¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå : ¿¹Ãø - ÄÄÆ÷³ÍÆ®º°, Àü°³º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)
Neuromorphic Computing Market Forecasts to 2032 - Global Analysis By Component (Hardware and Software), Deployment (Edge Computing and Cloud Computing), Application, End User and By Geography
»óǰÄÚµå : 1776691
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,845,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,394,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,943,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,563,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀåÀº 2025³â¿¡ 82¾ï 9,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 20.23%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 301¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀº Àΰ£ÀÇ ³úÀÇ ±¸¼º°ú µ¿ÀÛÀ» ½Ã¹Ä·¹À̼ÇÇÔÀ¸·Î½á ±âÁ¸ÀÇ ÄÄÇ»ÆÃ ½Ã½ºÅÛº¸´Ù È¿À²ÀûÀ¸·Î Á¤º¸¸¦ ó¸®ÇÏ´Â ½Å±â¼úÀÔ´Ï´Ù. ½Å°æ¸ÁÀ̳ª ³ú¿Í °°Àº ¾ÆÅ°ÅØÃ³¿¡ Âø»óÀ» ¾òÀº ½Å°æ¸Á ½Ã½ºÅÛ¿¡¼­´Â ¸Þ¸ð¸® ½ºÅ¸³ª ½ºÆÄÀÌÅ· ½Å°æ¸Á°ú °°Àº Ư¼öÇÑ Çϵå¿þ¾î¸¦ »ç¿ëÇÔÀ¸·Î½á ¼Òºñ Àü·ÂÀ» ´ëÆø ¾ïÁ¦Çϸ鼭 °í¼Ó °è»êÀÌ °¡´ÉÇØÁý´Ï´Ù. ÀÌ ¹æ½ÄÀº ÆÐÅÏ ÀνÄ, °¨°¢ µ¥ÀÌÅÍ Ã³¸®, ÀûÀÀ ÇнÀÀ» ÇÊ¿ä·Î ÇÏ´Â ÀÛ¾÷ÀÌ ¶Ù¾î³ª±â ¶§¹®¿¡ ·Îº¿ °øÇÐ, ¿¡Áö ÄÄÇ»ÆÃ, Àΰø Áö´É ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù. ¾Æ¿ï·¯ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀº ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Â÷¼¼´ë Áö´ÉÇü ½Ã½ºÅÛÀ» ÇâÇÑ Çõ¸íÀûÀÎ ´Ü°è·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù.

Neuromorphic Computing and Engineering ÀâÁö¿¡ °ÔÀçµÈ 2022³â IBM ÁÖµµÀÇ ·Îµå¸Ê¿¡ ÀÇÇϸé, ´º·Î¸ðÇÈ ½Ã½ºÅÛÀº Á¾·¡ÀÇ Æù ³ëÀ̸¸ ¾ÆÅ°ÅØÃĺ¸´Ù ¼Òºñ Àü·ÂÀÌ ´ëÆø ³·°í, ¼ö¹é ¸Þ°¡¿ÍÆ®°¡ ¾Æ´Ï¶ó ºÒ°ú 20-30 ¸Þ°¡¿ÍÆ®·Î ¿¢¼­½ºÄÉÀÏ ·¹º§ÀÇ ÄÄÇ»ÆÃÀÌ °¡´ÉÇÏ°Ô µÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.

