Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Çª¸£Çª¶ö À¯µµÃ¼ ½ÃÀåÀº 2024³â¿¡ 147¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGR 9.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 250¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
Ǫ¸£Çª¶ö À¯µµÃ¼´Â ¿Á¼ö¼ö ¼Ó´ë, ±Í¸®, ¹Ð±â¿ï, ¹Ð±â¿ï, Åé¹ä µîÀÇ ³ó»ê¹°¿¡¼ ¾ò¾îÁö´Â À¯±â ÈÇÕ¹°ÀΠǪ¸£Çª¶ö¿¡¼ ÃßÃâÇÑ ÈÇÕ¹°ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ À¯µµÃ¼´Â ÈÇÐÀû ´Ù¾ç¼ºÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷Àû ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼öÁö, ¿ëÁ¦, ÀǾàǰ, Á¤¹ÐÈÇÐÀ» Á¦Á¶ÇÒ ¶§ Àü±¸Ã¼ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Ǫ¸£Çª¶öÀº Àç»ý ¿¡³ÊÁö ¹× ģȯ°æ ÈÇÐ ºÐ¾ßÀÇ ±ÍÁßÇÑ Ç÷§Æû ÈÇй°Áú·Î, Áö¼Ó°¡´ÉÇÑ »ê¾÷ °üÇàÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.
Ç®ÇÁ¸± ¾ËÄÚ¿Ã ¼ö¿ä Áõ°¡
Ç®·çÇÁ¸± ¾ËÄÚ¿ÃÀº ´Ù¾çÇÑ »ê¾÷ ¿ëµµ¿¡¼ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ¾î ½ÃÀå ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ǫ¶õ ¼öÁö Á¦Á¶ÀÇ ÁÖ¿ä ¼ººÐÀ¸·Î ÁÖ¹° ¸ð·¡ ¹ÙÀδõ, Á¢ÂøÁ¦ ¹× ÄÚÆÃÁ¦ Á¦Á¶¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ ¹ÙÀÌ¿À ÈÇÐ ¹°Áú·ÎÀÇ ÀüȯÀº ±× ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¹× ³ó¾÷°ú °°Àº »ê¾÷¿¡¼ ³»ÈÇмº ¹× ³»±¸¼º°ú °°Àº ¿ì¼öÇÑ Æ¯¼ºÀ» °¡Áø ÀÌ ¾ËÄÚ¿ÃÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
±âÁ¸ Á¦Ç°°úÀÇ °æÀï
Ǫ¸£Çª¶ö À¯µµÃ¼ ½ÃÀåÀº ±âÁ¸ Á¦Ç°°úÀÇ Å« °æÀï¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, ÀÌ´Â ¼ºÀå°ú ¹ßÀü¿¡ Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âÁ¸ Á¦Ç°µéÀº Á¾Á¾ ±Ô¸ðÀÇ °æÁ¦ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, Ǫ¸£Çª¶ö À¯µµÃ¼°¡ °¡°Ý °æÀï·ÂÀ» °®Ã߱⠾î·Á¿î °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ±âÁ¸ Á¦Ç°µéÀº Ä£¼÷ÇÏ°í ½Å·Ú¼ºÀÌ ³ô±â ¶§¹®¿¡ ȯ°æÀû ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ½Å±Ô ½ÃÀå ÁøÃâ±â¾÷ÀÌ È¯°æÀû ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸Çϰí Ç®·çÇÁ¶ö À¯µµÃ¼·Î ÀüȯÇϵµ·Ï ¾÷°è¸¦ ¼³µæÇÏ´Â °ÍÀº ½±Áö ¾Ê½À´Ï´Ù.
