¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÁõÂø ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Semiconductor Precursor Market Forecasts to 2030 - Global Analysis By Type (High-K Precursors, Metal Precursors, Silicon Precursors, Dielectric Precursors and Other Types), Deposition Technique, Application, End User and By Geography
»óǰÄÚµå : 1617235
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 12¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,004,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,596,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,187,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,851,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é, ¹ÝµµÃ¼ Àü±¸Ã¼ ¼¼°è ½ÃÀåÀº 2024³â 25¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 12.8% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 53¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹ÝµµÃ¼ Àü±¸Ã¼´Â ¹ÝµµÃ¼ ¼ÒÀÚ Á¦Á¶¿¡¼­ ±¸¼º¿ä¼Ò·Î »ç¿ëµÇ´Â È­ÇÕ¹° ¶Ç´Â Àç·áÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àü±¸Ã¼´Â È­ÇÐ ±â»ó ¼ºÀå¹ý(CVD), ¿øÀÚÃþ ÁõÂø¹ý(ALD), ¿¡ÇÇÅýà µîÀÇ °øÁ¤¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¹ÝµµÃ¼ Àç·áÀÇ ¹Ú¸·À» ¸¸µå´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ÝµµÃ¼ Àü±¸Ã¼ÀÇ ÁÖ¿ä ±â´ÉÀº ¹ÝµµÃ¼, Àý¿¬Ã¼ ¹× Àüµµ¼º ¹°ÁúÀÇ ÃþÀ» ÁõÂøÇϱâÀ§ÇÑ ¿ø·á¸¦ Á¦°øÇÏ´Â °ÍÀÔ´Ï´Ù.

÷´Ü ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

½º¸¶Æ®Æù, ³ëÆ®ºÏ, ¿þ¾î·¯ºí ±â±â, ½º¸¶Æ®È¨°ú °°Àº ÷´Ü ÀüÀÚ±â±â¿¡¼­ °í¼º´É ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó È­ÇÐ ±â»ó ÁõÂøÀ̳ª ¿øÀÚÃþ ÁõÂø°ú °°Àº Á¤¹ÐÇÑ ÁõÂø °øÁ¤À» À§ÇØ ´õ¿í Á¤±³ÇÑ Àü±¸Ã¼°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ´õ ³ôÀº È¿À², ³»±¸¼º, ¼ÒÇüÈ­¸¦ ½ÇÇöÇÏ´Â ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä´Â Á¦Á¶¾÷üµéÀÌ ±ÕÀÏÇÏ°í °áÇÔ ¾ø´Â ¹Ú¸·À» À§ÇØ °í¼øµµ Àü±¸Ã¼¸¦ »ç¿ëÇϵµ·Ï À¯µµÇϰí ÀÖÀ¸¸ç, À̴ Ư¼ö Àü±¸Ã¼ Àç·á¿¡ ´ëÇÑ ½ÃÀå ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ Á¦Á¶ ÇÁ·Î¼¼½º

°í±Þ È­ÇÐ ±â»ó ÁõÂø°ú ¿øÀÚÃþ ÁõÂøÀº ³ôÀº Á¤¹Ðµµ¿Í Á¦¾î°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¹ÝµµÃ¼ Àü±¸Ã¼ Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀº ¼Ò±Ô¸ð Á¦Á¶¾÷üÀÇ È®À强À» Á¦ÇÑÇϰí Àüü ÀåÄ¡ ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ, Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß(R&D) ³ë·ÂÀº ÀÚ¿ø Áý¾àÀûÀ̰í ÀçÁ¤ÀûÀ¸·Î ¾î·Á¿ö ´Ù¸¥ »ç¾÷ ºÐ¾ß¿¡¼­ ÀÚ¿øÀ» Àü¿ëÇÏ¿© ½ÃÀå ¼ºÀåÀ» µÐÈ­½Ãų ¼ö ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀü

