¼¼°èÀÇ È­ÇÐÁõÂø¹ý(CVD) ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çüº°, ÁõÂø Àç·áº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®
Chemical Vapor Deposition Market Forecasts to 2032 - Global Analysis By Type (Low-Pressure, Atmospheric Pressure, Metal-Organic, Plasma-Enhanced, and Other Types), Deposition Material, Application, End User and By Geography
»óǰÄÚµå : 1716411
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,797,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,333,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,870,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,476,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è È­ÇÐÁõÂø¹ý(CVD) ½ÃÀåÀº 2025³â¿¡ 275¾ï 3,000¸¸ ´Þ·¯, 2032³â¿¡´Â 571¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 11.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

È­ÇÐÁõÂø¹ý(CVD)Àº ±âü»ó ¹ÝÀÀ ¹°ÁúÀ» ±âÆÇ¿¡ ÁõÂøÇÏ¿© °í¼øµµ °íü ¹°ÁúÀ» Á¦Á¶ÇÏ´Â °øÁ¤À¸·Î, Àü±¸Ã¼ °¡½º¸¦ ¹ÝÀÀ è¹ö¿¡ µµÀÔÇÏ¿© °í¿Â¿¡¼­ È­ÇÐ ¹ÝÀÀ°ú ºÐÇØ¸¦ ÀÏÀ¸ÄÑ ±âÆÇ¿¡ ¾ã°í ±ÕÀÏÇÑ ÄÚÆÃÀ» Çü¼ºÇÕ´Ï´Ù. ÀÌ ±â¼úÀº Á¤¹Ðµµ¿Í Á¶¹ÐÇÏ°í °í¼º´ÉÀÇ ¸·À» ¸¸µå´Â ´É·ÂÀ¸·Î ¹ÝµµÃ¼, ±¤ÇÐ, ÄÚÆÃ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

±¹Á¦Àç»ý¿¡³ÊÁö±â±¸(IRENA)¿¡ µû¸£¸é Áß±¹ÀÇ Å¾籤 ¹ßÀü ¼³ºñ ¿ë·®Àº 2020³â 253.4GW¿¡¼­ 2021³â¿¡´Â ¾à 306.4GW·Î Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ 2021³â Áß±¹ÀÇ Å¾籤 ¹ßÀü ¼öÃâ¾×Àº 300¾ï ´Þ·¯¸¦ ³Ñ¾î Áö³­ 5³â°£ Áß±¹ ¹«¿ª¼öÁö ÈæÀÚÀÇ °ÅÀÇ 7%¸¦ Â÷ÁöÇß½À´Ï´Ù.

ž翡³ÊÁö ¼ö¿ä Áõ°¡

ž翡³ÊÁö ½Ã½ºÅÛÀº È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ žçÀüÁö¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ±× Áß »ó´ç¼ö°¡ CVD ±â¼úÀ» Á¦Á¶¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ž籤 ¹ßÀü°ú °°Àº Àç»ý °¡´É ¿¡³ÊÁö¿øÀÌ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ¶°¿À¸£¸é¼­ Çõ½ÅÀûÀÎ CVD ¹æ¹ýÀº º¸´Ù È¿À²ÀûÀΠžçÀüÁöÆÇ »ý»êÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎ º¸Á¶±Ý°ú ȯ°æ Á¤Ã¥À¸·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î ž翡³ÊÁö ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¼ö¿ä°¡ Áõ°¡Çϰí Áö¼Ó°¡´É¼ºÀÌ °­Á¶µÇ´Â °¡¿îµ¥, žçÀüÁö ±â¼ú ¹ßÀü¿¡ ÀÖ¾î CVD °øÁ¤ÀÇ ¿ªÇÒÀº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. žçÀüÁö ½ÃÀåÀÇ È®´ë´Â ž籤 ¹ßÀüÀÇ ¼º´É°ú ¼ö¸íÀ» Çâ»ó½ÃŰ´Â CVDÀÇ Á߿伺À» °­È­½Ã۰í ÀÖ½À´Ï´Ù.

