Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº 2024³â¿¡ 571¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 20%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 1,707¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ºÐ¼®Àº ´Ù¾çÇÑ ÀÇ·á ¼Ò½º·ÎºÎÅÍ ¾òÀº ´ë±Ô¸ðÀÇ º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ Á¶»çÇÏ¿© ÆÐÅÏ, µ¿Çâ, ÀλçÀÌÆ®À» ¹ß°ßÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. ±¸Á¶È ¹× ºñ±¸Á¶ÈµÈ ¹æ´ëÇÑ ÀÇ·á µ¥ÀÌÅ͸¦ ó¸®Çϱâ À§ÇØ °í±Þ ºÐ¼® Åø¿Í ±â¹ýÀ» »ç¿ëÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº ÀÇ·á ¼ºñ½º ÇÁ·Î¹ÙÀÌ´õ°¡ ȯÀÚ Ä¡·á¸¦ °³¼±Çϰí, ¿î¿µÀ» ÃÖÀûÈÇϰí, Áúº´ ¹ß»ýÀ» ¿¹ÃøÇϰí, Ä¡·á¸¦ °³ÀÎÈÇϰí, ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅ͸¦ Ȱ¿ëÇϸé ÀÇ·á ±â°üÀº µ¥ÀÌÅͺ£À̽º ÀÇ»ç °áÁ¤À» ³»¸®°í ÀÓ»ó °á°ú¸¦ °³¼±ÇÏ¸ç ±Ã±ØÀûÀ¸·Î ÀÇ·á ¼ºñ½º Á¦°øÀ» Çõ½ÅÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH) »êÇÏ ±¹¸³Àΰ£À¯Àüü¿¬±¸¼Ò(NHGRI) À¥»çÀÌÆ®¿¡ °ÔÀçµÈ ±â»ç¿¡ µû¸£¸é ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© À¯ÀüÀû ¿äÀÎ ¹× ±âŸ ¿äÀÎÀ» ½Äº°ÇÏ°í ¸ÂÃãÇü ÀÇ·á·Î ¿¬°áÇϱâ À§ÇÑ ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ¿ªÇÒÀÌ ´«¿¡ ¶ç°Ô Áõ°¡Çϰí ÀÖ´Ù°í ÇÕ´Ï´Ù.
Æ÷ǽ·¹ÀÌ¼Ç °Ç° ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Æ÷ǽ·¹ÀÌ¼Ç Çコ ¾Ö³Î¸®Æ½½º¸¦ ÅëÇØ ÀÇ·á ±â°üÀº ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© Àüü ȯÀÚ Áý´ÜÀÇ Ãß¼¼, À§Çè ¿ä¼Ò ¹× °³ÀÔ ±âȸ¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ º¸´Ù Àû±ØÀûÀÌ°í ¿¹¹æÀûÀÎ Ä¡·á Á¢±Ù ¹æ½ÄÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈÇÏ°í °¡Ä¡ ±â¹Ý Ä¡·á ¸ðµ¨À» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇコÄɾ °³º° ȯÀÚ»Ó¸¸ ¾Æ´Ï¶ó Àüü Áý´ÜÀÇ °á°ú¸¦ °³¼±ÇÏ´Â ¹æÇâÀ¸·Î ÀüȯÇϰí ÀÖ´Â ¸¸Å, Áý´Ü Â÷¿øÀÇ ÀλçÀÌÆ®À» À§ÇØ ºòµ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ´Â ´É·ÂÀÌ ÇʼöÀûÀ̸ç, ÀÌ´Â ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
¼÷·ÃµÈ ÀÎÀçÀÇ ºÎÁ·
ÇコÄɾî Á¶Á÷Àº ºòµ¥ÀÌÅÍ ±â¼ú¿¡ ´ëÇÑ ±â¼úÀû Àü¹®¼º°ú ÇコÄÉ¾î ºÐ¾ß¿¡ ´ëÇÑ Áö½ÄÀ» °®Ãá µ¥ÀÌÅÍ °úÇÐÀÚ, ºÐ¼®°¡, IT Àü¹®°¡¸¦ È®º¸Çϰí À¯ÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °ÝÂ÷·Î ÀÎÇØ ºÐ¼® ±â´ÉÀ» ÃæºÐÈ÷ Ȱ¿ëÇϰí ÇコÄÉ¾î µ¥ÀÌÅÍ¿¡¼ ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î µ¥ÀÌÅÍÀÇ º¹ÀâÇÑ Æ¯¼º°ú ±î´Ù·Î¿î ±ÔÁ¦ ¿ä°ÇÀ¸·Î ÀÎÇØ °íÀ¯ÇÑ ÀÚ°ÝÀ» °®Ãá ÀÎÀçÀÇ Çʿ伺ÀÌ ´õ¿í ³ô¾ÆÁ® äÅÃÀÌ Á¦ÇÑµÇ°í ½ÃÀå È®´ë°¡ ´õµð°Ô ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
ÀüÀÚÀǹ«±â·Ï(EHR)ÀÇ ¼ºÀå
EHRÀº ¹æ´ëÇÑ ¾çÀÇ Á¤Çü ¹× ºñÁ¤Çü ȯÀÚ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí À̸¦ ºÐ¼®ÇÏ¿© ÀÓ»óÀû ÀÇ»ç°áÁ¤À» °³¼±Çϰí, Áý´Ü °Ç° µ¿ÇâÀ» ÆÄ¾ÇÇϸç, ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ´Â °¡´É¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ºÐ¼® ÅøÀº ÀÇ·á ¼ºñ½º ÇÁ·Î¹ÙÀÌ´õ°¡ EHR µ¥ÀÌÅÍ¿¡¼ °¡Ä¡¸¦ âÃâÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ºòµ¥ÀÌÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ȯÀÚ Ä¡·á¿Í °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±æÀ» ¿¾îÁÙ °ÍÀÔ´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎ Á¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á
