ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, Àü°³ ¹æ½Äº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Artificial Intelligence (AI) Infrastructure Market Forecasts to 2030 - Global Analysis By Component (Hardware, Software, Services and Other Components), Deployment Mode, Technology, Application, End User and By Geography
»óǰÄÚµå : 1636793
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,021,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,617,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,213,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,881,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀåÀº 2024³â 479¾ï 6,000¸¸ ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 31.1%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2,435¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀΰøÁö´É(AI) ÀÎÇÁ¶ó´Â AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ °³¹ß, ¹èÆ÷ ¹× ½ÇÇàÀ» Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ ±â¹Ý ±â¼ú ¹× ½Ã½ºÅÛÀ» ¸»Çϸç, GPU, CPU, FPGA, ASIC µîÀÇ Çϵå¿þ¾î ±¸¼º¿ä¼Ò¿Í AI ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ ¼ÒÇÁÆ®¿þ¾î ÇÁ·¹ÀÓ¿öÅ©, Ŭ¶ó¿ìµå Ç÷§Æû, µ¥ÀÌÅÍ ½ºÅ丮Áö ¼Ö·ç¼Ç µîÀ» Æ÷ÇÔÇÑ´Ù, AI ÀÎÇÁ¶ó´Â È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®, ¸ðµ¨ ÇнÀ, Ãß·ÐÀ» °¡´ÉÇÏ°Ô Çϰí, ¸Ó½Å·¯´×, µö·¯´×, ÀÚ¿¬¾î ó¸®¿Í °°Àº ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇÏ´Â AI ÀÎÇÁ¶ó´Â AI ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ ¼ÒÇÁÆ®¿þ¾î ÇÁ·¹ÀÓ¿öÅ©, Ŭ¶ó¿ìµå Ç÷§Æû, µ¥ÀÌÅÍ ½ºÅ丮Áö ¼Ö·ç¼Ç µîÀ» Æ÷ÇÔÇÕ´Ï´Ù.

¾÷Á¾À» ÃÊ¿ùÇÑ AI µµÀÔ È®´ë

ÀÇ·á, ÀÚµ¿Â÷, ±ÝÀ¶, ¼Ò¸Å, Á¦Á¶ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷µéÀÌ ÀΰøÁö´É(AI)À» Ȱ¿ëÇÏ¿© ¾÷¹« È¿À²¼ºÀ» ³ôÀ̰í, ÀýÂ÷¸¦ ÀÚµ¿È­Çϰí, ¸ÂÃãÇü °æÇèÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±î´Ù·Î¿î ¿öÅ©·Îµå¸¦ °ü¸®Çϱâ À§Çؼ­´Â ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­, À̹ÌÁö ÀνÄ, ÀÚ¿¬¾î ó¸®, ¿¹Ãø ºÐ¼® µîÀÇ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ °­·ÂÇÑ AI ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â AI¸¦ ÀÚÀ²ÁÖÇà ±â¼ú¿¡ Á¢¸ñÇϰí, ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â AI¸¦ ¾à¹° ¿¬±¸ ¹× Áø´Ü¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß´Â Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç, °í±Þ Çϵå¿þ¾î, È®Àå °¡´ÉÇÑ °í¼º´É ÄÄÇ»ÆÃ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖÀ¸¸ç, AI ÀÎÇÁ¶ó °³¹ß¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á

