¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ±¸¼º¿ä¼Òº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Underwater Monitoring System for Oil and Gas Market Forecasts to 2030 - Global Analysis By Type, Component, Application, End User and By Geography
»óǰÄÚµå : 1636643
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,889,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,450,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,011,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,643,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀåÀº 2024³â 35¾ï ´Þ·¯¸¦ ´Þ¼ºÇß½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È CAGR 7.1%·Î ¼ºÀåÇØ 2030³â±îÁö 53¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº ÇØ¾ç ¼®À¯ ¹× °¡½º »ý»ê ȯ°æ¿¡¼­ÀÇ ÀÛ¾÷À» ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÏ´Â µ¥ »ç¿ëµÇ´Â ÀÏ·ÃÀÇ Ã·´Ü ±â¼úÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¼¾¼­, Ä«¸Þ¶ó, À½Çâ, ¿ø°Ý Á¦¾î µîÀ» Æ÷ÇÔÇÏ¸ç ¾Ð·Â, ¿Âµµ, À¯·®, ÆÄÀÌÇÁ¶óÀÎ, À¯Á¤, Àåºñ µî ÇØÀú Àåºñ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇÕ´Ï´Ù. À̸¦ ÅëÇØ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÏ¸ç ¿î¿µÀÚ´Â ´©¼ö, ºÎ½Ä, ±â°èÀû °íÀå µî ÀáÀçÀûÀÎ ¹®Á¦°¡ ½É°¢ÇØÁö±â Àü¿¡ °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼öÁýµÈ µ¥ÀÌÅÍ´Â ºÐ¼® ¹× ÀÇ»ç°áÁ¤À» À§ÇØ Áö»ó Ç÷§Æû ¹× Á¦¾î ¼¾ÅÍ·Î Àü¼ÛµË´Ï´Ù.

ÇØ¿Ü Ž»ç ¹× »ý»ê Áõ°¡

ÇØ¿Ü »ç¾÷ÀÌ ´õ ±íÀº ÇØ¿ªÀ¸·Î È®´ëµÊ¿¡ µû¶ó °í±Þ ¼öÁß ¸ð´ÏÅ͸µ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±ØÇÑÀÇ ¾Ð·Â, ¿Âµµ ¹× °¡È¤ÇÑ È¯°æ¿¡ °ßµô ¼ö ÀÖ´Â ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. »Ó¸¸ ¾Æ´Ï¶ó ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¿¹Ãø º¸ÀüÀº ÆÄÀÌÇÁ¶óÀÎ, ÇØÀú ¿ì¹°, Ç÷§Æû µîÀÇ º¹ÀâÇÑ ÀÎÇÁ¶ó ¹«°á¼º¿¡ ÇʼöÀûÀÌ¸ç ¿î¿µ °¡µ¿ Áß´Ü ½Ã°£°ú À¯Áö º¸¼ö ºñ¿ëÀ» ÁÙÀ̱â À§ÇØ º¸´Ù Á¤±³ÇÑ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ À̲ø°í ÀÖ½À´Ï´Ù.

³ôÀº ¼³Ä¡ ºñ¿ë°ú À¯Áö º¸¼ö ºñ¿ë

ƯÈ÷ ¼Ò±Ô¸ðÀÇ ¼®À¯ ¹× °¡½º »ç¾÷ÀÚ¿¡ À־´Â ³ôÀº ¼³Ä¡¡¤º¸¼ö ºñ¿ëÀÌ ¼öÁß ¸ð´ÏÅ͸µ¡¤½Ã½ºÅÛÀÇ Ã¤¿ëÀ» ¹æÇØÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷Àº ÷´Ü ¸ð´ÏÅ͸µ ±â¼ú¿¡ ÅõÀÚÇÒ Àç·ÂÀÌ ¾ø°Å³ª ºñ¿ë Àý°¨À» ¿ì¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú ½ÃÀåÀÌ ÁýÁߵǰí UMS ±â¼úÀÇ ¼ºÀå °¡´É¼ºÀÌ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ ±â¾÷Àº ÷´Ü ¸ð´ÏÅ͸µ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´ÊÃ߰ųª Á¦ÇÑÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù È¿À²ÀûÀ̰í ÀÚµ¿È­µÇ°Å³ª ÅëÇÕµÈ ±â¼úÀÇ °³¹ßÀÌ Á¦Çѵ˴ϴÙ.