EUV ¸®¼Ò±×·¡ÇÇ ¹× 3D ÀûÃþ°ú °°Àº ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀüÀº Á¤¹Ðµµ¿Í ǰÁúÀ» À§ÇØ °íµµ·Î Àü¹®È­µÈ ÇÁ¸®Ä«»ç Àç·á¸¦ ¿ä±¸ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó »õ·Î¿î ÇÁ¸®Ä«»ç Àç·á¿Í °³¼±µÈ ÇÁ¸®Ä«»ç Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, źȭ±Ô¼Ò ¹× ÁúÈ­ °¥·ý°ú °°Àº »õ·Î¿î Àü±¸Ã¼ È­ÇÕ¹°ÀÌ Àü·Â ÀåÄ¡ ¹× °íÁÖÆÄ ÀÀ¿ë ºÐ¾ß¿¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ È­ÇÕ¹°À» °³¹ßÇϱâ À§ÇØ R&D ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Àü±¸Ã¼ ½ÃÀåÀÇ È®´ë ¹× ´Ù¾çÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦ ȯ°æ

¹ÝµµÃ¼ Á¦Á¶ÀÇ ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü¿¡ µû¶ó, ÷´Ü ÁõÂø ¹× ¿¡Äª ±â¼úÀ» °ßµô ¼ö ÀÖ´Â »õ·Î¿î ÇÁ¸®Ä«»ç Àç·á °³¹ßÀ» À§ÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°³¹ßÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀÇ ¿ä±¸´Â ÇÁ¸®Ä«»ç Á¦Á¶¾÷üÀÇ ºñ¿ëÀ» »ó½Â½Ã۰í, ±ØÀڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇ ¹× ¿øÀÚÃþ ÁõÂø(ALD)°ú °°Àº °øÁ¤ÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ »õ·Î¿î ¹èÇÕ¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù. Áß¼Ò±â¾÷Àº ƯÈ÷ ÀÌ·¯ÇÑ R&D ¿ä±¸¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖÀ¸¸ç, ½ÃÀå °æÀïÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19´Â °ø±Þ¸Á Áß´Ü, »ý»ê´É·Â °¨¼Ò, ¹°·ù ¹®Á¦¸¦ ÅëÇØ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. °¡µ¿ Áߴܰú ±ÔÁ¦´Â Àü±¸Ã¼ ¿ø·áÀÇ »ý»ê°ú ¿î¼Û¿¡ ¿µÇâÀ» ¹ÌÃÄ °ø±Þ ºÎÁ·°ú Áö¿¬À» ÃÊ·¡Çß½À´Ï´Ù. ¿ø°Ý ±Ù¹«¿Í µðÁöÅп¡ ´ëÇÑ ÀÇÁ¸À¸·Î ÀüÀÚÁ¦Ç° ¼ö¿ä°¡ ±ÞÁõÇÏ´Â ¹Ý¸é, Àü¿°º´À¸·Î ÀÎÇÑ °ø±Þ Á¦¾àÀº °¡°Ý »ó½Â°ú ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀåÀÇ È¸º¹ Áö¿¬À» ÃÊ·¡Çß½À´Ï´Ù.

±Ý¼Ó Àü±¸Ã¼ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±Ý¼Ó Àü±¸Ã¼ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í¼øµµ Àü±¸Ã¼¿¡ ´ëÇÑ ¼ö¿ä°¡ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº Ư¼ö Á¤Á¦ ¹× ÇÕ¼º ±â¼ú¿¡ ÅõÀÚÇØ¾ß Çϱ⠶§¹®ÀÔ´Ï´Ù. ƼŸ´½, ÅÖ½ºÅÙ, ±¸¸®, ÄÚ¹ßÆ®, ¹é±Ý°ú °°Àº ±Ý¼ÓÀº È­ÇÐÁõÂø(CVD), ¿øÀÚÃþ ÁõÂø(ALD), ¿øÀÚÃþ ¿¡Äª(ALE) µîÀÇ °øÁ¤¿¡ »ç¿ëµË´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶´Â ÃÖÁ¾ Á¦Ç°ÀÇ Ç°Áú°ú ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ Ãʼø¼ö ±Ý¼Ó Àü±¸Ã¼°¡ ÇÊ¿äÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ç÷¡½Ã ¸Þ¸ð¸® ÀåÄ¡ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

