, ÇØ»óµµ Çâ»ó ¹× ½ºÄµ ½Ã°£ ´ÜÃàÀ¸·Î MRI¸¦ °ÈÇÕ´Ï´Ù. ÃʰíÀÚÀå MRI¿Í AI Áö¿ø ±â´É ¿µ»ó µîÀÇ Çõ½ÅÀ¸·Î ¾ËÃ÷ÇÏÀ̸Ӻ´À̳ª ´Ù¹ß¼º °æÈÁõ µî º¹ÀâÇÑ ÁúȯÀÇ Á¶±â ¹ß°ßÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. Á¤¹Ð Áø´Ü ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó AI¸¦ žÀçÇÑ MRI ½Ã½ºÅÛÀº ¼±Áø ÀÇ·á ÇöÀå¿¡¼ ÇʼöÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °ß°íÇÑ °Ç° °ü¸® ÀÎÇÁ¶ó, ³ôÀº ¿µ»ó 󸮷® ¹× Àû±ØÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ Áö¿øÇϸç ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº °·ÂÇÑ R&D ÅõÀÚ, µðÁöÅÐ °Ç° ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤¿ë, AI ´ëÀÀ Áø´Ü¿¡ À¯¸®ÇÑ »óȯ Á¤Ã¥ÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. GE HealthCare, IBM Watson Health, Siemens Healthineers µî ´ë±â¾÷ÀÌ º»»ç¸¦ µÎ°í ±â¼ú Çõ½Å°ú »ó¾÷ȸ¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº ¶ÇÇÑ AI ±â¹Ý ¿µ»ó Áø´Ü µµ±¸ÀÇ ÀÓ»ó½ÃÇè ¹× FDA ½ÂÀÎÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÇ·áºñ Áõ°¡, Áø´Ü¼ºñ½º Á¢±Ù¼º È®´ë, AI µµÀÔÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡µéÀº µðÁöÅÐ °Ç° ÀÎÇÁ¶ó¿Í AI ¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ´ë±Ô¸ð ȯÀÚ Àα¸¿Í ¸¸¼º Áúȯ Áõ°¡´Â AI ÁÖµµÀÇ ¿µ»ó ¼Ö·ç¼Ç¿¡ ºñ¿ÁÇÑ Åä¾çÀ» »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±Þ¼Óµµ·Î ¹ßÀüÇÏ´Â ½ÃÀå¿¡ ÁøÀÔÇϱâ À§ÇØ Áö¿ª ½ÅÈï ±â¾÷°ú ¼¼°è ±â¾÷µéÀÌ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global AI in Diagnostic Imaging Market is accounted for $1.6 billion in 2025 and is expected to reach $13.6 billion by 2032 growing at a CAGR of 35.4% during the forecast period. Artificial Intelligence in diagnostic imaging is the use of advanced algorithms and machine learning models to analyze medical images for improved accuracy, efficiency, and clinical decision-making. AI systems assist in detecting abnormalities, segmenting anatomical structures, and enhancing image quality across modalities such as MRI, CT, and X-ray. By automating routine tasks and identifying subtle patterns, AI supports radiologists in early disease detection, treatment planning, and workflow optimization, ultimately contributing to faster diagnoses and more personalized patient care
According to European Radiology identified 269 AI applications in diagnostic radiology, developed by 99 companies. These applications predominantly focus on narrow tasks such as perception and reasoning within specific imaging modalities and anatomical regions.
Rising demand for accurate and scalable diagnostics
AI algorithms are now capable of analyzing vast datasets from modalities like MRI, CT, and X-ray with remarkable precision, reducing diagnostic errors and accelerating clinical decision-making. Hospitals and imaging centers are adopting AI tools to streamline workflows, improve throughput, and enhance diagnostic accuracy, especially in high-volume settings. This shift is further supported by regulatory approvals and reimbursement frameworks that validate AI as a clinical asset.
High cost of implementation and integration
Despite its transformative potential, the integration of AI into diagnostic imaging systems remains financially challenging for many healthcare providers. The upfront investment in AI-enabled hardware, software licenses, and infrastructure upgrades such as cloud storage and cybersecurity can be prohibitive, particularly for mid-sized and rural facilities. Moreover, training personnel to operate and interpret AI outputs adds to operational costs. These financial barriers slow down the adoption, especially in regions with limited healthcare budgets or fragmented IT ecosystems.