AI ½Ã½ºÅÛÀÇ ÇнÀ°ú ÀÇ»ç°áÁ¤À» À§Çؼ­´Â ±ÝÀ¶, ÀÇ·á, °³ÀÎÁ¤º¸ µî ´ë·®ÀÇ °³ÀÎÁ¤º¸°¡ ÇÊ¿äÇϸç, CCPA, GDPR, HIPAA¿Í °°Àº ¾ö°ÝÇÑ ¹ý·üÀÌ Á¸ÀçÇϱ⠶§¹®¿¡ ºÎÀûÀýÇÑ µ¥ÀÌÅÍ Ãë±ÞÀº À§¹Ý, ¹«´Ü ¾×¼¼½º, ±ÔÁ¤ À§¹ÝÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý AI ÀÎÇÁ¶ó´Â µ¥ÀÌÅÍ À¯Ãâ ¹× »çÀ̹ö °ø°ÝÀÇ °¡´É¼ºÀ¸·Î ÀÎÇØ ´õ ¸¹Àº Ãë¾àÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀ̱â À§Çؼ­´Â °­·ÂÇÑ ¾Ïȣȭ, ¾ÈÀüÇÑ µ¥ÀÌÅÍ ÀúÀå ¹× Á¢±Ù Á¦¾î ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á´Â AI ÀÎÇÁ¶ó¸¦ µµÀÔÇÏ´Â °ÍÀ» ¾î·Æ°Ô ÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ƯÈ÷ ±ÔÁ¦°¡ ¾ö°ÝÇÑ ºÐ¾ß¿¡¼­ AI¸¦ »ç¿ëÇÏ´Â ±â¾÷ÀÇ Áغñ ż¼¿¡µµ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

°í¼º´É ÄÄÇ»ÆÃ(HPC)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

AI ¾ÖÇø®ÄÉÀ̼ÇÀº ƯÈ÷ ¸Ó½Å·¯´×°ú µö·¯´×À» »ç¿ëÇÏ´Â ¾ÖÇø®ÄÉÀ̼ÇÀº ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ó¸®ÇÏ°í ºÐ¼®Çϱâ À§ÇØ ¸¹Àº ó¸® ´É·ÂÀ» ÇÊ¿ä·Î Çϴµ¥, HPC ½Ã½ºÅÛÀº ÇÊ¿äÇÑ Ã³¸® ´É·ÂÀ» Á¦°øÇϰí GPU, º´·Ä ÄÄÇ»ÆÃ, TPU(Tensor Processing Unit)¿Í °°Àº Ư¼ö Çϵå¿þ¾î¸¦ Ȱ¿ëÇÏ¿© AI ¸ðµ¨ÀÇ Ã߷аú ÇнÀÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù. Processing Unit) µîÀÇ Æ¯¼ö Çϵå¿þ¾î¸¦ Ȱ¿ëÇÏ¿© AI ¸ðµ¨ÀÇ Ã߷аú ÇнÀÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù. ƯÈ÷ ÄÄÇ»ÅÍ ºñÀü, ÀÚ¿¬¾î ó¸®, ÀÚÀ² ½Ã½ºÅÛ µîÀÇ ºÐ¾ß¿¡¼­ AI ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ´õ ºü¸£°í °­·ÂÇÑ ÄÄÇ»ÆÃ ÀÎÇÁ¶ó°¡ Á¡Á¡ ´õ ¸¹ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Çö´ë AI ¿öÅ©·ÎµåÀÇ È¿À²¼º, È®À强 ¹× ¼º´É¿¡ ´ëÇÑ ¿ä±¸»çÇ×À» ÃæÁ·½Ã۱â À§ÇØ HPCÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÃÖ÷´Ü ÀÎÇÁ¶ó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