NAND Ç÷¡½Ã ¹× DRAM°ú °°Àº Ç÷¡½Ã ¸Þ¸ð¸® µð¹ÙÀ̽º´Â ½º¸¶Æ®Æù, ³ëÆ®ºÏ, SSD, µ¥ÀÌÅͼ¾ÅÍ µî ´Ù¾çÇÑ ¿ëµµ¿¡ ÇʼöÀûÀ̱⠶§¹®¿¡ Ç÷¡½Ã ¸Þ¸ð¸® µð¹ÙÀ̽º ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í¼º´É µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹ÝµµÃ¼ Á¦Á¶¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ½Ç¸®ÄÜ ¿þÀÌÆÛ, Æ÷Åä·¹Áö½ºÆ®, µµÆÝÆ®, ±Ý¼Ó Àü±¸Ã¼ µî Àü±¸Ã¼ Àç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷¡½Ã ¸Þ¸ð¸® »ý»êÀÇ ¼ºÀåÀº ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀåÀ» Á÷Á¢ÀûÀ¸·Î °ßÀÎÇÒ °ÍÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ ¹ÝµµÃ¼ Ĩ ¼ö¿ä ±ÞÁõÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÃֽŠÀü±âÀÚµ¿Â÷ ¹× ÀÚÀ²ÁÖÇàÂ÷¿¡´Â Àü¿ø °ü¸®, ¼¾¼­ ½Ã½ºÅÛ, Ä¿³ØÆ¼ºñƼ¸¦ À§ÇÑ ¼ö¸¹Àº ¹ÝµµÃ¼°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ä¨ÀÇ »ý»êÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÷´Ü À¯Àüü, ±Ý¼Ó, °¡½º µî ´Ù¾çÇÑ ¹ÝµµÃ¼ Àü±¸Ã¼¸¦ »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í ¹«°øÇØ ÀÚµ¿Â÷ÀÇ ÃßÁøÀ¸·Î ÀÎÇÑ ÀÚµ¿Â÷ ºÎ¹®ÀÇ ¼ºÀåÀº ºÏ¹Ì ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº ½º¸¶Æ®Æù, ÅÂºí¸´, ³ëÆ®ºÏ, ¿þ¾î·¯ºí ±â±â, °¡ÀüÁ¦Ç°ÀÇ »ý»ê ¹× ¼Òºñ°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó °í¼º´É ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ´Þ¼ºÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÌ·¯ÇÑ µð¹ÙÀ̽º¿¡ Àü·ÂÀ» °ø±ÞÇϴ Ĩ Á¦Á¶¿¡ ÇʼöÀûÀÎ ±Ý¼Ó, È­ÇÐÁ¦Ç°, °¡½º µî ´Ù¾çÇÑ ¹ÝµµÃ¼ Àü±¸Ã¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå : ÁõÂø ±â¼úº°

Á¦7Àå ¼¼°èÀÇ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ ¹ÝµµÃ¼ Àü±¸Ã¼ ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ °³¿ä

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Semiconductor Precursor Market is accounted for $2.5 billion in 2024 and is expected to reach $5.3 billion by 2030 growing at a CAGR of 12.8% during the forecast period. A semiconductor precursor is a chemical compound or material used as a building block in the fabrication of semiconductor devices. These precursors play a crucial role in the processes such as chemical vapour deposition (CVD), atomic layer deposition (ALD), and epitaxy, where thin films of semiconductor materials are created. The primary function of semiconductor precursors is to provide the source material for depositing layers of semiconducting, insulating, or conducting materials.

Market Dynamics:

Driver:

Growing demand for advanced electronics

The demand for high-performance semiconductors in advanced electronic devices like smart phones, laptops, wearable's, and smart homes is increasing, necessitating more sophisticated precursors for precise deposition processes like chemical vapor deposition and atomic layer deposition. This demand for semiconductors with greater efficiency, durability, and reduced size is driving manufacturers to use high-purity precursors for uniformity and defect-free thin films, increasing market demand for specialized precursor materials.

Restraint:

Complex manufacturing processes

Advanced chemical vapor deposition and atomic layer deposition require high precision and control, leading to increased production costs for semiconductor precursors. This financial burden can limit the scalability of smaller manufacturers and increase overall device costs. Additionally, continuous research and development (R&D) efforts are resource-intensive and can be financially demanding, potentially diverting resources from other operational areas and slowing market growth.