¼Òºñ Àü·ÂÀÌ ÀûÀº AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡

ÀüÅëÀûÀÎ AI ¸ðµ¨, ƯÈ÷ ¾öû³­ ¿¡³ÊÁö ¹× ó¸® ´É·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â µö·¯´× ¾ÆÅ°ÅØÃ³¸¦ ½ÇÇàÇÏ·Á¸é ´ë±Ô¸ð µ¥ÀÌÅͼ¾ÅͰ¡ ÀÚÁÖ ÇÊ¿äÇÕ´Ï´Ù. ´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀº ÀûÀº ¿¡³ÊÁö·Î Á¤º¸¸¦ ó¸®ÇÏ´Â ³úÀÇ ´É·Â¿¡¼­ ÈùÆ®¸¦ ¾ò¾î ÆÐ·¯´ÙÀÓ ÀüȯÀ» Á¦°øÇÕ´Ï´Ù. IBMÀÇ True North³ª ÀÎÅÚÀÇ Loihi¿Í °°Àº ĨÀº, Å«ÆøÀ¸·Î ÀûÀº Àü·ÂÀ¸·Î º¹ÀâÇÑ °è»êÀ» ½ÇÇàÇϵµ·Ï ¸¸µé¾îÁ® ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¿þ¾î·¯ºí, µå·Ð, ¸ð¹ÙÀÏ ·Îº¿ µî ÀÎÅÚ¸®Àü½º¸¦ ÇØÄ¡Áö ¾ÊÀ¸¸é¼­ È¿À²¼ºÀ» Áß½ÃÇÏ´Â ¹èÅ͸®°¡ ÇÑÁ¤µÈ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÃÖÀûÀÔ´Ï´Ù.

Ç¥ÁØÈ­µÈ ÇÁ·Î±×·¡¹Ö ¸ðµ¨ ¹× ¾ÆÅ°ÅØÃ³ ºÎÀç

Àß ¾Ë·ÁÁø Æù ³ëÀ̸հú ÇϹöµå ¾ÆÅ°ÅØÃ³¸¦ ÁؼöÇÏ´Â ±âÁ¸ÀÇ ÄÄÇ»ÆÃ ½Ã½ºÅÛ°ú´Â ´Þ¸®, ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ¿¡´Â ÇÁ·Î±×·¡¹Ö ¸ðµ¨, ¼ÒÇÁÆ®¿þ¾î ÀÎÅÍÆäÀ̽º ¹× Çϵå¿þ¾î ¼³°è¿¡ ´ëÇÑ ¾÷°è Ç¥ÁØÀÌ ¾ø½À´Ï´Ù. »ç¿ëÀÚ Á¤ÀÇ ÇнÀ ¾Ë°í¸®Áò, ÄÄÆÄÀÏ·¯, ÅøÃ¼ÀÎÀº Ĩ¸¶´Ù ÀÚÁÖ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÆíÈ­°¡ °¡Á®¿À´Â ȣȯ¼º ¹®Á¦´Â °³¹ßÀÚ³ª ½Ã½ºÅÛ ÅëÇÕÀÚ¿¡°Ô È®Àå °¡´ÉÇϰí ÈÞ´ë¿ëÀÎ ¾ÖÇø®ÄÉÀ̼ÇÀ» ¸¸µå´Â °ÍÀ» ¾î·Æ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ´ÜÀÏ ¿¡ÄÚ ½Ã½ºÅÛÀÌ È®¸³µÇ±â Àü±îÁö´Â ä¿ëÀº ¿¬±¸ ȯ°æÀ̳ª Ư¼öÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ °è¼Ó ÇÑÁ¤µÉ °ÍÀ¸·Î »ý°¢µË´Ï´Ù.