³ôÀº µµÀÔ ºñ¿ë

GPU³ª TPU¿Í °°Àº °­·ÂÇÑ Ã³¸® ¸®¼Ò½º³ª Àü¿ë Àåºñ´Â °¨´çÇϱ⠾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¹ÀâÇÑ AI ¸ðµ¨ °³¹ß ¹× ÈÆ·Ã, °íǰÁú µ¥ÀÌÅͼ¼Æ® È®º¸ ¹× À¯Áö, À¯´ÉÇÑ AI Àü¹®°¡¸¦ °í¿ëÇÏ´Â µ¥ ¸¹Àº ÀçÁ¤Àû ÅõÀÚ°¡ ÇÊ¿äÇϸç, AI ½Ã½ºÅÛÀ» ÇöÀç IT ÀÎÇÁ¶ó¿Í ÅëÇÕÇÏ´Â °ÍÀº ¾î·Æ°í ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀ» Á¾ÇÕÀûÀ¸·Î °í·ÁÇϸé, AI µµÀÔÀº ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡°Ô Å« ºñ¿ë ºÎ´ãÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ´ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â ¿ø°Ý ±Ù¹«, ÇコÄɾî, E-Commerce, °ø±Þ¸Á °ü¸®¿¡¼­ µðÁöÅÐ ±â¼ú°ú AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ AI ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ¹Ý¸é, ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ°ú °æÁ¦ÀÇ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ »õ·Î¿î AI ÇÁ·ÎÁ§Æ® °³¹ßÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, ÆÒµ¥¹ÍÀº ºñÁî´Ï½º ¿¬¼Ó¼º¿¡¼­ AIÀÇ Á߿伺À» °­Á¶ÇÏ¸ç ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ AI ÀÎÇÁ¶ó¿¡ ´ëÇÑ Àå±âÀûÀÎ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸Ó½Å·¯´×, µö·¯´×, µ¥ÀÌÅÍ ºÐ¼®°ú °°Àº AI ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇÏ´Â °í¼º´É ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Çϵå¿þ¾î ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI ¸ðµ¨ÀÌ º¹ÀâÇØÁü¿¡ µû¶ó GPU, TPU, FPGA¿Í °°Àº Àü¿ë Çϵå¿þ¾î´Â ó¸® ¼Óµµ¿Í È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. Çϵå¿þ¾î´Â ó¸® ¼Óµµ¿Í È¿À²¼ºÀ» °¡¼ÓÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ AI¸¦ µµÀÔÇÔ¿¡ µû¶ó ´ë±Ô¸ð µ¥ÀÌÅÍ Ã³¸® ¹× ½Ç½Ã°£ Ãß·ÐÀ» ó¸®ÇÒ ¼ö ÀÖ´Â °­·ÂÇϰí È®Àå °¡´ÉÇÏ¸ç ¿¡³ÊÁö È¿À²ÀûÀÎ Çϵå¿þ¾î ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

ºÒ¹ýÇàÀ§ ŽÁö ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»çÀ̹ö À§ÇùÀÇ °íµµÈ­, ½Ç½Ã°£ ÀÇ»ç°áÁ¤ÀÇ Çʿ伺, ±ÝÀ¶ °Å·¡·® Áõ°¡·Î ÀÎÇØ ºÎÁ¤ÇàÀ§ ŽÁö ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í¼º´É ÀÎÇÁ¶ó¸¦ °®Ãá AI ±â¹Ý ½Ã½ºÅÛÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ±âÁ¸ ¹æ½Äº¸´Ù ´õ ºü¸£°í Á¤È®ÇÏ°Ô ÆÐÅÏ, ÀÌ»ó ¡ÈÄ, ÀáÀçÀû ºÎÁ¤ ÇàÀ§¸¦ ŽÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â ÀºÇà, E-Commerce, º¸Çè, ±ÝÀ¶ ¼­ºñ½º µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, Àǽɽº·¯¿î ÇൿÀ» ½Ç½Ã°£À¸·Î ½Äº°ÇÏ¿© Á¶Á÷ÀÌ ºÎÁ¤ÇàÀ§¸¦ ¹æÁöÇÏ°í ±ÝÀüÀû ¼Õ½ÇÀ» ÁÙÀÌ°í º¸¾ÈÀ» °­È­ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ´Ù¾çÇÑ ºÐ¾ßÀÇ ±Þ¼ÓÇÑ µðÁöÅÐ Çõ½Å, AI ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡, ±Þ¼ºÀåÇÏ´Â ½ÅÈï ±â¾÷ »ýŰè·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº Àα¸°¡ ¸¹°í °¡Ã³ºÐ ¼ÒµæÀÌ Áõ°¡Çϸ鼭 E-Commerce, ÇÉÅ×Å©, ÇコÄɾî, ½º¸¶Æ® ½ÃƼ µîÀÇ ºÐ¾ß¿¡¼­ AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 5G ±â¼ú°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ¹ßÀüÀº AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ º¸±Þ¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¸¦ Á¦°øÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â Çõ½ÅÀ» ÃËÁøÇϴ źźÇÑ º¥Ã³ ijÇÇÅÐ »ýŰ迡 ±âÀÎÇÕ´Ï´Ù. ¹Î°£ ¹× °ø°ø ºÎ¹®ÀÇ AI R&D¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº °íµµ·Î ¼÷·ÃµÈ ÀηÂÀ» º¸À¯Çϰí ÀÖÀ¸¸ç, ½ÅÈï ±â¼úÀ» Á¶±â¿¡ äÅÃÇÏ´Â ¹®È­°¡ ÀÖ¾î AI ÀÎÇÁ¶ó ¼Ö·ç¼Ç¿¡ ÀÌ»óÀûÀÎ ½ÃÀåÀ¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇコÄɾî, ±ÝÀ¶, ÀÚÀ²ÁÖÇàÂ÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ AI ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ ÄÄÇ»ÆÃ ´É·Â°ú Ư¼ö Çϵå¿þ¾î¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϸ鼭 ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå : ±¸¼º¿ä¼Òº°

