¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : ¼¾¼­, 1Â÷ ÀüÁö, ±¸¼º ¿ä¼Ò, ±â¼ú, ¿ëµµ, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(-2032³â)
Energy Harvesting System for Wireless Sensor Network Market Forecasts to 2032 - Global Analysis By Sensors, Primary Batteries, Component, Technology, Application and By Geography
»óǰÄÚµå : 1700141
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,889,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,450,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,011,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,643,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 26¾ï 2,200¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 17.9%¸¦ ³ªÅ¸³»¸ç, 2032³â¿¡´Â 83¾ï 300¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛÀº ÁÖº¯ ¿¡³ÊÁö(ž翡³ÊÁö, ¿­ ¿¡³ÊÁö, Áøµ¿ ¿¡³ÊÁö, ¹«¼± Á֯ļö)¸¦ ÀÌ¿ëÇÏ¿© ¼¾¼­ ³ëµå¿¡ Àü·ÂÀ» °ø±ÞÇÔÀ¸·Î½á ¹èÅ͸®¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙ¿©ÁÝ´Ï´Ù. ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ´Â ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©ÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í °úÁ¦¿Í ¿ø°ÝÁö¿¡¼­ÀÇ ÀÚ¸³ µ¿ÀÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ³×Æ®¿öÅ©ÀÇ ½Å·Ú¼º, µ¥ÀÌÅÍ Àü¼Û, Áö¼Ó °¡´ÉÇÑ ¼¾½ÌÀº È¿°úÀûÀÎ ¿¡³ÊÁö ¼öÈ®¿¡ ÀÇÇØ º¸ÁõµË´Ï´Ù.

IoT¿Í ½º¸¶Æ® µð¹ÙÀ̽º ¼ö¿ä Áõ°¡

Àå±â°£ÀÇ À¯Áö º¸¼ö°¡ ÇÊ¿ä¾ø´Â IoT ¿ëµµÀÇ ¼ºÀå¿¡ µû¶ó ÀÚ¸³Çü, ¹èÅ͸®°¡ ¾ø´Â ¼¾¼­°¡ Á¡Á¡ ´õ ÇÊ¿äÇØÁö°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¹èÅ͸®¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ¶³¾îÁö°í ºñ¿ë È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀÌ Çâ»óµË´Ï´Ù.

º¹ÀâÇÑ ÅëÇÕ ¿ä±¸ »çÇ×

¼­·Î ´Ù¸¥ ¿¡³ÊÁö ¼Ò½º, ÀúÀå ÀåÄ¡ ¹× Àü·Â °ü¸® ȸ·Î¸¦ °áÇÕÇϸé ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. È®Àå °¡´É¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. Çõ½Å°ú ¼ö¿ëÀº ¸ÖƼ ¼Ò½º ¿¡³ÊÁö ¼öÈ®ÀÇ ÅëÇÕ °æÇèÀÌ ºÎÁ·ÇÏ¿© ÀüüÀûÀ¸·Î º¼ ¶§ ÀÌ·¯ÇÑ Àå¾Ö´Â ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÏ°í ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¿¡³ÊÁö ¼öÈ® ±â¼úÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀ» Á¦ÇÑÇÕ´Ï´Ù.

¿þ¾î·¯ºí ¼¾¼­ ¹× ÇコÄÉ¾î ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀÌ·¯ÇÑ ¼¾¼­´Â ½Ç½Ã°£À¸·Î °Ç°­ »óŸ¦ È®ÀÎÇϱâ À§ÇØ ÀÏÁ¤ÇÑ Àü·ÂÀ» ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ ¿¡³ÊÁö ¼öÈ®Àº Áö¼Ó °¡´ÉÇÑ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ÇコÄɾ¼­ IoTÀÇ ÀÌ¿ë È®´ë¿¡ ÀÇÇØ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ȯ°æ Á¶°ÇÀÇ º¯µ¿