½Å°æ±â¼ú ¹× ºê·¹ÀÎ ¸Ó½Å ÀÎÅÍÆäÀ̽º(BMI) °³¹ß

´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀº »ý¹°ÇÐÀû »Ñ¸®¿¡¼­ ½Å°æ°úÇÐ ¿ëµµ ºÐ¾ß, ƯÈ÷ ´º·ÎÇÁ·Î½ºÅׯ½°ú ºê·¹ÀÎ ¸Ó½Å ÀÎÅÍÆäÀ̽º¿¡ ÀûÇÕÇÕ´Ï´Ù. EEG³ª EMG °°Àº »ýü½ÅÈ£¸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö Àֱ⠶§¹®¿¡ Àΰ£°ú ÄÄÇ»ÅÍÀÇ »óÈ£ÀÛ¿ëÀÌ ´õ ÀÚ¿¬½º·¯¿öÁý´Ï´Ù. Àå¾ÖÀÎ Áö¿ø ±â¼ú¿¡¼­ ¸¶Àεå ÄÁÆ®·Ñ ÈÙü¾î, ·Îº¿ ÆÈ´Ù¸®, Ä¿¹Â´ÏÄÉÀÌ¼Ç ÀåÄ¡ÀÇ °¡´É¼ºÀº ƯÈ÷ À¯¸ÁÇÕ´Ï´Ù. ´º·ÎÅ×Å©³î·ÎÁö¿Í »ý¹°ÀÇÇÐ °øÇÐÀÌ Áøº¸ÇÔ¿¡ µû¶ó ´º·Î¸ôÇÈ Ç÷§ÆûÀº ÀúÀü·Â°ú ´ë±â½Ã°£À¸·Î º¹ÀâÇÑ ³ú ½ÅÈ£¸¦ ÇØµ¶Çϱâ À§ÇÑ ¿Ïº®ÇÑ °è»ê ±â¹ÝÀ» Á¦°øÇÕ´Ï´Ù.

À¯¸íÇÑ AI Çϵå¿þ¾î ±â¼ú°úÀÇ °æÀï

´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀº GPU, TPU, FPGA, ½ÉÁö¾î´Â Ä¿½ºÅÒ ASIC°ú °°Àº À¯¸íÇÑ AI °¡¼Ó±â¿ÍÀÇ Ä¡¿­ÇÑ °æÀïÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº µö·¯´×À̳ª Ãß·Ð µîÀÇ AI ŽºÅ©¿¡¼­ È®¸³µÈ ¼º´ÉÀ» °¡Áö°í ÀÖÀ¸¸ç, ¿¡ÄÚ ½Ã½ºÅÛ ¹× °ß°íÇÑ °³¹ßÀÚ Áö¿øÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ±¸±ÛÀ̳ª ¿£ºñµð¾Æ °°Àº ±â¾÷µµ ¼ÒºñÀü·ÂÀ» ¾ïÁ¦ÇÑ »õ·Ó°í °³·®µÈ AI ĨÀ» Ç×»ó ¹ßÇ¥Çϰí ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ȣȯ¼º°ú ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇöÀç Ç÷§Æû¿¡¼­ ÀÌ¹Ì ÀÌ·ïÁö°í ÀÖ´Ù´Â Á¡À» °¨¾ÈÇÏ¸é ´º·Î¸ðÇÈ ½Ã½ºÅÛÀÇ ÀåÁ¡Àº ±âÁ¸ AI Çϵå¿þ¾îÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ °¡·ÁÁú ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ´Ü±âÀûÀ¸·Î´Â ¹ÝµµÃ¼ »ý»ê Áö¿¬, ¿¬±¸°³¹ß ¿¹»ê °¨¼Ò, ±Û·Î¹ú °ø±Þ¸Á È¥¶õÀÌ Çϵå¿þ¾î °³¹ß¿¡ ¹æÇذ¡ µÅ »ó¾÷ Àü°³ ¼Óµµ¸¦ ´ÊÃè½À´Ï´Ù. ÇÏÁö¸¸ ÆÒµ¥¹ÍÀº µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈ­½ÃÄ×°í, ƯÈ÷ ¿§Áö AI ¾ÖÇø®ÄÉÀ̼Ç, ÇコÄɾî, ¿ø°Ý ¸ð´ÏÅ͸µ¿¡ ÀÖ¾î ·ÎÄÿ¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â Áö´ÉÀûÀÌ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ½Ã½ºÅÛÀÇ Çʿ伺¿¡ ÁÖ¸ñÀ» ¹Þ¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­ ¶§¹®¿¡ ÇöÀç´Â ÀúÀü·Â ½Ç½Ã°£ ó¸® ¼Ö·ç¼ÇÀ¸·Î¼­ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ÃʱâÀÇ Áøº¸´Â ´Ê¾ú´Ù°í´Â ÇÏÁö¸¸ ÆÒµ¥¹Í ÈÄÀÇ È¯°æÀÌ ´º·Î¸ðÇÈ ±â¼ú¿¡ ´ëÇÑ ¿¬±¸¿Í ÅõÀÚ¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À̹ÌÁö ó¸® ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº À̹ÌÁö ó¸® ºÐ¾ßÀÔ´Ï´Ù. ÀÌ ¿ìÀ§¼ºÀº ´º·Î¸ðÇÈ ¾ÆÅ°ÅØÃ³°¡ À̺¥Æ® ±¸µ¿Çü º´·Ä °è»êÀ» ÅëÇØ °í¼ÓÀÇ ½Ã°¢ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÔÀ¸·Î½á Àΰ£ÀÇ ½Ã°¢¾ß¿Í Èí»çÇÑ ´É·ÂÀ» ¹ßÈÖÇÏ´Â °Í¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷, ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, ÀÇ·á¿ë ¿µ»ó ó¸® µî ½Ç½Ã°£ ¿µ»ó Àνİú ºÐ·ù¸¦ ÇÊ¿ä·Î ÇÏ´Â ¾ÖÇø®ÄÉÀ̼ÇÀº ´º·Î¸ðÇÈ ½Ã½ºÅÛÀÇ ÀúÀü·Â ¹× Àü±¤¼®È­ ¹ÝÀÀ ½Ã°£À¸·ÎºÎÅÍ Å« ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. À̹ÌÁö 󸮴 ±âÁ¸ ±â¼úº¸´Ù È¿À², ¼Óµµ, È®À强ÀÌ ³ô±â ¶§¹®¿¡ ¿¡Áö ÄÄÇ»ÆÃ ¹× ½º¸¶Æ® ºñÀü ½Ã½ºÅÛÀÇ ±Þ¼ÓÇÑ ¼ºÀå¿¡µµ ºÒ±¸Çϰí Áö¼ÓÀûÀ¸·Î ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀÌ ¿¹»ó