Àç»ý ÈÇй°Áú·ÎÀÇ Àüȯ
ȯ°æ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ¾ö°ÝÇÑ ±ÔÁ¦°¡ °ÈµÊ¿¡ µû¶ó Àç»ýÇÑ ÈÇй°Áú·ÎÀÇ ÀüȯÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ³ó¾÷ Æó±â¹°¿¡¼ ÃßÃâÇÑ Çª¸£Çª¶öÀº ¼®À¯ ±â¹Ý ÈÇÐ ¹°Áú¿¡ ´ëÇÑ Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ±× À¯µµÃ¼´Â ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ¾î ź¼Ò¹ßÀÚ±¹À» ÁÙÀÌ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Ä£È¯°æ ±â¼ú ¹× »ý»ê °øÁ¤¿¡ ÅõÀÚÇÏ¿© Àç»ýÇÑ ÈÇÐ ¼Ö·ç¼Ç ½ÃÀå ¼ºÀå°ú ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿øÀç·á °¡°Ý º¯µ¿
¿øÀÚÀç °¡°ÝÀÇ º¯µ¿Àº ½ÃÀå¿¡ Å« ¾Ç¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÀÌ·¯ÇÑ º¯µ¿Àº »ý»ê ºñ¿ë Áõ°¡·Î À̾îÁ® ¼öÀͼº°ú °¡°Ý Àü·«¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Á¦Á¶¾÷ü´Â ¿¹ÃøÇÒ ¼ö ¾ø´Â ºñ¿ëÀ¸·Î ÀÎÇØ °ø±Þ¾÷ü ¹× °í°´°úÀÇ ¾ÈÁ¤ÀûÀÎ °ü°è¸¦ À¯ÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀæÀº °¡°Ý º¯µ¿Àº Àå±âÀûÀÎ °èȹ°ú ÅõÀÚ¸¦ ¹æÇØÇÏ°í ±Ã±ØÀûÀ¸·Î ½ÃÀå ¼ºÀå°ú °æÀï¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒ¾ÈÁ¤¼ºÀº ¾÷°è³» ½Å±Ô ÁøÀÔ°ú ±â¼ú Çõ½ÅÀ» ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß¸®°í »ê¾÷ Ȱµ¿ÀÇ Ä§Ã¼¸¦ À¯¹ßÇÏ¿© ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °¡µ¿ Áߴܰú ±ÔÁ¦´Â »ý»ê°ú À¯Åë¿¡ ¿µÇâÀ» ¹ÌÃÄ ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ë »ê¾÷¿¡¼ ¼ö¿ä °¨¼Ò·Î À̾îÁ³½À´Ï´Ù. ¶ÇÇÑ °æÁ¦ÀÇ ºÒÈ®½Ç¼º°ú °³ÀÎ ¼Òºñ °¨¼Ò´Â ½ÃÀå ¼ºÀå¿¡ ´õ¿í ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª Àü¿°º´Àº Áö¼Ó°¡´ÉÇÑ ÈÇÐ ¹°Áú°ú ¹ÙÀÌ¿À ÈÇÐ ¹°Áú¿¡ ´ëÇÑ °ü½ÉÀ» °¡¼ÓÈÇÏ¿© »ê¾÷°è°¡ »õ·Î¿î ±Ô¹ü¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ½ÃÀåÀÇ ÇâÈÄ È¸º¹°ú Çõ½ÅÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Çª¸£Çª¶ö ¾ËÄÚ¿Ã ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß Çª¸£Çª¶ö ¾ËÄÚ¿ÃÀÌ °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´ÉÇÏ°í °í¼º´ÉÀÇ Àç·á¸¦ Ãß±¸ÇÔ¿¡ µû¶ó ³»±¸¼ºÀÌ ¶Ù¾î³ª°í ȯ°æ Ä£ÈÀûÀÎ Á¦Ç°À» ¸¸µé±â À§ÇÑ Áß¿äÇÑ Áß°£Ã¼·Î¼ Ç÷çÇÁ¸± ¾ËÄÚ¿ÃÀÇ ¿ªÇÒÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀÆú¸®¸Ó ¹× Ư¼ö ÈÇÐÁ¦Ç° »ý»ê¿¡ ÇÁÇ®¸± ¾ËÄÚ¿ÃÀ» »ç¿ëÇÏ´Â °ÍÀº ģȯ°æ ÈÇÐ ¹× Áö¼Ó°¡´ÉÇÑ °üÇà¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ÀÏÄ¡ÇÏ¿© ½ÃÀå Á¸Àç°¨°ú ¼ºÀå ÀáÀç·ÂÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.