ÇØÀú ÀÚ»êÀÇ ¹«°á¼º¿¡ ´ëÇÑ ¿ì·Á Áõ°¡

ÇØÀú ÀÚ»êÀÇ ¹«°á¼º¿¡ ´ëÇÑ ¿ì·Á´Â ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÌ ÀáÀçÀûÀÎ °íÀåÀ» »çÀü¿¡ ¿¹ÃøÇÏ´Â ¿¹º¸ º¸ÀüÀ¸·ÎÀÇ ÀüȯÀ¸·Î À̾îÁý´Ï´Ù. °ú°Å µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÔÀ¸·Î½á UMS´Â À¯Áö º¸¼öÀÇ Çʿ伺À» ¿¹ÃøÇÒ ¼ö ÀÖÀ¸¸ç ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °íÀåÀ̳ª ¿î¿µ Áß´ÜÀ» ¹æÁöÇϱâ À§ÇØ Á¤±âÀûÀÎ °³ÀÔÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ÀÚ»êÀÇ ¼ö¸íÀ» ¿¬ÀåÇϰí, Á¡°Ë ºóµµ¸¦ ÁÙÀ̰í, ±ä±Þ ¼ö¸® ºñ¿ëÀ» ÁÙÀ̰í, µ¥ÀÌÅÍ ºÐ¼®°ú ¿¹Ãø ±â´ÉÀ» °­È­ÇÑ º¸´Ù Á¤±³ÇÑ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ °³¹ßÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ ÇØÀú ȯ°æ

ÇØÀú ȯ°æ¿¡¼­´Â ±Ø´ÜÀûÀÎ ¾Ð·Â, ¿Âµµ, ºÎ½Ä Á¶°ÇÀ» °ßµð´Â Ư¼ö ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÀ¯·Î Á¶»ç, Àç·á ¹× ºÎǰ¿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÏ¸ç ¼®À¯ ¹× °¡½º »ç¾÷ÀÚ¿¡°Ô´Â UMS°¡ ´õ ºñ½Ô´Ï´Ù. ÀÌ·¯ÇÑ È¯°æÀÇ º¹À⼺Àº Ç¥ÁØ ¸ð´ÏÅ͸µ ±â¼úÀ» »ç¿ëÀÚ Á¤ÀÇÇØ¾ß ÇÏ¸ç ±â¾÷ÀÇ Ãʱ⠺ñ¿ëÀ» Áõ°¡½ÃÄÑ ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô Çϰí, ÇÁ·ÎÁ§Æ® ÀÏÁ¤À» Áö¿¬½Ã۰í, ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á¿Í °æÁ¦ ºÒÈ®½Ç¼º¿¡ ÀÇÇØ Ž»ç¡¤»ý»ê Ȱµ¿À» °¨¼Ò½ÃÅ´À¸·Î½á ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ(UMS) ½ÃÀå¿¡ Å« ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ¿ø°Ý °¨½Ã¿Í ÀÚµ¿È­ÀÇ Á߿伺À» ºÎ°¢½Ã۰í, ÇØ¿Ü ȯ°æ¿¡¼­ÀÇ ¹°¸®Àû °³ÀÔÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¾÷¹«ÀÇ Áö¼Ó¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇÑ Ã·´Ü UMS ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¶óÀÌÀú ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¶óÀÌÀú ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº Ç×»ó ¿òÁ÷ÀÓ, ±Ø´ÜÀûÀÎ ¾Ð·Â, ¿Âµµ, ºÎ½Ä¼º ÇØ¼ö¿¡ ³ëÃâµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» º¸ÀåÇÒ Àü¸ÁÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀº ¿î¿µÀÚ°¡ ¹«°á¼ºÀ» Æò°¡ÇÏ°í °íÀåÀÇ Â¡Èĸ¦ Á¶±â¿¡ °¨ÁöÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ ½Ã½ºÅÛÀÇ °í±Þ ¼¾¼­´Â ¾Ð·Â, ¿Âµµ, À¯·®, ½ºÆ®·¹ÀÎ µîÀÇ ÆÄ¶ó¹ÌÅ͸¦ ¸ð´ÏÅ͸µÇÏ¿© »ç°í, ¼ö¸® ¹× »ý»ê Á¤Áö ½Ã°£ÀÇ À§ÇèÀ» ÁÙÀÔ´Ï´Ù.