¿¹Ãø ±â°£ Áß ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚÀ² ÁÖÇàÂ÷³ª ADAS(¼±Áø ¿îÀü Áö¿ø ½Ã½ºÅÛ)ÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í ÀÖ¾î ´ë·®ÀÇ °¨°¢ µ¥ÀÌÅ͸¦ ±ØÈ÷ ³·Àº ·¹ÀÌÅÏ½Ã¿Í ¼Òºñ Àü·ÂÀ¸·Î ½Ç½Ã°£ ó¸®ÇÏ´Â °ÍÀÌ ¿ä±¸µÇ°í ÀÖ´Â °ÍÀÌ, ÀÌ ±ÞÈ®´ëÀÇ ÁÖµÈ ¿äÀÎÀÔ´Ï´Ù. À̺¥Æ® ±¸µ¿Çü ³ú¿Í °°Àº ¾ÆÅ°ÅØÃ³¸¦ °¡Áø ´º·Î¸ðÇÈ Ä¨Àº ½Ã°£ Á¦¾àÀÌ ÀÖ´Â ¿îÀü »óȲ¿¡¼­ ¾ÈÀüÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ÀÇ»ç°áÁ¤À» ÃËÁøÇÏ´Â µ¥ ÃÖÀûÀÔ´Ï´Ù. °Ô´Ù°¡ ´º·Î¸ðÇÈ ÇÁ·Î¼¼¼­´Â, ÀÚµ¿Â÷ ¾÷°è°¡ ¼­¼­È÷ ·¹º§ 5ÀÇ ÀÚÀ²¼º°ú V2X(Vehicle-to-Everything) Åë½ÅÀ¸·Î ÀÌÇàÇØ °¡´Â °¡¿îµ¥, Â÷¼¼´ëÀÇ ½º¸¶Æ®Ä«¸¦ Çü¼ºÇÏ´Â µ¥ À־ Áö±ØÈ÷ Áß¿äÇÑ ¿ªÇÒÀ» ¿Ï¼öÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̰ÍÀº ÃÖ÷´Ü ÄÄÇ»ÆÃ ±â¼ú¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿Í BrainChip, IBM, Intel°ú °°Àº ´ë±â¾÷ÀÇ °ß°íÇÑ Á¸Àç¿¡ ÀÇÇÑ °ÍÀÔ´Ï´Ù. ±¹¹æ¿¬±¸, ÀΰøÁö´É, ³ú¸¦ ÀÌ¿ëÇÑ ÄÄÇ»ÆÃÀ» Áß½ÉÀ¸·Î ÇÑ Çмú ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¿Õ¼ºÇÑ ÀÚ±Ý Á¦°øÀº ÀÌ Áö¿ª¿¡ À¯¸®ÇÕ´Ï´Ù. °Ô´Ù°¡ ´º·Î¸ðÇÈ Çϵå¿þ¾îÀÇ ¿ä±¸´Â ºÏ¹Ì°¡ °¡Àü, ÇコÄɾî, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ µîÀÇ »ê¾÷¿¡¼­ À绡¸® AI¸¦ µµÀÔÇÑ °Í¿¡ ÀÇÇØ¼­ ÁöÅʵǰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº Á¤ºÎ°¡ Áö¿øÇÏ´Â ÀÌ´Ï¼ÅÆ¼ºê¿Í ¹Î°£ ºÎ¹®ÀÇ Çõ½ÅÀ» ÅëÇØ ´º·Î¸ðÇÈ ¿¬±¸ °³¹ßÀ» ¼±µµÇϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ªÀº ±â¼ú °³¹ß ¹× ½ÃÀå ¼öÀÍ Á¡À¯À² ¸ðµÎ¿¡¼­ ¾ÐµµÀûÀÎ °­¼¼¸¦ ÀÚ¶ûÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Þ¼ÓÇÑ ±â¼ú Áøº¸, ·Îº¿°øÇаú ÀΰøÁö´É¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÇ ±¹°¡¿¡¼­ ¹ÝµµÃ¼ ±â¼ú Çõ½Å¿¡ ´ëÇÑ Á¤ºÎÀÇ °­·ÂÇÑ Áö¿øÀÌ ÀÌ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÔ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ½Ç½Ã°£ ÄÄÇ»ÆÃ ¼Ö·ç¼Ç ¼ö¿ä°¡ ³ôÀº °ÍÀº ÀÌ Áö¿ªÀÇ ÀüÀÚ±â±â Á¦Á¶ ±â¹ÝÀÌ È®´ëµÇ°í °¡Àü, »ê¾÷ ÀÚµ¿È­, ÀÚµ¿Â÷¿¡¼­ ½º¸¶Æ® ±â¼ú ÀÌ¿ëÀÌ È®´ëµÇ°í Àֱ⠶§¹®ÀÌ´Ù. ´õ¿íÀÌ ´º·Î¸ôÇÈ ½Ã½ºÅÛÀÇ ÇмúÀû ¹× »ó¾÷Àû ¿¬±¸ È®´ë·Î Â÷¼¼´ë AI Çϵå¿þ¾î °³¹ßÀÇ ¼¼°èÀû Áß½ÉÁö·Î¼­ÀÇ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ´ëµÎ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

