Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ ¿Â÷Æó ÄÚÆÃ ½ÃÀåÀº 2025³â 193¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 6.3%·Î ¼ºÀåÇϰí, 2032³â±îÁö 296¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
¿Â÷Æó ÄÚÆÃ(TBC)Àº ÁÖ·Î °¡½º Åͺó, Ç×°ø±â ¿£Áø, »ê¾÷ ½Ã½ºÅÛ µîÀÇ ±Ý¼Ó Ç¥¸é¿¡ Àû¿ëµÇ´Â °í±Þ º¸È£ÃþÀ» ±ØÇÑÀÇ ¿·ÎºÎÅÍ ºÎǰÀ» Àý¿¬ÇÕ´Ï´Ù. ÀÌÆ®¸®¾Æ ¾ÈÁ¤È Áö¸£ÄÚ´Ï¾Æ¿Í °°Àº ¼¼¶ó¹ÍÀ¸·Î ¸¸µé¾îÁ® ¿ºÎÇϸ¦ ÁÙÀ̰í È¿À²À» °³¼±ÇÏ¸ç ºÎǰ ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù. TBC´Â º¸´Ù ³ôÀº ÀÛµ¿ ¿Âµµ¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ±î´Ù·Î¿î °í¿Â ȯ°æ¿¡¼ »êÈ, ºÎ½Ä ¹× ¿ ÇǷθ¦ ¿ÏÈÇÏ¸é¼ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.
¹ßÀü½Ã °¡½º Åͺó äÅà Áõ°¡
¹ßÀü¿ë °¡½º ÅͺóÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ¿Â÷Æó ÄÚÆÃÀ» ÃßÁøÇÏ´Â Áß¿äÇÑ µå¶óÀ̹öÀÔ´Ï´Ù. °¡½º ÅͺóÀº ±Ø´ÜÀûÀÎ ¿Âµµ·ÎºÎÅÍ ºÎǰÀ» º¸È£Çϰí È¿À²°ú ¼ö¸íÀ» ³ôÀ̱â À§ÇØ ¿Â÷Æó ÄÚÆÃÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â Áö¼Ó°¡´ÉÇÏ°í ±ú²ýÇÑ ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´õ¿í ÃËÁøµÇ°í, ÅͺóÀº ¿¬·á È¿À²À» Çâ»ó½Ã۱â À§ÇØ °í¿Â¿¡¼ ÀÛµ¿µË´Ï´Ù. °Ô´Ù°¡ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷ µîÀÇ ºÐ¾ßµµ ¿Â÷Æó ÄÚÆÃÀÇ Áøº¸ÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖÀ¸¸ç, ¿°ü¸® ¼Ö·ç¼ÇÀÇ °³¼±À» ÅëÇØ »ê¾÷°è¿¡ÀÇ Æø³ÐÀº ä¿ë°ú ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Àç·á ºñ¿ë°ú ÀÀ¿ë
¿Â÷Æó ÄÚÆÃ¿¡ »ç¿ëµÇ´Â °í±Þ ¼¼¶ó¹Í ÈÇÕ¹°°ú º¹ÀâÇÑ ±Ý¼Ó ÇÕ±ÝÀº ºñ½Î°í, ¿ë»ç³ª ÁõÂø µîÀÇ ÀÀ¿ë ¹æ¹ý¿¡´Â °í°¡ÀÇ ¼³ºñ¿Í ¿î¿ë ºñ¿ëÀÌ µì´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ºÎǰ¿¡ ¸Â´Â Á¤¹ÐÇÑ Ä¿½ºÅ͸¶ÀÌÁî°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ °³¹ß ºñ¿ëÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº ƯÈ÷ ¿¹»ê¿¡ Á¦¾àÀÌ ÀÖ´Â »ê¾÷°ú ¾ö°ÝÇÑ À繫Àû ¸¶Áø ÇÏ¿¡¼ ¿î¿µµÇ°í ÀÖ´Â ¾÷°è¿¡ ÀÖ¾î¼ º¸±ÞÀ» Á¦ÇÑÇÏ°í ½ÃÀå ÀüüÀÇ ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
ÄÚÆÃ ±â¼ú°ú Àç·áÀÇ Áøº¸
¼¼¶ó¹Í º¹ÇÕÀç·á, ¼º¸· ±â¼ú ¹× ÄÚÆÃ Á¦ÇüÀÇ Çõ½ÅÀº ¼º´É°ú ÀÀ¿ë ¹üÀ§¸¦ ¸ðµÎ Çâ»ó½Ãŵ´Ï´Ù. °Ô´Ù°¡, »õ·Î¿î Àç·á °úÇаú Ç¥¸é ÄÚÆÃÀÇ ¿¬±¸ °³¹ßÀº º¸´Ù °í¿Â¿¡¼ Ȥµ¶ÇÑ È¯°æ¿¡ °ßµô ¼ö ÀÖ´Â ¿Â÷Æó ÄÚÆÃÀÇ °³¹ßÀÌ °¡´ÉÇÏ°Ô µÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ ½ÅÀç»ý¿¡³ÊÁö, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, »ê¾÷ ºÐ¾ß¿¡¼ÀÇ ¿ëµµ È®´ë°¡ »õ·Î¿î ¼ºÀåÀÇ ±æÀ» Á¦°øÇϰí, ¿¡³ÊÁö È¿À²°ú ³»±¸¼ºÀÌ ¶Ù¾î³ ¿ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿ä±¸°¡ ´õ¿í µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.