Opportunity:

Advancements in semiconductor fabrication

Advancements in semiconductor fabrication, such as EUV lithography and 3D stacking, demand highly specialized precursor materials for precision and quality. This drives demand for new and improved precursor materials, contributing to market growth. Moreover, the need for novel precursor compounds, such as silicon carbide and gallium nitride, for power devices and high-frequency applications drives manufacturers to invest in R&D to develop these compounds, driving the expansion and diversification of the precursor market.

Threat:

Stringent regulatory environment

The rapid technological advancements in semiconductor fabrication necessitate ongoing R&D to develop new precursor materials that can endure advanced deposition and etching techniques. This demand for innovation increases costs for precursor manufacturers, must invest significantly in new formulations to meet the rigorous requirements of processes like extreme ultraviolet (EUV) lithography and atomic layer deposition (ALD). Smaller companies may particularly struggle with these R&D demands, potentially limiting competition in the market.

Covid-19 Impact

The COVID-19 pandemic disrupted the semiconductor precursor market through supply chain interruptions, reduced production capacity, and logistical challenges. Lockdowns and restrictions impacted the manufacturing and transportation of precursor materials, leading to shortages and delays. While demand for electronics surged due to remote work and digital reliance, the pandemic-induced supply constraints led to increased prices and a slower recovery for the semiconductor precursor market.

The metal precursors segment is expected to be the largest during the forecast period

The metal precursors segment is projected to account for the largest market share during the projection period owing to the need for high-purity precursors has driven the growth of the semiconductor precursor market, as manufacturers must invest in specialized purification and synthesis techniques. Metals such as titanium, tungsten, copper, cobalt, and platinum are used for processes like chemical vapour deposition (CVD), atomic layer deposition (ALD), and atomic layer etching (ALE). Semiconductor fabrication requires ultra-high purity metal precursors to ensure the quality and performance of the final products.

The flash memory devices segment is expected to have the highest CAGR during the forecast period

The flash memory devices segment is expected to register lucrative growth during the estimation period as flash memory devices, such as NAND flash and DRAM, are crucial for various applications, including smartphones, laptops, SSDs, and data centers. As demand for high-performance devices increases, semiconductor manufacturing needs increase, driving demand for precursor materials like silicon wafers, photoresists, dopants, and metal precursors. This growth in flash memory production directly boosts the semiconductor precursor market.

Region with largest share:

During the projected timeframe, the North America region is expected to hold the largest market share owing to surge in demand for semiconductor chips. Modern EVs and autonomous vehicles require a significant number of semiconductors for power management, sensor systems, and connectivity. The increased production of these chips necessitates the use of a wide range of semiconductor precursors, including advanced dielectrics, metals, and gases. This growth in the automotive sector, driven by sustainability goals and the push for zero-emission vehicles, has become pivotal for the semiconductor precursor market in North America.

Region with highest CAGR:

The Asia Pacific region is projected to achieve the highest CAGR during the forecast period due to the continuous growth in the production and consumption of smartphones, tablets, laptops, wearable devices, and home appliances fuels the demand for high-performance semiconductors. This, in turn, drives the need for a variety of semiconductor precursors, such as metals, chemicals, and gases, essential for the fabrication of chips that power these devices.

Key players in the market

Some of the key players in Semiconductor Precursor market include ADEKA, AFC indusutries Inc, AG Semiconductor, Air Liquide, Air Product & Chemicals INC, DuPont, Dynamic Network Factory Inc, Hansol Chemical, Intel Corporation, Linde Plc, Merck Group, Nanmat, Sigma-Aldrich, SK Materials, SoulBrain Co Ltd, TANAKA Precious Metals and Versum Materials.

Key Developments:

In November 2024, Air Liquide announces a renewable hydrogen production project at La Mede. In the context of a long-term contract, Air Liquide will cover the hydrogen needs of TotalEnergie's biorefinery. This project will contribute to the emergence of a new renewable hydrogen ecosystem major industrial basin for Air Liquide in France.

In October 2024, Intel Corp. and AMD announced the creation of an x86 ecosystem advisory group bringing together technology leaders to shape the future of the world's most widely used computing architecture. X86 is uniquely positioned to meet customers' emerging needs

Types Covered:

Deposition Techniques Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Semiconductor Precursor Market, By Type

6 Global Semiconductor Precursor Market, By Deposition Technique

7 Global Semiconductor Precursor Market, By Application

8 Global Semiconductor Precursor Market, By End User

9 Global Semiconductor Precursor Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â