³ôÀº ÀÚº» ºñ¿ë°ú ¿î¿µ ºñ¿ë

CVD ½Ã½ºÅÛÀº º¹ÀâÇÑ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¸¹Àº Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÌ´Â Áß¼Ò Á¦Á¶¾÷üÀÇ ¹ß¸ñÀ» Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, CVD °øÁ¤ÀÇ °íµµÀÇ Æ¯¼ºÀ¸·Î ÀÎÇØ ¿¡³ÊÁö ¼Òºñ ¹× À¯Áöº¸¼ö¸¦ Æ÷ÇÔÇÑ ¿î¿µ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀüÀÚ ¹× ž翡³ÊÁö¿Í °°Àº ´ë±Ô¸ð ÀÀ¿ë ºÐ¾ß¸¦ À§ÇØ »ý»ê ±Ô¸ð¸¦ È®´ëÇÏ¸é ºñ¿ëÀÌ ´õ ´Ã¾î³¯ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë À庮Àº ƯÈ÷ °¡°Ý¿¡ ¹Î°¨ÇÑ ½ÃÀå¿¡¼­ »ê¾÷ Àü¹ÝÀÇ Ã¤Åÿ¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ °æÁ¦Àû À庮À» ³·Ãß±â À§ÇØ ºñ¿ë È¿À²ÀûÀÎ CVD ±â¼ú ¹× ´ëü Àç·á¿¡ ´ëÇÑ ¿¬±¸¸¦ Ȱ¹ßÈ÷ ÁøÇàÇϰí ÀÖ½À´Ï´Ù.

³ª³ë±â¼ú Ȱ¿ë È®´ë

CVD °øÁ¤Àº Å©±â, ¸ð¾ç, Ư¼ºÀ» Á¤¹ÐÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ´Â ³ª³ë ½ºÄÉÀÏ Àç·áÀÇ Á¦Á¶¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚ, ÇコÄɾî, ¿¡³ÊÁö µîÀÇ »ê¾÷ÀÌ CVD ±â¼ú·Î ±¸ÇöµÇ´Â ÷´Ü ³ª³ë ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. °í¼º´É ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ ¾à¹° Àü´Þ ½Ã½ºÅÛ °­È­¿¡ À̸£±â±îÁö ³ª³ë±â¼úÀÇ ¹üÀ§´Â ºü¸£°Ô È®ÀåµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ºÎ¹®Àº ³ª³ë±â¼ú ¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ¿© Çõ½ÅÀûÀÎ ÀÀ¿ë ºÐ¾ßÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖÀ¸¸ç, CVD¿Í ³ª³ë±â¼úÀÇ À¶ÇÕÀº Àç·á°úÇаú »ê¾÷ ¹ßÀü¿¡ »õ·Î¿î ±æÀ» ¿­¾î°¡°í ÀÖ½À´Ï´Ù.

°øÁ¤ Á¦¾îÀÇ º¹À⼺

¾ÈÁ¤ÀûÀÌ°í °íǰÁúÀÇ CVD ÄÚÆÃ ¹× Çʸ§À» »ý»êÇϱâ À§Çؼ­´Â ¿Âµµ, ¾Ð·Â, È­ÇÐÀû ³óµµ µî ¸î °¡Áö ÆÄ¶ó¹ÌÅ͸¦ Á¤È®ÇÏ°Ô Á¦¾îÇØ¾ß ÇÕ´Ï´Ù. ƯÈ÷ ¹ÝµµÃ¼¿Í °°ÀÌ °íÁ¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ÀÀ¿ë ºÐ¾ß¿¡¼­´Â °øÁ¤ ÆÄ¶ó¹ÌÅͰ¡ ÀÏÁ¤ÇÏÁö ¾ÊÀ¸¸é °áÇÔÀ̳ª ¼º´É ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼÷·ÃµÈ ÀÛ¾÷ÀÚ¿Í °í±Þ Àåºñ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ °øÁ¤ Ç¥ÁØÈ­°¡ ´õ¿í º¹ÀâÇØÁ® äÅÃÀÇ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ CVD °øÁ¤ÀÇ Áö¼ÓÀûÀÎ ¾÷µ¥ÀÌÆ®°¡ ÇÊ¿äÇÕ´Ï´Ù. »ê¾÷°è°¡ ´õ ³ôÀº Á¤¹Ðµµ¿Í È¿À²¼ºÀ» Ãß±¸ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ º¹À⼺À» ±Øº¹ÇÏ´Â °ÍÀº ½ÃÀåÀÇ °ü·Ã¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ:

Äڷγª19 »çÅ´ ȭÇÐÁõÂø¹ý ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÄ °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß¸®°í »ê¾÷ Àü¹ÝÀÇ »ý»ê Áß´ÜÀ» ÃÊ·¡Çß½À´Ï´Ù. ÀÚµ¿Â÷, °¡Àü µîÀÇ ºÐ¾ß¿¡¼­ ¼ö¿ä °¨¼Ò´Â Ãʱ⿡´Â ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÀÌÈÄ ÇコÄÉ¾î ¿ëµµ°ú Àç»ý °¡´É ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ȸº¹¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ûÁ¤ ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¿ì¼±¼øÀ§¸¦ µÎ°í ÀÖÀ¸¸ç, È¿À²ÀûÀΠžçÀüÁö ¹× ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç »ý»ê¿¡ ÀÖ¾î CVDÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Àüµµ¼º Àç·á ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Àüµµ¼º Àç·á ºÐ¾ß´Â ÀüÀÚ ¹× Àç»ý ¿¡³ÊÁö ºÐ¾ß ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, CVD·Î Á¦Á¶µÈ Àüµµ¼º ÄÚÆÃÀº ¹ÝµµÃ¼ ¹× žçÀüÁöÀÇ Àü±âÀû ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Àç·á °úÇÐÀÇ ¹ßÀüÀ¸·Î ƯÁ¤ ¿ëµµ¿¡ ¸Â´Â º¸´Ù È¿À²ÀûÀÎ Àüµµ¼º Àç·á°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â CVD ÄÚÆÃ Àüµµ¼º Àç·áÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÚµ¿Â÷ ºÐ¾ß´Â?

¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ÀÚµ¿Â÷¿¡ ÷´Ü ÀüÀÚ ºÎǰÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °æ·® ¼ÒÀç¿Í CVD ±â¹Ý ÄÚÆÃÀº ÀÚµ¿Â÷ ¿ëµµ¿¡¼­ ¿¬ºñ¿Í ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº CVD ±â¼ú·Î ±¸ÇöµÇ´Â °í¼º´É ¹èÅ͸® ¹× ÀüÀÚ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈ­ÇÒ °ÍÀÔ´Ï´Ù. ÀÚµ¿Â÷ ¼³°è ¹× Á¦Á¶ÀÇ Çõ½ÅÀº Á¤¹Ðµµ¿Í ¼º´ÉÀ» ÃÖ¿ì¼±À¸·Î Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¸ðµÎ ÷´Ü CVD °øÁ¤¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡´Â ¹ÝµµÃ¼ ¹× ž籤 ¹ßÀüÀÇ ÁÖ¿ä »ý»ê ±âÁöÀ̸ç, CVD ±â¼úÀÌ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁö¿Í ±â¼ú Çõ½Å¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÀÌ Áö¿ª¿¡¼­ ÷´Ü CVD °øÁ¤ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±âŸ¿¡µµ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶¿Í ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç·Î ÀÎÇØ ÀÌ Áö¿ªÀÇ ÀåÁ¡Àº ´õ¿í µÎµå·¯Áý´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ±â¼ú ¹ßÀü°ú Àç»ý °¡´É ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³±â ¶§¹®ÀÔ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶ ¹× ÷´Ü R&D¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ°¡ ÀÌ Áö¿ª ½ÃÀå ÁöÀ§¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ž籤 ¹× dz·Â°ú °°Àº ûÁ¤ ¿¡³ÊÁö·ÎÀÇ ÀüȯÀº ¿¡³ÊÁö ÀÀ¿ë ºÐ¾ß¿¡¼­ CVD ±â¹Ý Àç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´É¼ºÀ» ¸ñÇ¥·Î ÇÏ´Â Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í ÀÌ´Ï¼ÅÆ¼ºê°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ È­ÇÐÁõÂø¹ý(CVD) ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ È­ÇÐÁõÂø¹ý(CVD) ½ÃÀå : ÁõÂø Àç·áº°

Á¦7Àå ¼¼°èÀÇ È­ÇÐÁõÂø¹ý(CVD) ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ È­ÇÐÁõÂø¹ý(CVD) ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ È­ÇÐÁõÂø¹ý(CVD) ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Chemical Vapor Deposition Market is accounted for $27.53 billion in 2025 and is expected to reach $57.17 billion by 2032 growing at a CAGR of 11.0% during the forecast period. Chemical Vapor Deposition (CVD) is a process used to produce high-purity solid materials by depositing vapor-phase reactants onto a substrate. In CVD, precursor gases are introduced into a reaction chamber, where they undergo chemical reactions or decomposition at elevated temperatures, forming a thin, uniform coating on the substrate. This technique is widely used in semiconductors, optics, and coatings due to its precision and ability to create dense, high-performance films.

According to the International Renewable Energy Agency (IRENA), the installed solar PV capacity was around 306.4 GW in 2021, up from 253.4 GW in 2020 in China. Additionally, in 2021, the value of China's solar PV exports was over USD 30 billion, almost 7% of China's trade surplus over the last five years.

Market Dynamics:

Driver:

Rise in demand for solar energy

Solar energy systems increasingly rely on efficient, durable photovoltaic cells, many of which incorporate CVD technologies in their production. As renewable energy sources like solar become critical for reducing carbon emissions, innovative CVD methods are enabling more efficient solar panel production. Additionally, government subsidies and environmental policies are accelerating investments in solar energy technologies worldwide. With growing energy needs and emphasis on sustainability, the role of CVD processes in advancing solar technology is pivotal. The expanding solar market reinforces the significance of CVD in boosting photovoltaic performance and longevity.