¾ö°ÝÇÑ È¯°æ ±ÔÁ¦
¹èÃâ·® °¨¼Ò¿Í ¿¡³ÊÁö È¿À² Çâ»óÀ» ¿ä±¸ÇÏ´Â ±ÔÁ¦ ü°è´Â »ê¾÷°è¿¡ ÷´Ü ±â¼úÀÇ ½Å¼ÓÇÑ µµÀÔÀ» °¿äÇϰí ÀÖ½À´Ï´Ù. ÄÄÇöóÀ̾𽺠¾Ð·ÂÀº Á¾Á¾ »ý»ê ºñ¿ëÀ» Áõ°¡½ÃŰ°í ¿î¿µ À¯¿¬¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. °Ô´Ù°¡ ÀÌ·¯ÇÑ ±ÔÁ¦´Â ÁøÈÇÏ´Â ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ ²÷ÀÓ¾ø´Â Çõ½ÅÀ» ¿ä±¸ÇÒ ¼ö ÀÖÀ¸¸ç, º¸Á¶¸¦ ¸ÂÃâ ¼ö ¾ø´Â ±â¾÷¿¡ °úÁ¦¸¦ ½ñ°í ÀÖ½À´Ï´Ù. °á±¹ ȯ°æ ±ÔÁ¦´Â ²÷ÀÓ¾ø´Â ÀûÀÀÀ» ÇÊ¿ä·Î ÇÏ¸ç Æ¯Á¤ ÀÌÇØ°ü°èÀڵ鿡°Ô ½ÃÀåÀÇ ¾ÈÁ¤¼º°ú ¼öÀͼºÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº ÁÖ¿ä ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡¼ °ø±Þ¸ÁÀÇ È¥¶õ°ú ¿î¿µ Á¦ÇÑÀ¸·Î ÀÎÇØ ¿Â÷Æó ÄÚÆÃ ½ÃÀå¿¡ ¾Ç¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¹ß»ý Ãʱ⿡´Â ÇÁ·ÎÁ§Æ® Áö¿¬°ú ¼ö¿ä °¨¼Ò·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀÌ Å©°Ô µÐȵǾú½À´Ï´Ù. ±×·¯³ª ÀÌÈÄ »ê¾÷Ȱµ¿ÀÌ Àç°³µÊ¿¡ µû¶ó ½ÃÀåÀº À¯Çà Àü ¼öÁرîÁö ȸº¹µÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ ź·ÂÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â »ê¾÷ Ȱµ¿Àº ¿¾ÇÇÑ Á¶°Ç ÇÏ¿¡¼ ÀåºñÀÇ ¼ö¸í°ú ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ¹æ¿ ÄÚÆÃ°ú °°Àº ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼¼¶ó¹Í ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¼¼¶ó¹Í ºÎ¹®Àº ¶Ù¾î³ ´Ü¿¼º, ³» »êȼº ¹× °í¿Â¿¡¼ÀÇ ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç À̵éÀº Ç×°ø¿ìÁÖ ¹× ¹ßÀü ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¼¼¶ó¹ÍÀº °¡½º Åͺó°ú ÀÚµ¿Â÷ ¿£ÁøÀÇ °í¿Â¿¡¼ È¿À²ÀûÀÎ ¿îÀüÀ» °¡´ÉÇÏ°Ô Çϰí, ¿¬ºñ¸¦ °³¼±Çϰí, ¹èÃâ °¡½º¸¦ °¨¼Ò½Ãŵ´Ï´Ù. ¶ÇÇÑ, ¼¼¶ó¹Í º¹ÇÕÀçÀÇ Áö¼ÓÀûÀÎ Á¶»ç´Â ³»±¸¼º°ú ÄÚÆÃ ¼ö¸íÀ» Çâ»ó½Ã۰í, ÀÌ ºÎ¹®ÀÇ ¿ìÀ§¼ºÀ» È®°íÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åͺ¸Â÷Àú ºÎǰ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È, Åͺ¸Â÷Àú ºÎǰ ºÐ¾ß´Â °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ÀÌ´Â Åͺ¸Â÷Àú°¡ ³ôÀº ¿ ÀÀ·Â ÇÏ¿¡¼ ÀÛµ¿ÇÏ´Â ÀÚµ¿Â÷ ¿ëµµ¿¡¼ÀÇ Ã¤¿ë Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¹æ¿ ÄÚÆÃÀº ¿ ¼Õ½ÇÀ» ÁÙÀÌ°í ±Ø´ÜÀûÀÎ ¿ ³ëÃâ·ÎºÎÅÍ ºÎǰÀ» º¸È£ÇÏ¿© Åͺ¸ ÃæÀü±âÀÇ È¿À²°ú ¿£Áø ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. °Ô´Ù°¡ °í¼º´É Â÷·®°ú Àü±âÂ÷ÀÇ »ó½ÂÀÌ ¼ö¿ä¸¦ °¡¼ÓÈÇϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¿£ÁøÀÇ ¿¿ªÇÐ ¹× ¹èÃâ°¡½º ±ÔÁ¦¸¦ ÃÖÀûÈÇϱâ À§ÇØ Ã·´Ü ÄÚÆÃÀ» ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ Åͺ¸Â÷Àú ºÎǰ ºÎ¹®Àº ±Þ°ÝÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷ÀÌ °ßÁ¶ÇÑ °Í ¿Ü¿¡µµ °í¼º´É ¿Â÷Æó ÄÚÆÃÀÌ ÇÊ¿äÇÑ ¹Î°£Ç×°ø±âÀÇ º¸À¯ ´ë¼ö°¡ ¸¹±â ¶§¹®ÀÔ´Ï´Ù. ºÏ¹ÌÀÇ ¼º¼÷ÇÑ »ê¾÷ ±â¹Ý°ú ÷´Ü