Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Áö¸®Á¤º¸½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 120¾ï 1,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È 10.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â±îÁö´Â 244¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. Áö¸®Á¤º¸½Ã½ºÅÛ(GIS)Àº °ø°£Àû ¶Ç´Â Áö¸®Àû µ¥ÀÌÅ͸¦ Ãëµæ, ÀúÀå, ºÐ¼®, °ü¸®, Ç¥½ÃÇÏ´Â ÄÄÇ»ÅÍ ±â¹Ý µµ±¸ÀÔ´Ï´Ù. GIS´Â Áöµµ³ª 3D Àå¸éÀ» ÅëÇØ ÆÐÅÏ, °ü°è, µ¿ÇâÀ» ¹àÈ÷´Â ¹æ½ÄÀ¸·Î µ¥ÀÌÅ͸¦ ½Ã°¢ÈÇϰí ÇØ¼®ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. GIS´Â ´Ù¾çÇÑ Á¾·ùÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ°í µ¥ÀÌÅ͸¦ Áö±¸»óÀÇ Æ¯Á¤ Àå¼Ò¿¡ ¿¬°áÇÔÀ¸·Î½á µµ½Ã°èȹ, ȯ°æ°ü¸®, ±³Åë, Àç³´ëÀÀ µîÀÇ ºÐ¾ß¿¡¼ ÀÇ»ç°áÁ¤À» Áö¿øÇÕ´Ï´Ù.
Áõ°¡ÇÏ´Â °ø°£ µ¥ÀÌÅÍ ºÐ¼® ¼ö¿ä
±â¾÷°ú Á¤ºÎ¿¡ ÀÇÇÑ µ¥ÀÌÅÍ ÁÖµµ ÀÇ»ç °áÁ¤¿¡ ´ëÇÑ ÀÇÁ¸ÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥ Áö¸®Á¤º¸½Ã½ºÅÛ(GIS)Àº °ø°£Á¤º¸¸¦ È¿°úÀûÀ¸·Î ºÐ¼®ÇÏ´Â ´É·ÂÀ¸·Î °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. ±³Åë±â°ü, µµ½Ã°èȹ, ³ó¾÷ µî ´Ù¾çÇÑ ¾÷°è Á¶Á÷ÀÌ ¾÷¹« ÃÖÀûÈ¿Í Àü·«Àû °èȹ °È¿¡ GIS¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ ½ºÆ®¸², À§¼º À̹ÌÁö, IoT ¼¾¼ÀÇ ÅëÇÕÀ¸·Î °íµµÀÇ °ø°£ ºÐ¼® ¼ö¿ä°¡ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ ¼ö¿ä´Â µ¥ÀÌÅÍ Áß½ÉÀÇ Á¢±ÙÀ» Àå·ÁÇÏ´Â ±ÔÁ¦ ¿ä°ÇÀ̳ª Áö¼Ó °¡´É¼º¿¡ ´ëÇÑ ´ëó¿¡ ÀÇÇØ¼µµ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ ¹× ¼³Á¤ ºñ¿ë
GIS ¼Ö·ç¼ÇÀÇ µµÀÔ¿¡´Â °í°¡ÀÇ Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼÷·ÃµÈ ÀÎÀç°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ »ó´çÇÑ Àç¿øÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸¹Àº Á¶Á÷µéÀº GIS Ç÷§Æû Ãëµæ, ±âÁ¸ ÀÎÇÁ¶ó·ÎÀÇ ÅëÇÕ, ½Ã½ºÅÛ È¿À²¼º À¯Áö¸¦ À§ÇÑ ¿¹»ê ¹èºÐÀÇ ¾î·Á¿ò¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. °Ô´Ù°¡ GIS µ¥ÀÌÅͺ£À̽º³ª °íµµÀÇ ±â´ÉÀº º¹ÀâÇϱ⠶§¹®¿¡ »ó´çÇÑ ÈÆ·Ã°ú ±â¼úÀû Àü¹®Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍÀÇ Ãëµæ, ÀúÀå, ó¸®¿Í °ü·ÃµÈ ºñ¿ëÀÌ ³ôÀº °Íµµ Áß¼Ò±â¾÷ÀÌ ÀÌ·¯ÇÑ ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°Ô ÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
GIS ¹× ½Å±â¼úÀÇ ÅëÇÕ