»ç¿ëÀÚ Á¤ÀÇ ¹«·á Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå ¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå : Àü°³º°

Á¦7Àå ¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Neuromorphic Computing Market is accounted for $8.29 billion in 2025 and is expected to reach $30.12 billion by 2032 growing at a CAGR of 20.23% during the forecast period. Neuromorphic computing is a new technology that processes information more effectively than conventional computing systems by simulating the composition and operations of the human brain. The use of specialized hardware, such as memristors and spiking neural networks, in neuromorphic systems, which are inspired by neural networks and brain-like architectures, allows for faster computation with much lower power consumption. This method is perfect for applications in robotics, edge computing, and artificial intelligence since it excels at tasks requiring pattern recognition, sensory data processing, and adaptive learning. Moreover, neuromorphic computing is gaining traction as a revolutionary step toward next-generation intelligent systems to meet the growing demand for energy-efficient AI solutions.

According to a 2022 IBM-led roadmap published in Neuromorphic Computing and Engineering, neuromorphic systems offer significantly lower power consumption than traditional von-Neumann architectures-potentially enabling exascale-level computing at only 20-30 MW instead of hundreds of megawatts.

Market Dynamics:

Driver:

Growing need for AI hardware that uses less energy

Large data centers are frequently needed to run traditional AI models, particularly deep learning architectures, which demand enormous amounts of energy and processing power. Neuromorphic computing offers a paradigm shift, drawing inspiration from the brain's capacity to process information with little energy. Chips such as IBM's True North and Intel's Loihi are made to carry out intricate calculations with significantly less power usage. Additionally, this makes them perfect for battery-limited applications where efficiency is essential without compromising intelligence, like wearable's, drones, and mobile robots.

Restraint:

Absence of standardized programming models and architecture

Neuromorphic computing does not have industry-wide standards for programming models, software interfaces, or hardware design, in contrast to traditional computing systems that adhere to well-known von Neumann or Harvard architectures. Custom learning algorithms, compilers, and toolchains are frequently needed for each chip. Compatibility problems brought on by this fragmentation make it challenging for developers and system integrators to create scalable and portable applications. Furthermore, adoption will continue to be restricted to research settings and specialized applications until a single ecosystem is established.

Opportunity:

Developments in neurotechnology and brain-machine interfaces (BMIs)

Due to its biological roots, neuromorphic computing is well suited for neuroscience applications, particularly neuroprosthetics and brain-machine interfaces. Because it can process bio-signals like EEG or EMG in real time, human-computer interaction can become more natural. The potential for mind-controlled wheelchairs, robotic limbs, and communication devices in assistive technologies for individuals with disabilities is particularly encouraging. As neurotechnology and biomedical engineering advance, neuromorphic platforms provide the perfect computational basis for decoding intricate brain signals with low power consumption and latency.

Threat:

Rivalry with well-known ai hardware technologies

There is fierce competition for neuromorphic computing from well-known AI accelerators such as GPUs, TPUs, FPGAs, and even custom ASICs. These platforms have established performance in AI tasks like deep learning and inference, as well as developed ecosystems and robust developer support. Companies like Google and NVIDIA are also constantly coming up with new and improved AI chips that use less power. Given that software compatibility and infrastructure investments are already in place for current platforms, the perceived advantages of neuromorphic systems could be overshadowed by the quick advancements in conventional AI hardware.

Covid-19 Impact:

The COVID-19 pandemic affected the neuromorphic computing market in a variety of ways. In the near term, delays in semiconductor production, diminished R&D budgets, and disruptions in global supply chains hindered hardware development and slowed the rate of commercial deployment. However, the pandemic also sped up digital transformation and brought attention to the need for intelligent, energy-efficient systems that can process data locally, particularly in edge AI applications, healthcare, and remote monitoring. Because of this change, there is now more interest in neuromorphic computing as a low-power, real-time processing solution. Because of this, even though early advancements were delayed, the post-pandemic environment has encouraged more research and investment in neuromorphic technologies.