Á¦Á¶ ´É·ÂÀº ¹ßÀü ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ ´ë±Ô¸ð R&D ÅõÀÚ¿Í °·ÂÇÑ ±ÔÁ¦ üÁ¦°¡ ÀÌ Áö¿ª ½ÃÀå ÁöÀ§¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡¿¡¼´Â ±Þ¼ÓÇÑ »ê¾÷È, Ç×°ø¿ìÁÖ È°µ¿ È®´ë, ÀÚµ¿Â÷ ºÎ¹® ¼ºÀåÀÌ ÀÌ·¯ÇÑ ¼ºÀå °¡¼Ó¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ½ÅÈï °æÁ¦±¹°¡ÀÇ ÀÎÇÁ¶ó °³¹ß°ú ¿¡³ÊÁö ¼ö¿ä Áõ°¡´Â ¹æ¿ ÄÚÆÃ ÀÀ¿ë ºÐ¾ß¿¡ Å« ºñÁî´Ï½º ±âȸ¸¦ °¡Á®¿Ô½À´Ï´Ù. ¶ÇÇÑ ½ÃÀå ¼±¼öµéÀÌ ÇöÁö »ý»ê ½Ã¼³°ú ÆÄÆ®³Ê½Ê¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ°¡ ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇÏ°í ¾Æ½Ã¾ÆÅÂÆò¾çÀ» °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Thermal Barrier Coatings Market is accounted for $19.3 billion in 2025 and is expected to reach $29.6 billion by 2032 growing at a CAGR of 6.3% during the forecast period. Thermal Barrier Coatings (TBCs) are advanced protective layers applied to metal surfaces, primarily in gas turbines, aircraft engines, and industrial systems, to insulate components from extreme heat. They are from ceramics like yttria-stabilized zirconia; they reduce thermal loads, improve efficiency, and extend component life. By enabling higher operating temperatures, TBCs enhance performance while mitigating oxidation, corrosion, and thermal fatigue in demanding high-temperature environments.
Rising adoption of gas turbines in power generation
The rising adoption of gas turbines in power generation is a key driver propelling the thermal barrier coatings. Gas turbines require TBCs to protect components from extreme temperatures, enhancing efficiency and longevity. This demand is further fueled by the increasing need for sustainable and cleaner energy sources, where turbines operate at higher temperatures to improve fuel efficiency. Moreover, sectors like aerospace and automotive also benefit from TBC advancements, driving broader industrial adoption and market expansion through improved thermal management solutions.
High cost of materials and application
Advanced ceramic compounds and complex metal alloys used in TBCs are expensive, and application methods such as thermal spraying or vapor deposition involve costly equipment and operational expenses. The need for precise customization for different components increases development costs. These financial barriers limit widespread adoption, particularly for industries with budget constraints or those operating under tight financial margins, thereby impeding overall market growth.