ÇコÄÉ¾î µ¥ÀÌÅÍ´Â ±â¹Ð¼ºÀÌ ³ô±â ¶§¹®¿¡ »çÀ̹ö °ø°ÝÀÇ Ç¥ÀûÀÌ µÇ±â ½¬¿ì¸ç, Ä§ÇØ°¡ ¹ß»ýÇϸé ȯÀÚ¿Í ÀÇ·á ¼ºñ½º ÇÁ·Î¹ÙÀÌ´õ¿¡°Ô ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¹Ì±¹ÀÇ HIPAA¿Í °°Àº ¾ö°ÝÇÑ ±ÔÁ¤Àº µ¥ÀÌÅÍ Ä§ÇØ¿¡ ´ëÇØ ¸·´ëÇÑ ¹ú±ÝÀ» ºÎ°úÇϰí ÀÖ½À´Ï´Ù. °·ÂÇÑ º¸¾È Á¶Ä¡¸¦ º¸ÀåÇϰí ȯÀÚÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£Çϸ鼵µ µ¥ÀÌÅÍ °øÀ¯¿Í ºÐ¼®ÀÌ °¡´ÉÇϵµ·Ï ÇØ¾ß ÇϹǷΠµµÀÔ¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á·Î ÀÎÇØ ÀÇ·á±â°üÀÌ ºòµ¥ÀÌÅÍ ºÐ¼®À» Àü¸éÀûÀ¸·Î µµÀÔÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°í ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº Á¶Á÷ÀÌ ¹ÙÀÌ·¯½º È®»êÀ» ÃßÀûÇϰí, ¹ßº´À» ¿¹ÃøÇϰí, ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈÇϱâ À§ÇØ ³ë·ÂÇÏ¸é¼ ÇコÄÉ¾î ºÐ¾ß¿¡¼ ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ µµÀÔÀ» °¡¼ÓÈÇß½À´Ï´Ù. ÀÌ Àü¿°º´Àº ÇコÄɾ¼ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤ÀÇ °¡Ä¡¸¦ ºÎ°¢½ÃÄ×°í, ºÐ¼® ±â´É¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ±×·¯³ª ÀϺΠÁö¿ª¿¡¼´Â ÀÇ·á IT ÀÚ¿ø°ú ¿¹»êÀ» ¾Ð¹ÚÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϱ⵵ Çß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ºÐ¼®¿¡¼ ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ¹æ´ëÇÑ ÇコÄÉ¾î µ¥ÀÌÅÍÀÇ ¼öÁý, ó¸® ¹× ºÐ¼®¿¡ ÀÖÀ¸¸ç, ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ Áß¿äÇÑ ¿ªÇÒ¿¡ ±âÀÎÇÕ´Ï´Ù. ºÐ¼® ¼ÒÇÁÆ®¿þ¾î´Â ÇコÄɾî Á¶Á÷ÀÌ º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¿¡¼ ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇÏ¿© ÀÓ»óÀû ÀÇ»ç°áÁ¤, Áý´Ü ÇコÄÉ¾î ¹× ¿î¿µ È¿À²¼ºÀ» Áö¿øÇϸç, AI ¹× ¸Ó½Å·¯´× ±â´ÉÀ» Æ÷ÇÔÇÑ ºÐ¼® ¾Ë°í¸®ÁòÀÇ °íµµÈ´Â ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ °¡Ä¡ Á¦¾ÈÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ °¡Ä¡ Á¦¾ÈÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÇコÄɾ µ¥ÀÌÅÍ Áß½ÉÀÌ µÇ¸é¼ °í±Þ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Å¬¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºòµ¥ÀÌÅÍ ºÐ¼® ÇコÄÉ¾î ½ÃÀå¿¡¼ Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀº È®À强, ºñ¿ë È¿À²¼º, µµÀÔ ¿ëÀ̼º µî ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖÀ¸¸ç, ºü¸£°Ô È®»êµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® Ç÷§ÆûÀ» ÅëÇØ ÇコÄÉ¾î ±â¾÷Àº ¸·´ëÇÑ ÀÎÇÁ¶ó ÅõÀÚ ¾øÀ̵µ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå º¸¾È¿¡ ´ëÇÑ ¿ì·Á°¡ ÇØ¼ÒµÇ°í ÇコÄɾ Æ¯ÈµÈ Å¬¶ó¿ìµå ¼Ö·ç¼ÇÀÌ µîÀåÇÏ¸é¼ Å¬¶ó¿ìµå ±â¹Ý ºÐ¼®À¸·ÎÀÇ ÀüȯÀÌ °¡¼Óȵǰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ ºÎ¹®ÀÇ ³ôÀº ¼ºÀå·ü¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì°¡ ºòµ¥ÀÌÅÍ ºÐ¼® ÇコÄÉ¾î ½ÃÀå¿¡¼ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ´Â °ÍÀº ¼º¼÷ÇÑ ÇコÄɾî IT ÀÎÇÁ¶ó¿Í ºÐ¼®À» À§ÇÑ Ç³ºÎÇÑ µ¥ÀÌÅͺ£À̽ºÀ» Á¦°øÇÏ´Â ÀüÀÚ ÀÇ·á ±â·ÏÀÇ ³ôÀº