žç, dz·Â, ¿­ ¿¡³ÊÁö¿øÀÇ ½Å·Ú¼ºÀº ¿Âµµ, dz¼Ó, ÇÞºûÀÇ º¯µ¿¿¡ ÀÇÇØ ¿µÇâÀ» ¹Þ½À´Ï´Ù. ¼ö¸íÀ» ÁÙÀÌ°í ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» À¯ÁöÇÏ´Â °ÍÀº ¿¹»óÄ¡ ¸øÇÑ ±âÈÄ º¯È­¿Í °èÀý º¯µ¿¿¡ ÀÇÇØ ´õ¿í ¾î·Á¿öÁý´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå¿¡ Å« ¿µÇâÀ» ÁÖ¾úÀ¸¸ç, ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ°ú Á¦Á¶ Ȱµ¿ÀÇ Áö¿¬À» ÀÏÀ¸Ä×½À´Ï´Ù. ¸µ°ú IoT ±â¹Ý ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿¡ ´ëÇÑ °ü½ÉÀ» ³ô¿´½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¿Âµµ ¼¾¼­ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿Âµµ ¼¾¼­ ºÐ¾ß´Â ¿ÜºÎ Àü¿ø ¾øÀÌ È¿À²ÀûÀΠȯ°æ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ö¸íÀÌ ¿¬ÀåµÇ¾î À¯Áö º¸¼ö ¹× ¹èÅ͸® ±³Ã¼ ºñ¿ëÀÌ Àý°¨µË´Ï´Ù. ½Ç½Ã°£ ¿Âµµ µ¥ÀÌÅÍ´Â ³ó¾÷, ½º¸¶Æ® ºôµù ¹× »ê¾÷ ÀÚµ¿È­¿Í °°Àº »ê¾÷ÀÇ È¿À²ÀûÀÎ ¿î¿µ¿¡ µµ¿òÀÌ µË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È »ê¾÷ ÀÚµ¿È­ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È À¯Áö º¸¼ö ºñ¿ë°ú ¿¡³ÊÁö ºñ¿ë Àý°¨À¸·Î »ê¾÷ ÀÚµ¿È­ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¡ÀÌÅÍ Àü¼ÛÀ» Á¦°øÇϱâ À§ÇØ »ê¾÷°è¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ ¶Ù¾î³ª°í ȯ°æ ģȭÀûÀÎ ÀÚµ¿È­ ¼Ö·ç¼ÇÀÇ Çʿ伺À¸·Î ½ÃÀå È®´ë°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½º¸¶Æ®½ÃƼ¿¡ ´ëÇÑ ³ë·Â°ú Àú¼ÒºñÀü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¡³ÊÁö ¼öÈ® ±â¼úÀÇ ¹ßÀüÀº ¼¾¼­ ³×Æ®¿öÅ©ÀÇ È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç°ú IoT È®´ë¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÁÖÀ§ÀÇ ¿¡³ÊÁö¿øÀ» Àü·ÂÀ¸·Î º¯È¯ÇÏ¿© ¹«¼±¼¾¼­¸¦ ÀÛµ¿½ÃÄÑ ¹èÅ͸®¿Í À¯Áöº¸¼öÀÇ Çʿ伺À» ÁÙÀÔ´Ï´Ù.

¹«·á »ç¿ëÀÚ ÁöÁ¤ ¿ÀÆÛ¸µ :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : ¼¾¼­º°

Á¦6Àå ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : 1Â÷ ÀüÁöº°

Á¦7Àå ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : ±¸¼º ¿ä¼Òº°

Á¦8Àå ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©¿ë ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Energy Harvesting System for Wireless Sensor Network Market is accounted for $2.622 billion in 2025 and is expected to reach $8.303 billion by 2032 growing at a CAGR of 17.9% during the forecast period. An Energy Harvesting System (EHS) for Wireless Sensor Networks (WSNs) reduces reliance on batteries by harnessing ambient energy (solar, thermal, vibrational, or radio frequency) to power sensor nodes. Energy sources, harvesters, circuits for power control, and storage devices make up this system. EHS extends the life of WSNs, allowing for independent operation in challenging or remote conditions. Network dependability, data transfer, and sustainable sensing are all guaranteed by effective energy harvesting. Performance is enhanced by developments in low-power circuits and adaptive energy management, which makes WSNs suitable for industrial, environmental monitoring.

Market Dynamics:

Driver:

Increasing demand for IoT and smart devices

Self-sustaining, battery-free sensors are becoming more and more necessary as IoT applications grow in order to guarantee long-term, maintenance-free operations. By turning ambient energy sources like solar, thermal, and vibration into power, energy harvesting devices allow wireless sensors to function effectively. This improves cost-effectiveness and sustainability by lowering reliance on traditional batteries. These systems are being increasingly adopted by industries like healthcare, smart homes, and industrial automation to enhance communication and data monitoring. As a result, there are notable developments and investments in energy-efficient sensor technologies taking place in the industry.

Restraint:

Complex integration requirements

Combining different energy sources, storage devices, and power management circuits can lead to compatibility problems. Scalability and deployment are made more difficult by the requirement for specialized hardware and software. Longer development times hinder commercialization and limit the possibilities for market expansion. Innovation and acceptance are hampered by a lack of experience integrating multi-source energy gathering. When taken as a whole, these obstacles hinder market growth and restrict the broad use of energy-harvesting technologies in wireless sensor networks.

Opportunity:

Rising demand for wearable and healthcare sensors

Energy harvesting is a sustainable approach because these sensors need constant electricity to check health in real time. Energy harvesting devices increase device efficiency by extending battery life and lowering need on frequent charging. The need for self-powered sensors is further increased by the growing use of IoT in healthcare. Wearable power generation is enhanced by developments in energy harvesting technologies, such as thermoelectric and piezoelectric solutions. The demand for dependable, long-lasting energy sources is driving market expansion as healthcare applications increase.