³ó¾÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
³ó¾÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ À¯µµÃ¼´Â »ìÃæÁ¦, Á¦ÃÊÁ¦ ¹× ºñ·áÀÇ È¿´ÉÀ» Çâ»ó½ÃÄÑ ÀÛ¹° ¼öÈ®·®°ú ÇØÃæ ¹æÁ¦¸¦ °³¼±ÇÕ´Ï´Ù. Áö¼Ó°¡´ÉÇϰí È¿À²ÀûÀÎ ³ó¹ý¿¡ ´ëÇÑ ¼ö¿ä´Â ±âÁ¸ ÈÇÐ ¹°Áú¿¡ ´ëÇÑ È¯°æ Ä£ÈÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÑ´Ù´Â Á¡¿¡¼ Ç÷çÇÁ¸± ¾ËÄÚ¿Ã ±â¹Ý Á¦Ç°ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ³ó¾÷ »ý»ê¼ºÀ» Áö¿øÇϰí Áö¼Ó°¡´ÉÇÑ ³ó¾÷ ¼Ö·ç¼ÇÀÇ È®»ê¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ǫ¸£Çª¶ö À¯µµÃ¼´Â Á¦¾à, ³ó¾÷, ½Äǰ °¡°ø µî ´Ù¾çÇÑ »ê¾÷¿¡¼ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ³ì»ö ÈÇÐ ¹× Àç»ý ÀÚ¿ø¿¡ ´ëÇÑ Á߿伺À» °Á¶Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ·¯ÇÑ À¯µµÃ¼ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå È®´ë¿¡ ±â¿©ÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í Á¦Ç°ÀÇ È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â »ý»ê ±â¼úÀÇ ¹ßÀüÀÌ ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ȯ°æ ±ÔÁ¦¿Í Áö¼Ó°¡´ÉÇÑ °üÇàÀ¸·ÎÀÇ ÀüȯÀ» ¹è°æÀ¸·Î ¼®À¯ ±â¹Ý Á¦Ç°ÀÇ ´ë¾ÈÀ¸·Î ¹ÙÀÌ¿À ÈÇÐÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °¢±¹ÀÇ ±Þ¼ÓÇÑ »ê¾÷È·Î ÀÎÇØ Á¦Á¶ ¹× ÈÇÐ °øÁ¤¿¡¼ Ǫ¸£Çª¶ö À¯µµÃ¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±×¸° Äɹ̽ºÆ®¸®¸¦ ÃËÁøÇϰí ȯ°æ ¿µÇâÀ» ÁÙÀ̱â À§ÇÑ Á¤Ã¥°ú Àμ¾Æ¼ºê°¡ ½ÃÀå ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Furfural Derivatives Market is accounted for $14.7 billion in 2024 and is expected to reach $25.0 billion by 2030 growing at a CAGR of 9.2% during the forecast period. Furfural derivatives are chemical compounds derived from furfural, an organic compound obtained from agricultural byproducts like corn cobs, oat, wheat bran, and sawdust. These derivatives are used in various industrial applications due to their chemical versatility. They serve as precursors in the production of resins, solvents, pharmaceuticals, and fine chemicals. Furfural is a valuable platform chemical in renewable energy and green chemistry, supporting the shift towards sustainable industrial practices.
Growing demand for furfuryl alcohol
The demand for furfuryl alcohol in the market is increasing due to its extensive use in various industrial applications. As a key ingredient in the production of furan resins, it is essential for manufacturing foundry sand binders, adhesives, and coatings. Additionally, the shift towards sustainable and bio-based chemicals is further propelling its demand. Industries such as automotive and agriculture are increasingly adopting this alcohol for its superior properties, including chemical resistance and durability, thus contributing to the market's growth.
Competition from existing products
The furfural derivatives market faces significant competition from existing products, presenting a notable challenge to its growth and development. These entrenched products often benefit from economies of scale, making it difficult for furfural derivatives to compete on price. Additionally, the familiarity and reliability of these existing products make it difficult for new entrants to convince industries to switch to furfural derivatives, despite their potential environmental benefits.