ÀΰøÁö´É, ¸Ó½Å·¯´×, ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ Áøº¸´Â GISÀÇ ±â´ÉÀ» º¯È½ÃŰ°í º¸´Ù ³ªÀº ÀÇ»ç°áÁ¤ ¹× ÀÚµ¿È¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. GIS¿Í ºí·ÏüÀÎ ±â¼úÀÇ ÅëÇÕÀº µ¥ÀÌÅÍÀÇ ¾ÈÀü¼º ¹× Åõ¸í¼ºÀ» ³ô¿© ½Å·Ú¼º ³ôÀº Áö¸® °ø°£ ±â·ÏÀ» º¸ÀåÇÕ´Ï´Ù. °Ô´Ù°¡ GIS¸¦ Ȱ¿ëÇÑ AR(Áõ°Çö½Ç) ¾ÖÇø®ÄÉÀ̼ÇÀº, ¸ôÀÔ°¨ ÀÖ´Â À§Ä¡ Á¤º¸ üÇèÀ» Á¦°øÇÏ´Â °ÍÀ¸·Î, ¼Ò¸Å, °ü±¤, °Ç¼³µîÀÇ ¾÷°è¸¦ ¼Æ÷Æ®Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ÅëÇÕÀº ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÄ£ GIS ¾ÖÇø®ÄÉÀ̼ÇÀÇ »õ·Î¿î ±æÀ» ¸¸µé¾î ³»°í ½ÃÀå È®´ë¸¦ ÃËÁøÇÕ´Ï´Ù.
¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·
GISÀÇ ±â´ÉÀ» ÃÖ´ëÇÑ È°¿ëÇÏ·Á¸é Áö¸®°ø°£ ºÐ¼®, ¿ø°Ý ¼¾½Ì, µ¥ÀÌÅÍ ºÐ¼® Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÏÁö¸¸, ¸¹Àº ±â¾÷µéÀÌ À¯´ÉÇÑ ÀÎÀç È®º¸¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºü¸£°Ô ÁøÈÇÏ´Â GIS ±â¼úÀº Áö¼ÓÀûÀÎ ±â¼ú ¾÷±×·¹À̵å¿Í Àü¹®°¡ À°¼ºÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. GIS¿¡ ÃÊÁ¡À» ¸ÂÃá Àü¹®ÀûÀÎ ±³À° ÇÁ·Î±×·¥À̳ª ±³À° Ä¿¸®Å§·³ÀÌ Á¸ÀçÇÏÁö ¾Ê´Â °ÍÀÌ ÀÌ °úÁ¦¸¦ ´õ¿í ¾ÇȽÃ۰í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ GISÀÇ Àü¹® Áö½Ä°ú Àΰø Áö´ÉÀ̳ª µ¥ÀÌÅÍ »çÀ̾𽺸¦ Á¶ÇÕÇÑ ÇÐÁ¦ÀûÀÎ ½ºÅ³ÀÌ ¿ä±¸µÇ°í ÀÖ´Â °Íµµ, ä¿ë Ȱµ¿À» º¹ÀâÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº °¨¿°Áõ ÃßÀû, À̵¿ ÆÐÅÏ ºÐ¼®, ÇコÄÉ¾î ¸®¼Ò½º °ü¸®¸¦ À§ÇÑ Áö¸®Á¤º¸½Ã½ºÅÛ(GIS) ±â¼úÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇß½À´Ï´Ù. Á¤ºÎ¿Í ±â¾÷Àº GIS ´ë½Ãº¸µå¸¦ ÀÌ¿ëÇØ ¹ÙÀÌ·¯½º È®»êÀ» ½Ã°¢ÈÇÏ°í ±ä±Þ ´ëÀÀ Àü·«À» ÃÖÀûÈÇß½À´Ï´Ù. ¹°·ù, °ø±Þ¸Á °ü¸®, ÀüÀÚ»ó°Å·¡¿¡¼´Â °ø°£ Á¤º¸°¡ ÇʼöÀûÀÌ µÇ¾ú½À´Ï´Ù. GIS¸¦ ÀÌ¿ëÇÑ ¿ø°Ý Çù¾÷ ÅøÀÌ Àα⸦ ¾ò¾ú½À´Ï´Ù. ±×·¯³ª °æÁ¦ ºÒȲ°ú ¿¹»ê Á¦¾àÀ¸·Î ÀÎÇØ ÀϺΠÇÁ·ÎÁ§Æ®´Â Áö¿¬µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ¿¡µµ, GIS´Â µðÁöÅÐ º¯ÇõÀÇ ´ëó¿¡ ÀÖ¾î¼ ¸Å¿ì Áß¿äÇÑ ÀÚ»êÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸Á
°í¼º´É ÄÄÇ»ÆÃ ½Ã½ºÅÛ, ÷´Ü GPS µð¹ÙÀ̽º, °ß°íÇÑ µ¥ÀÌÅÍ ½ºÅ丮Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇコÄÉ¾î ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ÇコÄÉ¾î ºÐ¾ß´Â °ø°£ °Ç° µ¥ÀÌÅÍÀÇ ½Ã°¢È ¹× ºÐ¼®, Áúº´ ÇÖ½ºÆÌÀÇ ÇÉ Æ÷ÀÎÆ® ½Äº°, ¾Æ¿ô ºê·¹ÀÌÅ© ÃßÀû µîÀÇ ±â´ÉÀ¸·Î °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GIS´Â ÀÇ·á ½Ã¼³ÀÇ ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈÇϰí ÀÇ·á Á¢±Ù¼ºÀ» °³¼±ÇÏ¸ç ±ä±Þ ´ëÀÀ °èȹÀ» °ÈÇÕ´Ï´Ù. °Ô´Ù°¡ GIS´Â Àü·«Àû °èȹ, ÃæÁ·µÇÁö ¾ÊÀº ´ÏÁî°¡ ÀÖ´Â Áö¿ªÀÇ Æ¯Á¤, °Ç° °ÝÂ÷ ÆÄ¾Ç¿¡ µµ¿òÀ» ÁÖ°í Áö¸®¿Í °Ç° ¾Æ¿ôÄİúÀÇ ¿¬°ü¼ºÀÌ Àνĵǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ, Áö¸®°ø°£ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎÅõÀÚ, ½º¸¶Æ®½ÃƼ ±¸»óÀÇ Ã¤¿ë Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡¿¡¼´Â ȯ°æ ¸ð´ÏÅ͸µ, µµ½Ã °èȹ, Àç³ °ü¸®¿¡ GIS¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ´ë±â¾÷ GIS ±â¼ú ÇÁ·Î¹ÙÀÌ´õ³ª ¿¬±¸±â°üÀÇ Á¸Àç°¡, ±â¼ú Çõ½Å°ú ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇÁö¸¸, ÀÌ´Â °í±Þ Áö¸®°ø°£ ±â¼ú°ú ºÐ¼®¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ÇコÄɾî, ³ó¾÷, ¹æÀ§ µîÀÇ »ê¾÷¿¡¼ GISÀÇ ³ôÀº µµÀÔ·üÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¹Ì±¹Àº Áö¸®°ø°£Á¤º¸ ÇÁ·Î±×·¥¿¡ ´ëÇÑ ¿¬¹æÁ¤ºÎÀÇ °·ÂÇÑ Áö¿ø°ú GISÀÇ ÃÖ÷´Ü ¿¬±¸·Î ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ´ë±â¾÷ GIS ¼ÒÇÁÆ®¿þ¾î ÇÁ·Î¹ÙÀÌ´õÀÇ Á¸Àç°¡, ±â¼ú Çõ½Å°ú ±¤¹üÀ§ÇÑ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Geographic Information System Market is accounted for $12.01 billion in 2025 and is expected to reach $24.46 billion by 2032 growing at a CAGR of 10.7% during the forecast period. A Geographic Information System (GIS) is a computer-based tool that captures, stores, analyses, manages, and presents spatial or geographic data. It enables users to visualize and interpret data in ways that reveal patterns, relationships, and trends through maps and 3D scenes. GIS integrates various data types, supporting decision-making in fields like urban planning, environmental management, transportation, and disaster response, by linking data to specific locations on Earth.
Growing demand for spatial data analytics
As businesses and governments increasingly rely on data-driven decision-making, Geographic Information Systems (GIS) have gained prominence for their ability to analyse spatial information effectively. Organizations across industries such as transportation, urban planning, and agriculture-leverage GIS to optimize operations and enhance strategic planning. The integration of real-time data streams, satellite imagery, and IoT sensors has further increased the demand for advanced spatial analytics. This demand is also fuelled by regulatory requirements and sustainability initiatives that encourage data-centric approaches.