Advancements in coating technologies and materials
Innovations in ceramic composites, deposition techniques, and coating formulations are enhancing both performance and application range. Additionally, emerging material sciences and surface coating R&D enable the development of TBCs that withstand higher temperatures and harsher environments. Moreover, expanding applications in renewable energy, automotive, aerospace, and industrial sectors offer new growth avenues, further bolstered by the ongoing need for energy-efficient and durable thermal management solutions.
Stringent environmental regulations
Regulatory frameworks demanding lower emissions and improved energy efficiency compel industries to adopt advanced technologies rapidly. Compliance pressures often lead to increased production costs and restrict operational flexibility. Moreover, these regulations may require constant innovation to meet evolving standards, posing challenges to companies unable to keep pace. Ultimately, environmental mandates necessitate persistent adaptation, which could hamper market stability and profitability for certain stakeholders.
The COVID-19 pandemic negatively impacted the thermal barrier coatings market due to disruptions in supply chains and operational restrictions across key end-use industries. Project delays and reduced demand during the initial outbreak slowed market growth significantly. However, the market has since rebounded to pre-pandemic levels as industrial activities resumed. Moreover, resilient and reliable industrial operations prompt increased investment in technologies like TBCs that enhance equipment longevity and performance under extreme conditions.
The ceramics segment is expected to be the largest during the forecast period
The ceramics segment is expected to account for the largest market share during the forecast period due to their superior thermal insulation, oxidation resistance, and stability at high temperatures, which are critical for aerospace and power generation applications. Ceramics enable gas turbines and automotive engines to operate efficiently at elevated temperatures, improving fuel economy and reducing emissions. Moreover, ongoing research into ceramic composites continues to enhance durability and coating lifespan, solidifying this segment's dominant position.
The turbocharger components segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the turbocharger components segment is predicted to witness the highest growth rate, driven by increasing adoption in automotive applications where turbochargers operate under high thermal stress. TBCs improve turbocharger efficiency and engine performance by reducing heat loss and protecting components from extreme heat exposure. Moreover, the rise of high-performance and electric vehicles accelerates demand, positioning the turbocharger components segment for rapid expansion as automotive manufacturers seek advanced coatings to optimize engine thermodynamics and emissions compliance.
During the forecast period, the North America region is expected to hold the largest market share, attributed to the robust aerospace and defense industries, along with extensive commercial aircraft fleets demanding high-performance thermal barrier coatings. North America's mature industrial base and advanced manufacturing capabilities support broad adoption across power generation and automotive sectors. Moreover, significant R&D investments and strong regulatory frameworks further strengthen the region's market position.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid industrialization, expanding aerospace activities, and a growing automotive sector in countries such as China and India fuel this accelerated growth. Increasing infrastructure development and rising energy demands in emerging economies create strong opportunities for TBC applications. Moreover, strategic investments by market players in local production facilities and partnerships further catalyze market expansion, positioning Asia Pacific as the fastest-growing region.
Key players in the market
Some of the key players in Thermal Barrier Coatings Market include Praxair Surface Technologies, Inc., Sulzer Metco AG, Bodycote plc, OC Oerlikon Balzers Coating AG, Saint-Gobain Coating Solutions SAS, IHI Corporation, Howmet Aerospace Inc., Kawasaki Heavy Industries, Ltd., Sandvik AB, Metallisation Ltd., ASB Industries, Inc., Thermion Inc., A&A Thermal Spray Coatings, Flame Spray Coating Company, Integrated Global Services, Inc., The Fisher Barton Group, TWI Ltd., Metallizing Equipment Co. Pvt. Ltd., Honeywell International Inc., and Chromalloy Gas Turbine LLC.
In June 2025, Oerlikon Balzers introduces BALORA(TM) TECH PRO - an innovative environmental barrier coating. It is designed to enhance the durability and performance of critical components in the aerospace and power generation industries. The coating provides a REACH compliant alternative to traditional coating technologies. Oerlikon Balzers is a technology brand of Oerlikon and a PVD surface solutions provider.
In October 2024, Integrated Global Services, Inc. ("IGS"), a leading provider of proprietary asset integrity and environmental & efficiency technologies, is pleased to announce the acquisition of the engineered coatings and materials business of Liquidmetal Industrial Solutions (the "Coatings and Materials Business"). Based in Chattanooga, Tennessee, the Coatings and Materials Business specializes in high-performance thermal spray application services and materials.
In July 2020, Saint-Gobain engineers from France and the United States prepared an evaluation of next-gen environmental barrier coatings made of rare earth silicates for presentation at the cancelled ASM International ITSC 2020 conference. They reported that, in order to increase fuel efficiency of jet engines, ceramic matrix composites (CMC) have been introduced into new designs. Silicon based CMCs enable higher service temperatures and reduced weight, which translates into reduced fuel consumption and emissions. These CMCs, however, face steam-induced corrosion that must be mitigated by a protective environmental barrier coating.