Restraint:

High capital and operational costs

The complex infrastructure required for CVD systems demands significant initial investment, deterring smaller manufacturers. Moreover, the sophisticated nature of CVD processes increases operational costs, including energy consumption and maintenance. Scaling production for large applications, such as electronics or solar energy, can further inflate expenditure. These cost barriers impact adoption across industries, particularly in price-sensitive markets. Manufacturers are actively researching cost-efficient CVD techniques and alternative materials to mitigate these financial hurdles.

Opportunity:

Increasing use of nanotechnology

CVD processes are instrumental in fabricating nanoscale materials with precise control over size, shape, and properties. Industries like electronics, healthcare, and energy are driving demand for advanced nanomaterials enabled by CVD technology. From creating high-performance semiconductors to enhancing drug delivery systems, the scope of nanotechnology is expanding rapidly. Governments and private sectors are heavily investing in nanotech research, fostering the growth of innovative applications. The convergence of CVD and nanotechnology is opening new avenues for material science and industrial advancements.

Threat:

Complexity in process control

Controlling several parameters, including temperature, pressure, and chemical concentrations, precisely is necessary to produce CVD coatings and films of consistently high quality. Inconsistent process parameters can lead to defects or performance issues, particularly in applications demanding high precision, like semiconductors. The need for skilled operators and advanced equipment further complicates process standardization, creating barriers for adoption. Additionally, rapid advancements in technology necessitate continuous updates in CVD processes to stay competitive. As industries demand higher precision and efficiency, overcoming these complexities is essential to maintain market relevance.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the Chemical Vapor Deposition Market, disrupting supply chains and halting production across industries. Reduced demand from sectors like automotive and consumer electronics initially affected market growth. However, increased focus on healthcare applications and renewable energy post-pandemic offered a recovery pathway. Governments prioritized investments in clean energy projects, highlighting the importance of CVD in producing efficient solar cells and energy storage solutions.

The conductive materials segment is expected to be the largest during the forecast period

The conductive materials segment is expected to account for the largest market share during the forecast period, driven by increasing demand from electronics and renewable energy sectors. Conductive coatings produced through CVD are critical for enhancing electrical performance in semiconductors and solar cells. Advancements in material science are enabling more efficient conductive materials tailored to specific applications. Additionally, rising investments in energy storage technologies further boost the adoption of CVD-coated conductive materials.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate, fuelled by increasing adoption of advanced electronic components in vehicles. Lightweight materials and CVD-based coatings are crucial for improving fuel efficiency and durability in automotive applications. The transition toward electric vehicles further accelerates demand for high-performance battery and electronic components enabled by CVD technology. Innovations in automotive design and manufacturing prioritize precision and performance, both of which are supported by advanced CVD processes.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, owing to its leadership in electronics manufacturing and solar energy adoption. Countries like China, Japan, and South Korea are major hubs for semiconductor and photovoltaic production, where CVD technologies are widely utilized. Government support for renewable energy and technological innovation drives the adoption of advanced CVD processes in the region. Additionally, Asia Pacific benefits from cost-effective manufacturing and the presence of key market players.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, due to advancements in technology and increasing focus on renewable energy. Robust investments in semiconductor manufacturing and cutting-edge R&D strengthen the region's market position. The transition toward clean energy solutions, such as solar and wind, amplifies the demand for CVD-based materials in energy applications. Government incentives and initiatives targeting energy efficiency and sustainability fuel market growth.

Key players in the market

Some of the key players in Chemical Vapor Deposition Market include Chiheng Group, Veeco Instruments Inc., SULZER Ltd., Lam Research Corporation, Oxford Instruments Plc, Applied Materials, Inc., Kokusai Electric Corporation, Tokyo Electron Limited, ULVAC, Inc., Fujitsu Limited, Chiheng Group, First Nano, HeFei Kejing Materials Technology Co., Ltd., Tegal Corporation, and ASM International N.V.

Key Developments:

In March 2025, Oxford Instruments NanoScience introduces its low temperature, superconducting magnet measurement system for fundamental materials physics, TeslatronPT Plus. The system promises simpler access to high performance measurement capabilities, allowing users to spend more time on the measurement rather than the set-up, while gaining a flexible, scalable and secure system.

In August 2024, Veeco Instruments Inc. announced that IBM selected the WaferStorm(R) Wet Processing System for Advanced Packaging applications and has entered into a joint development agreement to explore advanced packaging applications using multiple wet processing technologies from Veeco.

Types Covered:

Deposition Materials Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Chemical Vapor Deposition Market, By Type

6 Global Chemical Vapor Deposition Market, By Deposition Material

7 Global Chemical Vapor Deposition Market, By Application

8 Global Chemical Vapor Deposition Market, By End User

9 Global Chemical Vapor Deposition Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â