Integration with clinical workflows and multimodal AI
AI is increasingly being embedded into end-to-end diagnostic workflows, enabling seamless data exchange between imaging systems, electronic health records (EHRs), and clinical decision support tools. The rise of multimodal AI combining imaging data with genomics, pathology, and patient history is unlocking new possibilities for personalized diagnostics. Vendors are developing interoperable platforms that support real-time triage, predictive analytics, and longitudinal patient monitoring. This convergence is expected to redefine diagnostic precision and open new revenue streams for AI developers and healthcare providers.
Algorithmic bias and lack of explainability
Bias in image interpretation can lead to misdiagnosis or delayed treatment, raising ethical and legal concerns. Additionally, many AI systems operate as "black boxes," offering limited transparency into how conclusions are reached. This lack of explainability undermines clinician trust and complicates regulatory approval. Addressing these issues requires robust validation protocols, inclusive training datasets, and the development of interpretable AI frameworks.
The COVID-19 pandemic accelerated the adoption of AI in diagnostic imaging, particularly for chest CT and X-ray analysis. AI tools were rapidly deployed to detect COVID-related anomalies, triage patients, and monitor disease progression. However, supply chain disruptions and resource reallocation toward pandemic response temporarily slowed non-COVID imaging volumes. Post-pandemic, the emphasis on preparedness and digital transformation is expected to sustain AI adoption, with increased investment in scalable, cloud-based imaging platforms.
The software segment is expected to be the largest during the forecast period
The software segment is expected to account for the largest market share during the forecast period due to its central role in enabling intelligent image analysis. AI software platforms integrate deep learning models, natural language processing, and predictive analytics to deliver actionable insights from complex imaging data. These platforms are increasingly cloud-based, allowing for scalable deployment across multiple facilities. Continuous updates and algorithm enhancements ensure adaptability to evolving clinical needs, making software the backbone of AI-driven diagnostics.
The MRI (magnetic resonance imaging) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the MRI (magnetic resonance imaging) segment is predicted to witness the highest growth rate driven by its superior soft tissue contrast and expanding applications in neurology, oncology, and cardiology. AI integration enhances MRI by automating image segmentation, improving resolution, and reducing scan times. Innovations such as ultra-high-field MRI and AI-assisted functional imaging are enabling earlier detection of complex conditions like Alzheimer's and multiple sclerosis. As demand for precision diagnostics grows, AI-powered MRI systems are becoming indispensable in advanced care settings.
During the forecast period, the North America region is expected to hold the largest market share supported by a robust healthcare infrastructure, high imaging volumes, and proactive regulatory frameworks. The region benefits from strong R&D investments, widespread adoption of digital health technologies, and favorable reimbursement policies for AI-enabled diagnostics. Major players like GE HealthCare, IBM Watson Health, and Siemens Healthineers are headquartered here, driving innovation and commercialization. The U.S. also leads in clinical trials and FDA approvals for AI-based imaging tools.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rising healthcare expenditure, expanding access to diagnostic services, and government initiatives promoting AI adoption. Countries like China, India, and Japan are investing heavily in digital health infrastructure and AI research. The region's large patient population and increasing prevalence of chronic diseases create a fertile ground for AI-driven imaging solutions. Local startups and global players are forming strategic partnerships to tap into this rapidly evolving market.
Key players in the market
Some of the key players in AI in Diagnostic Imaging Market include Arterys, Aidoc, Zebra Medical Vision, Enlitic, Qure.ai, Infervision, Caption Health, Lunit, Butterfly Network, Gauss Surgical, Sigtuple, Freenome, Bay Labs, IBM Watson Health Imaging, Siemens Healthineers, GE Healthcare, and Philips Healthcare
In July 2025, AZmed obtained two new FDA clearances for its AI-driven chest X-ray analytics technology, expanding its offerings in diagnostic imaging. These clearances facilitate broader clinical use, enhancing early detection and workflow automation in radiology practices.
In April 2025, Siemens Healthineers showcased its latest diagnostic imaging breakthroughs focused on improving healthcare through advanced AI-powered solutions. The company emphasized enhancing diagnostic productivity, accuracy, and patient outcomes with their cutting-edge imaging technologies during the Asia Oceania Congress of Radiology.
In March 2025, Gleamer acquired Pixyl and Caerus Medical, boosting their proprietary AI imaging portfolio with advanced FDA- and CE-cleared neuro and lumbar MRI AI applications. This expansion positions Gleamer as a leader with comprehensive AI solutions spanning X-ray, mammography, CT, and MRI modalities.