Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àå±â ¿¡³ÊÁö ÀúÀå(LDES) ½ÃÀåÀº 2025³â¿¡ 55¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 14.6%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 142¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
Àå±â ¿¡³ÊÁö ÀúÀå(LDES)À̶õ ¸î ½Ã°£¿¡¼ ¸çÄ¥, ȤÀº ¸î ÁÖ°£ÀÇ Àå±â°£¿¡ °ÉÃÄ Àü·ÂÀ» ÀúÀå ¹× ¹æÀüÇϵµ·Ï ¼³°èµÈ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹ßÀü·®ÀÌ ÀûÀº ±â°£ µ¿¾È ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹é¾÷À» Á¦°øÇÔÀ¸·Î½á ž籤À̳ª dz·Â°ú °°Àº Àç»ý ¿¡³ÊÁö ¹ßÀüÀÇ °£ÇæÀûÀÎ ±ÕÇüÀ» ¸ÂÃß´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °íµµÀÇ ¹èÅ͸®, ¾ç¼ö¹ßÀü, ¿ÀúÀå µîÀÇ LDES ±â¼úÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» Áö¿øÇÏ°í ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̵éÀº ¿¡³ÊÁöÀÇ È¸º¹·ÂÀ» ³ôÀ̰í ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸À» ÁÙÀ̸ç Áö¼Ó °¡´ÉÇÑ Àúź¼Ò ¿¡³ÊÁöÀÇ ¹Ì·¡¸¦ ½ÇÇöÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
ž翡³ÊÁö»ê¾÷ Çùȸ(SEIA)¿¡ µû¸£¸é ¹Ì±¹ÀÇ 2023³â ž翡³ÊÁö µµÀÔ·®Àº 3,240¸¸ kW·Î 2022³âºÎÅÍ 51% Áõ°¡Çß½À´Ï´Ù.
½ÅÀç»ý ¿¡³ÊÁö ÅëÇÕ
½ÅÀç»ý ¿¡³ÊÁö ½ÃÀå ÅëÇÕÀº Àü·Â¸ÁÀ» ¾ÈÁ¤½ÃŰ°í ¿¡³ÊÁöÀÇ ½Å·Ú¼ºÀ» ³ôÀ̴µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ž籤°ú dz·Â µî ½ÅÀç»ý ¿¡³ÊÁö¿ø¿¡¼ ¹ßÀüµÈ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇÔÀ¸·Î½á LDES ½Ã½ºÅÛÀº °£ÇæÀûÀÎ ¹ßÀü¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÅëÇÕÀº ¼ö¿ä¿Í °ø±ÞÀÇ ±ÕÇüÀ» ¸ÂÃß°í Àç»ý ¿¡³ÊÁö Ãâ·ÂÀÌ ³·Àº ±â°£¿¡µµ ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» È®º¸ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥ LDES ±â¼úÀº Àúź¼Ò·Î Àç»ý °¡´ÉÇÑ Àü·Â¿¡ ÀÇÇÑ ¹Ì·¡·ÎÀÇ ¿øÈ°ÇÑ ÀÌÇàÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
´Ù¸¥ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç°úÀÇ °æÀï
¸®Æ¬ À̿ ¹èÅ͸® ¹× ¾ç¼ö ¹ßÀü°ú °°Àº ´Ù¸¥ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç°úÀÇ °æÀïÀº ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëü ±â¼úÀº Á¾Á¾ Ãʱ⠺ñ¿ëÀÌ Àú·ÅÇϰí Àü°³°¡ ºü¸£±â ¶§¹®¿¡ ÀúÀå ¿ë·®ÀÌ ±æÁö¸¸ LDES ¼Ö·ç¼ÇÀÇ ±×´Ã¿¡ °¡·ÁÁú ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, LDES´Â ÅõÀÚ¿Í ½ÃÀå Á¡À¯À²À» È®º¸Çϴµ¥ ÀÖ¾î °úÁ¦¿¡ Á÷¸éÇÏ¿© Àå±â°£ÀÇ ¿¡³ÊÁö ÀúÀå ¿ä±¸¿¡ ´ëÀÀÇÒ °¡´É¼ºÀÌ Á¦ÇÑµÇ¾î º¸´Ù Áö¼Ó °¡´ÉÇÏ°í ½Å·Ú¼ºÀÌ ³ôÀº ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.