µµÀÔ·ü¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÇ·áÀÇ Áú°ú ºñ¿ë Àý°¨¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀÌ µ¥ÀÌÅÍ ºÐ¼®ÀÇ È°¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú º¥´õÀÇ Á¸Àç¿Í Çõ½Å ¹®È´Â °í±Þ ºÐ¼® ¼Ö·ç¼ÇÀÇ °³¹ß ¹× äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄɾî ÁöÃâ°ú µðÁöÅÐ Çコ ±¸»ó¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ºÏ¹Ì ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ºòµ¥ÀÌÅÍ ºÐ¼® ÇコÄÉ¾î ½ÃÀå¿¡¼ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸À̰í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹, Àεµ µîÀÇ ±¹°¡¿¡¼´Â ÀÇ·á ½Ã½ºÅÛÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ·Î ÀÎÇØ ºÐ¼®¿¡ ÀûÇÕÇÑ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á ¼ºñ½º Á¢±Ù¼º ¹× ǰÁú Çâ»óÀ» À§ÇÑ Á¤ºÎÀÇ ±¸»óÀº ÀÇ·á IT ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Àα¸°¡ ¸¹°í, Àα¸°¡ Áõ°¡Çϰí ÀÖÀ¸¹Ç·Î Áý´Ü ÇコÄɾî¿Í ¿¹Ãø ºÐ¼®¿¡ Å« ±âȸ°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄÉ¾î ºÐ¾ß¿¡¼ AI ¹× ¸Ó½Å·¯´× ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼Óȵǰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ Áö¿ªÀÇ ³ôÀº ¼ºÀå ÀáÀç·Â¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Big Data Analytics in Healthcare Market is accounted for $57.1 billion in 2024 and is expected to reach $170.7 billion by 2030 growing at a CAGR of 20% during the forecast period. Big data analytics in healthcare refers to the process of examining large, complex datasets from various medical sources to uncover patterns, trends, and insights. It involves using advanced analytical tools and techniques to process vast amounts of both structured and unstructured health data. This approach helps healthcare providers improve patient care, optimize operations, predict disease outbreaks, personalize treatments, and reduce costs. By leveraging big data, healthcare organizations can make data-driven decisions, enhance clinical outcomes, and ultimately transform the delivery of healthcare services.
According to an article published on the National Human Genome Research Institute (NHGRI) website, a branch of the NIH, the role of big data analytics in analyzing large datasets to identify genetic and other factors for personalized medicine approaches are growing significantly.
Rising demand for population health analytics
Population health analytics allows healthcare organizations to analyze large datasets to identify trends, risk factors, and opportunities for intervention across patient populations. This enables more proactive and preventive care approaches, helps optimize resource allocation, and supports value-based care models. As healthcare shifts towards improving outcomes for entire populations rather than just individual patients, the ability to leverage big data for population-level insights has become critical, fueling market growth.