Shift towards renewable chemicals
The shift towards renewable chemicals in the market is driven by increasing environmental awareness and stringent regulations. Furfural, derived from agricultural waste, offers a sustainable alternative to petroleum-based chemicals. Its derivatives are used in various applications contributing to reduced carbon footprints. Companies are investing in green technologies and production processes to meet the rising demand for eco-friendly products, fostering market growth and innovation in renewable chemical solutions.
Raw material price fluctuations
Raw material price fluctuations have a significant negative impact on the market. These fluctuations lead to increased production costs, affecting profitability and pricing strategies. Manufacturers may struggle to maintain stable relationships with suppliers and customers due to unpredictable costs. Additionally, frequent price changes can hinder long-term planning and investment, ultimately affecting the market's growth and competitiveness. This instability can deter new entrants and innovation within the industry.
The COVID-19 pandemic significantly impacted the market by disrupting supply chains and causing a slowdown in industrial activities. Lockdowns and restrictions affected production and distribution, leading to decreased demand in various end-use industries. Additionally, economic uncertainties and reduced consumer spending further impacted market growth. However, the pandemic also accelerated interest in sustainable and bio-based chemicals, which may drive future recovery and innovation in the market as industries adapt to new norms.
The furfural alcohol segment is expected to be the largest during the forecast period
The furfural alcohol is expected to be the largest during the forecast period. As industries seek sustainable and high-performance materials, furfuryl alcohol's role as a key intermediate in creating durable and eco-friendly products becomes increasingly valuable. Its use in manufacturing bio-based polymers and specialty chemicals aligns with the rising emphasis on green chemistry and sustainable practices, further boosting its market presence and growth potential.
The agriculture segment is expected to have the highest CAGR during the forecast period
The agriculture segment is expected to have the highest CAGR during the forecast period. These derivatives enhance the efficacy of pesticides, herbicides, and fertilizers, improving crop yield and pest control. The demand for sustainable and efficient agricultural practices drives the adoption of furfuryl alcohol-based products, as they offer eco-friendly alternatives to traditional chemicals. This trend supports agricultural productivity and contributes to the broader push for sustainable farming solutions.
North America is projected to hold the largest market share during the forecast period. Furfural derivatives are being utilized in various industries such as pharmaceuticals, agriculture, and food processing. The region's emphasis on green chemistry and renewable resources is boosting the adoption of these derivatives. Key factors contributing to market expansion include stringent environmental regulations and advancements in production technologies that enhance product efficiency and sustainability.
Asia Pacific is projected to hold the highest CAGR over the forecast period. There's a rising demand for bio-based chemicals as alternatives to petroleum-based products, driven by environmental regulations and a shift towards sustainable practices. Rapid industrialization in countries is boosting the demand for furfural derivatives in manufacturing and chemical processes. Policies and incentives aimed at promoting green chemistry and reducing environmental impact are supporting the growth of the market.
Key players in the market
Some of the key players in Furfural Derivatives market include Aurus Specialty Chemicals, B Enterprises, Tanin, Beijing Lys Chemicals, Chemical Industry Co. Ltd., Furnova Polymers, Hefei Home Sunshine Pharmaceutical Technology Co., Ltd., Hongye Holding Group Corporation, International Furan Chemicals B.V., Pennakem, LLC, Pyran, Shanghai Ruizheng Technology, Silvateam, BASF SE, TCI Chemicals, TransFurans Chemicals bvba, UBE Corp, Xingtai Chunlei Furfuryl Alcohol, Yuanli Chemical Group and Zhucheng Taisheng Chemical.
In May 2024, BASF introduced first biomass-balanced products for its ammonia and urea portfolio. BASF applies a biomass balance approach to replace fossil resources at the beginning of the production process with certified biowaste raw materials which are attributed to the products.
In January 2024, BASF announced a new collaboration with Envision Energy, a leading green technology provider of comprehensive net zero solutions. The collaboration aims to further develop the conversion of green hydrogen and CO2 into e-methanol through an advanced, dynamic process design.