High initial investment and setup cost
Deploying GIS solutions requires substantial financial resources due to expensive hardware, software, and skilled personnel. Many organizations face difficulties in budget allocation for acquiring GIS platforms, integrating them into existing infrastructure, and maintaining system efficiency. Furthermore, the complexity of GIS databases and advanced functionalities necessitates significant training and technical expertise. High costs related to data acquisition, storage, and processing can also deter smaller enterprises from adopting these technologies.
Integration of GIS with emerging technologies
Advancements in artificial intelligence, machine learning, and big data analytics are transforming GIS capabilities, enabling better decision-making and automation. The integration of GIS with blockchain technology enhances data security and transparency, ensuring reliable geospatial records. Additionally, GIS-powered augmented reality applications support industries such as retail, tourism, and construction by offering immersive, location-based experiences. These technological integrations create new avenues for GIS applications across diverse sectors, driving market expansion.
Lack of skilled professionals
Expertise in geospatial analytics, remote sensing, and data interpretation is required to maximize GIS functionalities, but many enterprises struggle to find qualified personnel. Moreover, the rapidly evolving GIS technology landscape requires continuous skill upgrades and professional development. The absence of specialized training programs and academic curricula focusing on GIS further exacerbates this challenge. Additionally, the demand for interdisciplinary skills combining GIS expertise with artificial intelligence and data science complicates recruitment efforts.
Covid-19 Impact
The COVID-19 pandemic accelerated the adoption of Geographic Information Systems (GIS) technologies for tracking infections, analysing mobility patterns, and managing healthcare resources. Governments and businesses used GIS dashboards to visualize virus spread and optimize emergency response strategies. Spatial intelligence became essential in logistics, supply chain management, and e-commerce. GIS-assisted remote collaboration tools gained popularity. However, economic downturns and budget constraints delayed some projects. Post-pandemic, GIS remains a crucial asset in digital transformation efforts.
The hardware segment is expected to be the largest during the forecast period
The hardware segment is expected to account for the largest market share during the forecast period, due to growing demand for high-performance computing systems, advanced GPS devices, and robust data storage solutions. The rise in real-time data processing needs, integration of sensors and drones for spatial data collection, and the expansion of smart infrastructure projects further fuel the growth of GIS hardware components globally.
The healthcare segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the healthcare segment is predicted to witness the highest growth rate, due to its ability to visualize and analyse spatial health data, pinpointing disease hotspots, and tracking outbreaks. It optimizes resource allocation for health facilities, improves accessibility to care, and enhances emergency response planning. Furthermore, GIS aids in strategic planning, identifying areas with unmet needs, and understanding health disparities, driven by the growing recognition of the link between geography and health outcomes.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid urbanization, government investments in geospatial infrastructure, and the increasing adoption of smart city initiatives. Countries such as China, India, and Japan are leveraging GIS for environmental monitoring, urban planning, and disaster management. Additionally, the presence of leading GIS technology providers and research institutions fosters innovation and market growth.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to increased investments in advanced geospatial technologies and analytics. The region benefits from high adoption rates of GIS across industries such as healthcare, agriculture, and defence. The United States leads the market with strong federal support for geospatial intelligence programs and cutting-edge research in GIS. Additionally, the presence of major GIS software providers facilitates innovation and widespread implementation.
Key players in the market
Some of the key players profiled in the Geographic Information System Market include Esri, Hexagon AB, Autodesk Inc., Trimble Inc., Bentley Systems, Incorporated, Pitney Bowes Inc., SuperMap Software Co., Ltd., Topcon Corporation, Maxar Technologies Inc., Caliper Corporation, Computer Aided Development Corporation Ltd. (Cadcorp), General Electric, Hi-Target Surveying Instrument Co. Ltd., L3Harris Technologies, Inc., and Precisely Incorporated.
In May 2025, Hexagon has partnered with ZeroTouch, part of Sandvik, to bring high-speed, high-accuracy non-contact gauging cells to European customers through its Manufacturing Intelligence division. The turnkey cell enables manufacturers to measure key dimensions of mission-critical parts with micron-level accuracy in seconds.
In May 2025, Trimble launched Trimble Forestry One, a comprehensive technology platform built to connect and streamline forestry operations. Unveiled at the Trimble Forestry User Conference, Forestry One enhances forest management by leveraging Trimble's common data environment for seamless integration with Trimble Connected Forest(R) solutions, while also simplifying regulatory compliance and optimizing supply chain management.