¿¹Ãø±â°£ Áß Å½»ç¡¤±¼Âø ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø±â°£ µ¿¾È Ž»ç¡¤±¼Âø ºÐ¾ß´Â °í¾Ð, Àú¿Â, ºÎ½Ä¼º ÇØ¼ö µî °¡È¤ÇÑ Á¶°Ç¿¡ ƯȭµÈ ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ¸·Î CAGR ¼ºÀå·üÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ž»ç°¡ ´õ ±íÀº ÇØÀú±îÁö È®ÀåµÊ¿¡ µû¶ó °í±Þ ¼öÁß ¼¾¼­, Ä«¸Þ¶ó, Åë½Å ½Ã½ºÅÛ ¹× µ¥ÀÌÅÍ ºÐ¼® µµ±¸¿¡ ´ëÇÑ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ºÏ±Ø±Ç°ú °°Àº ¿ø°ÝÁö¿¡¼­ÀÇ Å½»ç Ȱµ¿ÀÇ È®´ë´Â Áö¼ÓÀûÀ̰í Á¤È®ÇÑ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» À§ÇÑ Á¤±³ÇÑ UMS ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

ºÏ¹Ì, ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù´Â ¸ß½ÃÄÚ¸¸°ú ´ºÆÝµé·£µå ·¡ºê¶óµµ µî ÇØ¾ç¼®À¯ ¹× °¡½º ¸ÅÀå·®ÀÌ ¸¹±â ¶§¹®¿¡ ¿¹Ãø±â°£ Áß ºÏ¹Ì°¡ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¸ÅÀå·®Àº ¾ÈÀü¼º°ú È¿À²¼ºÀ» À§ÇØ ±¤¹üÀ§ÇÑ ¼öÁß ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ÅÀå·®ÀÇ Å©±â¿Í Á߿伺Àº ÷´Ü ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ³ô¿©ÁÝ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀϺ»°ú Çѱ¹°ú °°Àº ±¹°¡µéÀÌ ¼±ÁøÀûÀÎ ÇØ¿Ü±â¼ú °³¹ßÀ» ¼±µµÇÏ´Â ¿¡³ÊÁö±â¼úºÐ¾ßÀÇ °³¹ß·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀϺ»Àº ÇØÀú ¿£Áö´Ï¾î¸µ°ú ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ »ó´çÇÑ ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, Áß±¹Àº ÇØ¾ç Ž»ç ´É·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¼®À¯ ¹× °¡½º »ç¾÷ÀÚ°¡ ÇØ¿Ü ¿î¿µÀÇ È¿À²¼º, ¾ÈÀü¼º ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» Çâ»ó½Ã۱â À§ÇØ ÀÌ µ¿ÇâÀº UMS ½ÃÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ Á¦°ø

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå : ±¸¼º¿ä¼Òº°

Á¦7Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿ë ¼öÁß ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Underwater Monitoring System for Oil and Gas Market is accounted for $3.5 billion in 2024 and is expected to reach $5.3 billion by 2030 growing at a CAGR of 7.1% during the forecast period. Underwater Monitoring System for oil and gas is a set of advanced technologies used to monitor and manage operations in offshore oil and gas production environments. These systems, which include sensors, cameras, acoustics, and remote-controlled devices, collect data on pressure, temperature, flow rates, and subsea equipment like pipelines, wells, and rigs. They enable real-time monitoring, allowing operators to detect potential issues like leaks, corrosion, or mechanical failures before they escalate. The data collected is then transmitted to surface platforms or control centers for analysis and decision-making.

Market Dynamics:

Driver:

Increased offshore exploration and production

The demand for advanced underwater monitoring technologies is increasing as offshore operations expand into deeper waters, requiring systems capable of withstanding extreme pressures, temperatures, and harsh environments. Moreover real-time monitoring and predictive maintenance are essential for the integrity of complex infrastructure, such as pipelines, subsea wells, and platforms, reducing operational downtime and maintenance costs, thus driving a substantial demand for more sophisticated monitoring solutions.

Restraint:

High installation and maintenance costs

High installation and maintenance costs can hinder the adoption of underwater monitoring systems, especially among smaller oil and gas operators. These companies may lack the financial resources to invest in advanced monitoring technologies or prioritize cost-cutting measures. This results in a concentrated market and limited growth potential for UMS technologies. Additionally, companies may delay or limit investment in advanced monitoring technologies, limiting the development of more efficient, automated, or integrated technologies.