The image processing segment is expected to be the largest during the forecast period

The image processing segment is expected to account for the largest market share during the forecast period. This dominance is explained by the neuromorphic architecture's capacity to closely resemble the human visual cortex by processing high-speed visual data efficiently through event-driven, parallel computation. Applications that require real-time image recognition and classification, like autonomous cars, surveillance systems, and medical imaging, greatly benefit from neuromorphic systems' low power consumption and lightning-fast reaction times. Since image processing offers greater efficiency, speed, and scalability than conventional techniques, it continues to dominate the market despite the quick growth of edge computing and smart vision systems.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate. The growing use of autonomous vehicles and advanced driver-assistance systems (ADAS), which demand real-time processing of large amounts of sensory data with extremely low latency and power consumption, is the main driver of this quick expansion. With their event-driven, brain-like architectures, neuromorphic chips are perfect for facilitating safe, energy-efficient decision-making in situations involving time-sensitive driving. Moreover, neuromorphic processors are anticipated to be crucial in forming the next generation of smart cars as the automotive industry gradually transitions to Level 5 autonomy and vehicle-to-everything (V2X) communication.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by large investments in cutting-edge computing technologies and the robust presence of major players like BrainChip, IBM, and Intel. Strong funding for defense research, artificial intelligence, and academic projects centered on brain-inspired computing is advantageous to the area. Furthermore, the need for neuromorphic hardware is supported by North America's early adoption of AI in industries like consumer electronics, healthcare, automotive, and aerospace. Through government-supported initiatives and private sector innovation, the U.S. in particular leads in neuromorphic R&D, making the region a dominant force in both technological development and market revenue share.

Region with highest CAGR:

Over the forecast period, the Asia-Pacific region is anticipated to exhibit the highest CAGR. Rapid technological advancements, rising investments in robotics and artificial intelligence, and robust government support for semiconductor innovation in nations like China, Japan, South Korea, and India are the main drivers of this growth. Energy-efficient, real-time computing solutions are in high demand due to the region's growing electronics manufacturing base and the growing use of smart technologies in consumer electronics, industrial automation, and automotive. Additionally, Asia-Pacific's rise as a global center for the development of next-generation AI hardware is being accelerated by the expansion of both academic and commercial research in neuromorphic systems.

Key players in the market

Some of the key players in Neuromorphic Computing Market include Intel Corporation, HRL Laboratories, LLC, GrAI Matter Labs, IBM Corporation, Qualcomm Technologies, Inc., Micron Technology Inc, BrainChip Holdings Ltd., Hewlett Packard Enterprise (HPE), Samsung Electronics Co. Ltd, Knowm Inc., General Vision Inc., SK Hynix Inc., Vicarious FPC Inc., Nepes Corporation, Gyrfalcon Technology Inc. and SynSense AG.

Key Developments:

In May 2025, Qualcomm Technologies, Inc. and Xiaomi Corporation are celebrating 15 years of collaboration and have executed a multi-year agreement. The relationship between Qualcomm Technologies and Xiaomi has been pivotal in driving innovation across the technology industry and the companies are committed to delivering industry-leading products and solutions across various device categories globally.

In April 2025, HRL Laboratories, LLC has officially opened its new advanced research and manufacturing facility in Camarillo, California, marking a significant milestone in the company's commitment to innovation in infrared (IR) hardware. The 60,000-square-foot facility, housing state-of-the-art labs, cleanrooms, high-bay and office space, dramatically enhances HRL's fabrication and in-house testing capabilities.

In April 2025, Intel Corporation announced that it has entered into a definitive agreement to sell 51% of its Altera business to Silver Lake, a global leader in technology investing. The transaction, which values Altera at $8.75 billion, establishes Altera's operational independence and makes it the largest pure-play FPGA semiconductor solutions company. Altera offers a proven and highly scalable architecture and tool chain and is focused on driving growth and FPGA innovation to meet the demands and opportunities of an AI-driven market.

Components Covered:

Deployments Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Neuromorphic Computing Market, By Component

6 Global Neuromorphic Computing Market, By Deployment

7 Global Neuromorphic Computing Market, By Application

8 Global Neuromorphic Computing Market, By End User

9 Global Neuromorphic Computing Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â