Á¦6Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå : Àü°³ ¹æ½Äº°

Á¦7Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå : ±â¼úº°

Á¦8Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ÀÎÇÁ¶ó ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ °³¿ä

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Artificial Intelligence (AI) Infrastructure Market is accounted for $47.96 billion in 2024 and is expected to reach $243.54 billion by 2030 growing at a CAGR of 31.1% during the forecast period. Artificial Intelligence (AI) Infrastructure refers to the foundational technologies and systems required to support the development, deployment, and execution of AI applications. It encompasses hardware components such as GPUs, CPUs, FPGAs, and ASICs, along with software frameworks, cloud platforms, and data storage solutions optimized for AI workloads. AI infrastructure enables efficient data processing, model training, and inference, supporting applications like machine learning, deep learning, and natural language processing.

Market Dynamics:

Driver:

Increased adoption of AI across industries

Enterprises across industries like healthcare, automotive, finance, retail, and manufacturing are utilizing artificial intelligence (AI) to improve operational efficiency, automate procedures, and provide customized experiences. To manage demanding workloads, applications such as robotic process automation, image recognition, natural language processing, and predictive analytics need strong AI infrastructure. For instance, the automobile industry incorporates AI into autonomous driving technologies, and the healthcare sector uses AI for drug research and diagnostics. This broad use is increasing demand for cloud-based solutions, sophisticated hardware, and scalable, high-performance computing systems, which is fueling ongoing investment in the development of AI infrastructure.

Restraint:

Data privacy and security concerns

Large volumes of private information, such as financial, medical, and personal data, are necessary for AI systems to be trained and make decisions. With strict laws like the CCPA, GDPR, and HIPAA, improper data handling can result in breaches, illegal access, and noncompliance. Because of the possibility of data leaks and cyberattacks, cloud-based AI infrastructure introduces an additional degree of vulnerability. To reduce these dangers, it is crucial to have strong encryption, safe data storage, and access control systems in place. These worries not only make deploying AI infrastructure more difficult, but they also affect businesses' readiness to use AI, particularly in highly regulated sectors.

Opportunity:

Growing demand for high-performance computing (HPC)

AI applications need a lot of processing power to process and analyze large datasets, particularly those that use machine learning and deep learning. HPC systems offer the required processing power, utilizing GPUs, parallel computing, and specialized hardware such as TPUs (Tensor Processing Units) to speed up AI model inference and training. Faster and more potent computing infrastructure is becoming more and more necessary as AI technologies develop, particularly in fields like computer vision, natural language processing, and autonomous systems. Investment in cutting-edge infrastructure solutions is fueled by the growing need for HPC in order to satisfy the efficiency, scalability, and performance demands of contemporary AI workloads.

Threat:

High cost of implementation

Powerful processing resources and specialized gear, such as GPUs and TPUs, might be unaffordable. Significant financial investments are also required for the development and training of complex AI models, the acquisition and upkeep of high-quality datasets, and the employment of qualified AI specialists. It can be difficult, expensive, and time-consuming to integrate AI systems with current IT infrastructure. When taken as a whole, these elements make implementing AI a significant cost commitment for companies of all sizes.