Opportunity:

Rising concerns about subsea asset integrity

Concerns over subsea asset integrity have led to a shift towards predictive maintenance, where monitoring systems can forecast potential failures before they occur. By analyzing historical data and using machine learning algorithms, UMS can predict maintenance needs, allowing for scheduled interventions to prevent costly breakdowns or operational disruptions. This approach extends asset life, reduces inspection frequency, and lowers emergency repair costs, driving the development of more sophisticated monitoring systems with enhanced data analytics and predictive capabilities.

Threat:

Complexity of subsea environments

Subsea environments demand specialized monitoring systems that can withstand extreme pressures, temperatures, and corrosive conditions. This requires significant investment in research, materials, and components, making UMS more expensive for oil and gas operators. The complexity of these environments further complicates the creation of cost-effective solutions, as standard monitoring technologies often need to be customized, increasing upfront costs for companies.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the Underwater Monitoring System (UMS) market for oil and gas by disrupting global supply chains, delaying project timelines, and reducing exploration and production activities due to safety concerns and economic uncertainty. However, the pandemic also highlighted the importance of remote monitoring and automation, accelerating the adoption of advanced UMS technologies to ensure operational continuity and safety while minimizing physical interventions in offshore environments.

The riser monitoring systems segment is expected to be the largest during the forecast period

The riser monitoring systems is is expected to secure the largest market share throughout the forecast period due to constant motion and exposure to extreme pressures, temperatures, and corrosive seawater. Real-time monitoring of these systems helps operators assess their integrity and detect early failure signs. Advanced sensors in these systems monitor parameters like pressure, temperature, flow, and strain, reducing the risk of accidents, repairs, and production downtime, increasing demand for advanced underwater monitoring systems in the oil and gas sector.

The exploration & drilling segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the exploration & drilling segment is expected to witness the highest CAGR growth rate owing to specialized underwater monitoring systems for extreme conditions like high pressures, low temperatures, and corrosive seawater. As exploration extends to deeper subsea locations, the need for advanced underwater sensors, cameras, communication systems and data analytics tools increases. The expansion of exploration activities in remote offshore areas like the Arctic drives the demand for sophisticated UMS for continuous, accurate, and real-time monitoring.

Region with largest share:

The North America region is anticipated to hold the largest share of the market during the forecast period owing to North America, particularly the US and Canada which is home to significant offshore oil and gas reserves, including the Gulf of Mexico and Newfoundland and Labrador. These reserves require extensive underwater monitoring for safety and efficiency. The size and importance of these reserves drive demand for advanced underwater monitoring systems further boosting the market.

Region with highest CAGR:

Over the forecasted timeframe, the Asia Pacific region is anticipated to exhibit the highest CAGR due to growing energy technology sector, with countries like Japan and South Korea leading the way in developing advanced offshore technologies. Japan has invested heavily in subsea engineering and monitoring systems, while China has enhanced its offshore exploration capabilities. This trend is driving the UMS market, as oil and gas operators aim to improve efficiency, safety, and real-time monitoring for offshore operations.

Key players in the market

Some of the key players in Underwater Monitoring System for Oil and Gas market include BMT Group, Bowtech Products Limited, DSPComm, Force Technologies, Fugro, KCF Technologies, Kongsberg Maritime, Kraken Robotics, Mitcham Industries, OceanServer Technology, Inc., One Subsea, Pulse Structural Monitoring, Schlumberger-OneSubsea, Sonardyne and Teledyne Marine .

Key Developments:

In April 2024, KCF Technologies announced a strategic partnership. This collaboration aims to offer a comprehensive solution for end-to-end reliability consulting, machine monitoring, and actionable predictive maintenance insights for electrical and mechanical assets.

In February 2024, BMT Group unveiled its first Service Operation Vessel (SOV) design, capable of being powered by methanol, potentially the e-fuel variant. This design aims to enhance sustainability in offshore operations, including those in the oil and gas sector, by reducing greenhouse gas emissions and increasing fuel efficiency.

Types Covered:

Components Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Underwater Monitoring System for Oil and Gas Market, By Type

6 Global Underwater Monitoring System for Oil and Gas Market, By Component

7 Global Underwater Monitoring System for Oil and Gas Market, By Application

8 Global Underwater Monitoring System for Oil and Gas Market, By End User

9 Global Underwater Monitoring System for Oil and Gas Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â