Lack of skilled workforce
Healthcare organizations struggle to find and retain data scientists, analysts, and IT professionals with both technical expertise in big data technologies and domain knowledge of healthcare. This skill gap makes it challenging to fully leverage analytics capabilities and derive actionable insights from healthcare data. The complex nature of healthcare data and strict regulatory requirements further compound the need for uniquely qualified talent, limiting adoption and slowing market expansion.
Growth of electronic health records (EHRs)
EHRs generate vast amounts of structured and unstructured patient data that can be analyzed to improve clinical decision-making, identify population health trends, and enhance operational efficiency. As EHR systems become more interoperable and data standardization improves, the potential for deriving insights from this rich data source grows. Analytics tools can help healthcare providers extract value from EHR data, driving demand for big data solutions and opening new avenues for improving patient care and outcomes.
Data security and privacy concerns
The sensitive nature of healthcare data makes it an attractive target for cyberattacks, and any breaches can have severe consequences for patients and providers. Strict regulations like HIPAA in the US impose hefty penalties for data breaches. The need to ensure robust security measures and maintain patient privacy while still enabling data sharing and analysis creates challenges for implementation. These concerns can make healthcare organizations hesitant to fully embrace big data analytics, potentially limiting market growth.
The COVID-19 pandemic accelerated adoption of big data analytics in healthcare as organizations sought to track the virus spread, predict outbreaks, and optimize resource allocation. It highlighted the value of data-driven decision making in healthcare and spurred investments in analytics capabilities. However, it also strained healthcare IT resources and budgets in some areas.
The software segment is expected to be the largest during the forecast period
The software segment is anticipated to hold the largest market share in big data analytics for healthcare. This dominance is driven by the critical role of software solutions in collecting, processing, and analyzing vast amounts of healthcare data. Analytics software enables healthcare organizations to derive actionable insights from complex datasets, supporting clinical decision-making, population health management, and operational efficiency. The increasing sophistication of analytics algorithms, including AI and machine learning capabilities, further enhances the value proposition of software solutions. As healthcare becomes more data-driven, demand for advanced analytics software continues to grow.
The cloud-based segment is expected to have the highest CAGR during the forecast period
The cloud-based segment is projected to experience the highest growth rate in the big data analytics healthcare market. Cloud solutions offer several advantages that are driving rapid adoption, including scalability, cost-effectiveness, and ease of implementation. Cloud-based analytics platforms allow healthcare organizations to handle large volumes of data without significant upfront infrastructure investments. As concerns about cloud security are addressed and more healthcare-specific cloud solutions emerge, the shift towards cloud-based analytics is accelerating, fueling this segment's high growth rate.
North America's dominance in the big data analytics healthcare market is due to its mature healthcare IT infrastructure and high adoption rates of electronic health records, which provide a rich data foundation for analytics. Stringent regulatory requirements around healthcare quality and cost containment incentivize the use of data analytics. The presence of major technology vendors and a culture of innovation foster the development and adoption of advanced analytics solutions. Additionally, significant healthcare spending and investments in digital health initiatives further propel market growth in North America.
The Asia Pacific region is poised for the highest growth rate in the big data analytics healthcare market. Rapid digitization of healthcare systems, particularly in countries like China and India, is generating vast amounts of data ripe for analysis. Government initiatives to improve healthcare access and quality are driving investments in health IT infrastructure. The region's large and growing population presents significant opportunities for population health management and predictive analytics. Additionally, the increasing adoption of AI and machine learning technologies in healthcare is accelerating the demand for advanced analytics solutions, contributing to the region's high growth potential.
Key players in the market
Some of the key players in Big Data Analytics in Healthcare market include IBM Corporation, Microsoft Corporation, Oracle Corporation, SAS Institute Inc., SAP SE, Allscripts Healthcare Solutions, Inc., Cerner Corporation, Cognizant Technology Solutions Corporation, Epic Systems Corporation, GE Healthcare, Optum, Inc., Siemens Healthineers AG, Dell Technologies Inc., McKesson Corporation, Hewlett Packard Enterprise (HPE), Tableau Software, LLC, TIBCO Software Inc., and Philips Healthcare.
In October 2023, Microsoft has launched new healthcare-specific data solutions in Microsoft Fabric to help healthcare organizations unify and analyze data from various sources. These new solutions offer healthcare organizations a unified, safe and responsible approach to their data and AI strategy and enable them to take advantage of the breadth and scale of Microsoft Cloud for Healthcare.
In October 2023, IBM introduced the new IBM Storage Scale System 6000, a cloud-scale global data platform designed to meet today's data intensive and AI workload demands, and the latest offering in the IBM Storage for Data and AI portfolio. The new IBM Storage Scale System 6000 seeks to build on IBM's leadership position with an enhanced high performance parallel file system designed for data intensive use-cases. It provides up to 7M IOPs and up to 256GB/s throughput for read only workloads per system in a 4U (four rack units) footprint.