Threat:

Fluctuations in environmental conditions

The dependability of solar, wind, and thermal energy sources is impacted by variations in temperature, wind speed, and sunlight. Unstable sensor performance and data transmission issues are caused by irregular energy supplies. Extreme weather can shorten the lifespan of energy harvesting systems by deteriorating their components. Maintaining a steady electricity supply is made more difficult by unforeseen climate swings and seasonal variations. Energy harvesting system usage in wireless sensor networks consequently becomes less dependable and economical.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the Energy Harvesting System for Wireless Sensor Network market, causing disruptions in the global supply chain and delaying manufacturing activities. Reduced industrial operations and project postponements led to decreased demand initially. However, the crisis accelerated the adoption of smart monitoring and IoT-based solutions, boosting interest in energy-efficient wireless sensor networks. Growing investments in smart infrastructure and industrial automation propelled the market's slow recovery as industries restarted operations with an emphasis on automation and sustainability.

The temperature sensors segment is expected to be the largest during the forecast period

The temperature sensors segment is expected to account for the largest market share during the forecast period by enabling efficient environmental monitoring without external power sources. To transform temperature variations into useful energy, these sensors make use of energy collecting devices such as thermoelectric generators. This feature lowers maintenance and battery replacement expenses by extending the life of wireless sensor networks. Real-time temperature data helps industries like agriculture, smart buildings, and industrial automation run more efficiently. The market is expanding even faster due to the rising need for self-powered and environmentally friendly sensor solutions.

The industrial automation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the industrial automation segment is predicted to witness the highest growth rate, due to reduce maintenance and energy costs. By removing the need for battery replacements in tough and distant situations, these systems improve operational efficiency. Energy harvesting is used by industries to provide smooth data transfer for real-time monitoring and predictive maintenance. Market expansion is further accelerated by the need for energy-efficient and environmentally friendly automation solutions. Energy harvesting system integration in wireless sensor networks is growing as more businesses embrace IIoT and smart manufacturing.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing smart city initiatives and demand for low-power solutions. Countries like China, Japan, and India are investing in smart infrastructure, industrial automation, and smart agriculture, boosting adoption. Advancements in energy harvesting technologies such as solar, thermal, and RF energy sources are enhancing sensor network efficiency. Government initiatives promoting renewable energy and smart cities further fuel market expansion. Key players are focusing on innovation and strategic partnerships to strengthen their presence in this evolving market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the increased demand for sustainable energy solutions and IoT expansion. Industries like smart cities, industrial automation, and healthcare are driving adoption. These systems convert ambient energy sources like solar, thermal, and kinetic energy into electrical power to run wireless sensors, reducing the need for batteries and maintenance. In countries like the U.S. and Canada, the increasing adoption of IoT technologies and smart cities further boosts the demand for energy harvesting systems, improving efficiency and environmental impact.

Key players in the market

Some of the key players profiled in the Energy Harvesting System for Wireless Sensor Network Market include STMicroelectronics, Texas Instruments, EnOcean GmbH, Fujitsu Limited, Cypress Semiconductor, ABB Ltd., Maxim Integrated, Laird Thermal Systems, Analog Devices, Wurth Elektronik, Microchip Technology, Murata Manufacturing, Powercast Corporation, Adamant Namiki Precision Jewel Co., Ltd., LORD MicroStrain, Cymbet Corporation, Silicon Labs and Mide Technology.

Key Developments:

In January 2025, EnOcean acquired Undagrid B.V., a leading provider of localization solutions. This acquisition aims to expand EnOcean's portfolio into tracking, tracing, and sensing solutions, thereby entering new vertical markets and enhancing asset management capabilities with advanced localization and sensing technologies.

In October 2024, STMicroelectronics and Qualcomm Technologies announced a strategic collaboration to integrate Qualcomm's AI-powered wireless connectivity technologies, including Wi-Fi/Bluetooth/Thread combo system-on-a-chip (SoC), with ST's STM32 microcontroller ecosystem. This partnership aims to simplify the design of next-generation industrial and consumer IoT applications augmented by edge AI, enhancing the capabilities of wireless sensor networks.

In September 2023, STMicroelectronics partnered with InnoPhase IoT to develop an evaluation platform combining ST's STM32U5 MCU with InnoPhase IoT's Talaria TWO Wi-Fi/BLE evaluation board. This collaboration aims to deliver ultra-low power, cloud-connected IoT solutions with extended battery life, suitable for applications like wearables and industrial IoT, thereby enhancing the efficiency of wireless sensor networks.

Sensors Covered:

Primary Batteries Covered:

Components Covered:

Technologies Covered:

Applications Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Energy Harvesting System for Wireless Sensor Network Market, By Sensors

6 Global Energy Harvesting System for Wireless Sensor Network Market, By Primary Batteries

7 Global Energy Harvesting System for Wireless Sensor Network Market, By Component

8 Global Energy Harvesting System for Wireless Sensor Network Market, By Technology

9 Global Energy Harvesting System for Wireless Sensor Network Market, By Application

10 Global Energy Harvesting System for Wireless Sensor Network Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â