Covid-19 Impact

The COVID-19 pandemic had a mixed impact on the Artificial Intelligence (AI) Infrastructure market. On one hand, the increased reliance on digital technologies and AI-driven solutions for remote work, healthcare, e-commerce, and supply chain management accelerated demand for AI infrastructure. On the other hand, global supply chain disruptions and economic uncertainties slowed the deployment of new AI projects. Despite this, the pandemic highlighted the importance of AI for business continuity, driving long-term investments in AI infrastructure across various sectors.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is estimated to be the largest, due to the increasing demand for high-performance computing to support AI applications like machine learning, deep learning, and data analytics. As AI models become more complex, specialized hardware such as GPUs, TPUs, and FPGAs are essential for accelerating processing speed and efficiency. Additionally, the growing adoption of AI in industries like healthcare, automotive, and finance requires powerful, scalable, and energy-efficient hardware solutions to handle large-scale data processing and real-time inference.

The fraud detection segment is expected to have the highest CAGR during the forecast period

The fraud detection segment is anticipated to witness the highest CAGR during the forecast period, due to the rising sophistication of cyber threats, the need for real-time decision-making, and the growing volume of financial transactions. AI-driven systems, powered by high-performance infrastructure, can analyze vast amounts of data to detect patterns, anomalies, and potential fraudulent activities faster and more accurately than traditional methods. Applications of AI in fraud detection span across banking, e-commerce, insurance, and financial services, helping organizations prevent fraud, reduce financial losses, and enhance security by identifying suspicious behavior in real time.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period due to rapid digital transformation across various sectors, increasing government support for AI initiatives, and a burgeoning start-up ecosystem. The region's large and growing population, coupled with rising disposable incomes, is fueling demand for AI-powered solutions in areas such as e-commerce, fintech, healthcare, and smart cities. Furthermore, advancements in 5G technology and cloud computing are providing the necessary infrastructure for the widespread adoption of AI applications, further accelerating market growth.

Region with highest CAGR:

During the forecast period, the North America region is anticipated to register the highest CAGR, owing to a robust venture capital ecosystem fostering innovation. Significant investments in AI research and development by both private and public sectors further fuel market growth. The region boasts a highly skilled workforce and a culture of early adoption of emerging technologies, making it an ideal market for AI infrastructure solutions. Additionally, the increasing demand for AI applications across various industries, such as healthcare, finance, and autonomous vehicles, is driving the need for advanced computing power and specialized hardware, propelling the market forward.

Key players in the market

Some of the key players profiled in the Artificial Intelligence (AI) Infrastructure Market include NVIDIA Corporation, Intel Corporation, Google LLC (Alphabet Inc.), Microsoft Corporation, Amazon Web Services (AWS), IBM Corporation, Oracle Corporation, Advanced Micro Devices, Inc. (AMD), Huawei Technologies Co., Ltd., Hewlett Packard Enterprise (HPE), Dell Technologies, Samsung Electronics Co., Ltd., Cerebras Systems, Graphcore, Qualcomm Technologies, Inc., Xilinx, Inc. (AMD), Fujitsu Limited, Cisco Systems, Inc., Micron Technology, Inc., and Tencent Holdings Limited.

Key Developments:

In December 2024, Intel announced the new Intel(R) Arc(TM) B-Series graphics cards. The Intel(R) Arc(TM) B580 and B570 GPUs offer best-in-class value for performance at price points that are accessible to most gamers1, deliver modern gaming features and are engineered to accelerate AI workloads.

In October 2024, Siemens is revolutionizing industrial automation with Microsoft. Through their collaboration, they have taken the Siemens Industrial Copilot to the next level, enabling it to handle the most demanding environments at scale. Combining Siemens' unique domain know-how across industries with Microsoft Azure OpenAI Service, the Copilot further improves handling of rigorous requirements in manufacturing and automation.

Components Covered:

Deployment Modes Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Artificial Intelligence (AI) Infrastructure Market, By Component

6 Global Artificial Intelligence (AI) Infrastructure Market, By Deployment Mode

7 Global Artificial Intelligence (AI) Infrastructure Market, By Technology

8 Global Artificial Intelligence (AI) Infrastructure Market, By Application

9 Global Artificial Intelligence (AI) Infrastructure Market, By End User

10 Global Artificial Intelligence (AI) Infrastructure Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â