¿¡³ÊÁöÀÇ µ¶¸³¼º ¹× ¾ÈÀü¼º
¾ÈÁ¤ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁöÀÇ ¹Ì·¡¸¦ âÃâÇϱâ À§Çؼ´Â ½ÃÀå¿¡¼ ¿¡³ÊÁöÀÇ µ¶¸³¼º°ú ¾ÈÀü¼ºÀÌ ÇʼöÀûÀÔ´Ï´Ù. ½ÅÀç»ý ¿¡³ÊÁö ¹ßÀü ±â¼úÀº ½ÅÀç»ý ¿¡³ÊÁö¸¦ Àå±â°£ ÀúÀåÇÏ¿© ¹ßÀü·®ÀÌ ÀúÇÏµÈ °æ¿ì¿¡µµ ¾ÈÁ¤µÈ Àü·Â°ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù. À̸¦ ÅëÇØ ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀÌ°í ¼ÛÀü¸ÁÀÇ ½Å·Ú¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. º¸´Ù ±ú²ýÇÑ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, LDES´Â ¿¡³ÊÁö °ø±ÞÀ» È®º¸Çϰí, È¥¶õÀ» ¿ÏÈÇϰí, º¸´Ù °ÀÎÇϰí ÀÚ±ÞÀÚÁ·ÀûÀÎ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
±ÔÁ¦ ¹× Á¤Ã¥ÀÇ ºÒÈ®½Ç¼º
±ÔÁ¦ ¹× Á¤Ã¥ÀÇ ºÒÈ®½Ç¼ºÀº ½ÃÀå ¼ºÀåÀ» Å©°Ô ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Àϰü¼ºÀÌ ¾ø°Å³ª ºÒºÐ¸íÇÑ ±ÔÁ¦´Â ÅõÀÚ À§ÇèÀ» ¾ß±âÇÏ°í ±â¾÷ÀÌ LDES ÇÁ·ÎÁ§Æ®¿¡ ÀÚ¿øÀ» ÅõÀÔÇÏ´Â ÀÇ¿åÀ» ²©½À´Ï´Ù. Àμ¾Æ¼ºê ¹× º¸Á¶±Ý°ú °°Àº ¸íÈ®ÇÑ Á¤Ã¥ Áö¿øÀÌ ¾øÀ¸¸é LDES ±â¼úÀº ±âÁ¸ ¼Ö·ç¼Ç°úÀÇ °æÀï¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº ±â¼ú Çõ½ÅÀ» ´ÊÃß°í LDESÀÇ º¸±ÞÀ» ´ÊÃß°í °á±¹ ´õ °ÀÎÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó·ÎÀÇ ÀüȯÀ» ¹æÇØÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ À¯ÇàÀº ½ÃÀå¿¡ ÆÄ±«ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸Á Áß´Ü, ³ëµ¿·Â ºÎÁ·, Á¦Á¶ ¹× ¼³Ä¡ Áö¿¬À¸·Î ÀÎÇØ LDES ±â¼ú °³¹ßÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ ÆÒµ¥¹Í ±â°£ Áß ½ÅÀç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ °¨¼Ò¿Í ¿ì¼± »çÇ× Àüȯµµ ½ÃÀå ¼ºÀåÀ» ¹æÇØÇß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ¶ÇÇÑ ·¹Áö¸®¾ðÆ® ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×°í, ÆÒµ¥¹Í ÀÌÈÄ Àå±âÀûÀÎ ¿¡³ÊÁö ¾Èº¸¿Í Áö¼Ó °¡´É¼ºÀ» È®º¸ÇÏ´Â ÁÖ¿ä ¿ä¼Ò·Î¼ LDES ¼Ö·ç¼Ç¿¡ ´ëÇÑ »õ·Î¿î °ü½ÉÀ» ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸Á
ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ȸÀü ¿îµ¿ ¿¡³ÊÁöÀÇ ÇüÅ·Π¿¡³ÊÁö¸¦ ÀúÀåÇÔÀ¸·Î½á ÇöóÀÌÈÙÀº ½Å¼ÓÇÑ ÀÀ´ä ½Ã°£°ú ±ä »çÀÌŬ ¼ö¸íÀ» Á¦°øÇÕ´Ï´Ù. ÇöóÀÌÈÙÀº °£ÇæÀûÀÎ Àç»ý ¿¡³ÊÁö¿øÀÇ ±ÕÇüÀ» ¸ÂÃß°í Àå±â°£¿¡ °ÉÃÄ ¼ÛÀü¸ÁÀ» ¾ÈÁ¤½Ã۴µ¥ ÀûÇÕÇÕ´Ï´Ù. À¯Áöº¸¼ö°¡ ÃÖ¼Òȵǰí È¿À²ÀÌ ³ôÀº ÇöóÀÌÈÙ ½Ã½ºÅÛÀº ¿¡³ÊÁö ¾Èº¸¿¡ ±â¿©Çϰí ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸À» ÁÙÀ̸ç Áö¼Ó °¡´ÉÇÏ°í °ÀÎÇÑ ¿¡³ÊÁö ±×¸®µå·ÎÀÇ ÀÌÇàÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÁÖÅà ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ÁÖÅà ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÷´Ü ¹èÅ͸®³ª ÇöóÀÌÈÙ µî LDES ±â¼úÀ» ÅëÇØ ÁÖÅà ¼ÒÀ¯ÀÚ´Â À׿© Àç»ý ¿¡³ÊÁö¸¦ ÀúÀåÇØ ¹ßÀü·® ÀúÇϳª Á¤Àü ½Ã »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÃàÀü ±â°£À» ¿¬ÀåÇÏ°í ¼ÛÀü¸ÁÀÇ È¸º¹·ÂÀ» ³ô¿© ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãä´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ÁÖÅÿë LDES´Â ÀÚ±ÞÀÚÁ·ÇÏ°í ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÁÖÅÃÀ» ¸¸µå´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½ÅÀç»ý ¿¡³ÊÁö ¼ö¿ä Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡µéÀº ûÁ¤¿¡³ÊÁöÀÇ ÀÌÇàÀ» Áö¿øÇϱâ À§ÇØ LDES ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. dzºÎÇÑ Àç»ý °¡´É ÀÚ¿ø°ú ½Å·Ú¼º ³ôÀº ¿¡³ÊÁö ÀúÀåÀÇ Çʿ伺¿¡ ÀÇÇØ ¼±Áø ¹èÅ͸®³ª ¾ç¼ö ¹ßÀü µîÀÇ LDES ¼Ö·ç¼ÇÀº ÀÌ Áö¿ª¿¡¼ÀÇ °£ÇæÀûÀÎ ¹ßÀü ±Øº¹, ±×¸®µå ȸº¹·Â Çâ»ó, Áö¼Ó °¡´É¼º ¸ñÇ¥ ´Þ¼ºÀÇ ¿¼è°¡ µË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹èÅ͸®, ÇÃ·Î¿ì ¹èÅ͸®, ¿ÀúÀå ½Ã½ºÅÛ µîÀÇ ¿¡³ÊÁö ÀúÀå ±â¼ú°ú °ü·ÃµÈ ºñ¿ë Àý°¨À¸·Î LDES´Â º¸´Ù ÀçÁ¤ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ ºÏ¹Ì¿¡¼´Â ¿¬¹æÁ¤ºÎ Â÷¿ø¿¡¼µµ ÁÖÁ¤ºÎ Â÷¿ø¿¡¼µµ º¸Á¶±Ý, Á¶¼º±Ý, ¼¼Á¦ ÇýÅÃÀ» ÅëÇØ ¿¡³ÊÁö ÀúÀåÀ» Áö¿øÇÏ´Â ¿òÁ÷ÀÓÀÌ °ÇØÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ÀÇ ÀÎÇ÷¹ÀÌ¼Ç »è°¨¹ý¿¡´Â ¿¡³ÊÁö ÀúÀå ±â¼úÀ» Áö¿øÇÏ´Â Á¶Ç×ÀÌ Æ÷ÇԵǾî ÀÖ¾î LDES °³¹ß¿¡ ÀÌÀÍÀ» °¡Á®´Ù ÁÖ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Long Duration Energy Storage Market is accounted for $5.5 billion in 2025 and is expected to reach $14.2 billion by 2032 growing at a CAGR of 14.6% during the forecast period. Long Duration Energy Storage (LDES) describes energy storage systems designed to store and discharge electricity over extended periods, ranging from several hours to days or even weeks. These systems help balance intermittent renewable energy sources like solar and wind by providing a reliable backup during periods of low generation. LDES technologies, such as advanced batteries, pumped hydro, or thermal storage, can support grid stability and ensure a steady power supply. They are critical for enhancing energy resilience, reducing reliance on fossil fuels, and enabling a sustainable, low-carbon energy future.
According to the Solar Energy Industries Association (SEIA), the U.S. installed 32.4 GW of solar energy in 2023, a 51% increase from 2022.
Integration of Renewable Energy
The integration of renewable energy into the market plays a crucial role in stabilizing power grids and enhancing energy reliability. By storing excess energy generated from renewable sources like solar and wind, LDES systems provide a sustainable solution for intermittent generation. This integration helps balance supply and demand, ensuring consistent power availability during periods of low renewable output. As the demand for clean energy increases, LDES technologies enable a seamless transition to a low-carbon, renewable-powered future.
Competition from other energy storage solutions
Competition from other energy storage solutions, such as lithium-ion batteries or pumped hydro storage, can hinder the growth of the market. These alternative technologies, often with lower upfront costs and faster deployment, may overshadow LDES solutions despite their longer storage capabilities. As a result, LDES might face challenges in securing investment and market share, limiting its potential to address energy storage needs for extended periods and delaying the transition to more sustainable, reliable energy systems.
Energy Independence and security
Energy independence and security in the market are vital for creating a stable and sustainable energy future. LDES technologies store renewable energy for extended periods, ensuring a consistent power supply even when generation is low. This reduces dependence on fossil fuels and enhances grid reliability. As demand for cleaner energy grows, LDES plays a critical role in securing energy supply, mitigating disruptions, and supporting the transition to a more resilient and self-sufficient energy system.
Regulatory and policy uncertainty
Regulatory and policy uncertainty can significantly impede the growth of the market. Inconsistent or unclear regulations can create investment risks, discouraging companies from committing resources to LDES projects. Without clear policy support, such as incentives or subsidies, LDES technologies may struggle to compete with established solutions. This uncertainty can also slow down innovation and delay the widespread adoption of LDES, ultimately hindering the transition to a more resilient, sustainable energy infrastructure.
Covid-19 Impact
The COVID-19 pandemic had a disruptive impact on the market. Supply chain interruptions, labor shortages, and delays in manufacturing and installation slowed the development of LDES technologies. Additionally, reduced investment in renewable energy projects and shifting priorities during the pandemic hindered market growth. However, the pandemic also highlighted the need for resilient energy systems, sparking renewed interest in LDES solutions as a key element in ensuring long-term energy security and sustainability post-pandemic.
The flywheel energy storage segment is expected to be the largest during the forecast period
The flywheel energy storage segment is expected to account for the largest market share during the forecast period. By storing energy in the form of rotational kinetic energy, flywheels offer rapid response times and long cycle lives. They are well-suited for balancing intermittent renewable energy sources and providing grid stability over extended periods. With minimal maintenance and high efficiency, flywheel systems can contribute to energy security, reduce dependence on fossil fuels, and support the transition to a sustainable, resilient energy grid.
The residential segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the residential segment is predicted to witness the highest growth rate. LDES technologies, such as advanced batteries and flywheels, enable homeowners to store excess renewable energy for use during periods of low generation or power outages. These solutions offer extended storage durations, improving grid resilience and reducing reliance on fossil fuels. As demand for sustainable energy solutions grows, residential LDES will play a crucial role in creating self-sufficient, energy-efficient homes.
During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by increasing demand for renewable energy. Countries like China, Japan, and India are investing heavily in LDES technologies to support their clean energy transitions. With abundant renewable resources and the need for reliable energy storage, LDES solutions such as advanced batteries and pumped hydro are key to overcoming intermittent power generation, improving grid resilience, and achieving sustainability goals in the region.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR. The reduction in costs associated with energy storage technologies, including batteries, flow batteries, and thermal storage systems, has made LDES more financially viable. Additionally, Governments at both federal and state levels in North America are increasingly supporting energy storage through subsidies, grants, and tax incentives. For instance, the U.S. Inflation Reduction Act includes provisions for supporting energy storage technologies, which benefits LDES development.
Key players in the market
Some of the key players profiled in the Long Duration Energy Storage Market include Alsym Energy Inc., Ambri Incorporated., CMBlu Energy AG., Energy Vault, Inc., Eos Energy Enterprises, ESS Tech, Inc., Form Energy, GKN Hydrogen, Highview Power, Invinity Energy Systems, QuantumScape Battery, Inc., RheEnergise Limited., SFW., Sumitomo Electric Industries, Ltd., VFlowTech Pte Ltd. and VoltStorage.
In February 2025, Sumitomo Electric Industries Ltd (TYO:5802) has launched a project to install a 4-MW/12.5-MWh redox flow battery system in Ama Town, in Japan's Oki Islands.The project is a joint effort between Chugoku Electric Power Transmission & Distribution Co Inc, Ama Town, and como-gomo.company, supported by a subsidy from Japan's ministry of the environment.
In January 2024, Sumitomo Electric Industries, Ltd. announced that its redox flow battery (hereinafter "RF battery") has been selected as a grid-scale battery for a power system stabilization project by SHIN-IDEMITSU Co., Ltd. (Headquarters: Hakata-ku, Fukuoka; President and Group CEO: Yasunori Idemitsu; hereinafter "IDEX"). Construction for this project has now commenced in Kumamoto.