¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÀúÀå ¿ë·®º°, ÆÇ¸Åä³Îº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®
Hydrogen Storage Alloys Market Forecasts to 2030 - Global Analysis By Type (Metal Hydrides, Complex Hydrides, Intermetallic Compounds, Chemical Hydrides and Other Types), Storage Capacity, Sales Channel, Technology, Application and By Geography
»óǰÄÚµå : 1503376
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,786,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,320,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,853,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,457,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀåÀº 2024³â¿¡ 35¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 7.8%·Î, 2030³â¿¡´Â 52¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼ö¼Ò ÀúÀå ÇÕ±ÝÀº °¡¿ªÀûÀÎ È­ÇÐ ¹ÝÀÀÀ» ÅëÇØ ¼ö¼Ò °¡½º¸¦ Èí¼öÇÏ°í ¹æÃâÇÒ ¼ö ÀÖ´Â ¹°ÁúÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÇÕ±ÝÀº ÁÖ·Î ´ÏÄÌ, ƼŸ´½, ÈñÅä·ù ¿ø¼Ò µîÀÇ ±Ý¼ÓÀ¸·Î ±¸¼ºµÇ¸ç, ¼ö¼Ò¸¦ Èí¼öÇÏ¸é ±Ý¼Ó¼ö¼ÒÈ­¹°À» Çü¼ºÇÕ´Ï´Ù. ÁÖ¿ä ¿ëµµ´Â ¼ö¼Ò ÀúÀå ½Ã½ºÅÛÀ¸·Î, ¿¬·áÀüÁö ¹× ¿¡³ÊÁö ÀúÀåÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¿ëµµÀÇ ¼ö¼Ò¸¦ ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ÀúÀåÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÕ±ÝÀº ³ôÀº ÀúÀå ¿ë·®, ¾ÈÁ¤¼º, ƯÁ¤ Á¶°Ç¿¡¼­ Á¦¾î °¡´ÉÇÑ ¼Óµµ·Î ¼ö¼Ò¸¦ ¹æÃâÇÏ´Â ´É·ÂÀ¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù.

±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é Àü±âºÐÇØ ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ »ý»êµÇ´Â ¼ö¼Ò´Â ¹Ì·¡¿¡ Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖÀ¸¸ç, Àú·ÅÇÑ ¿¬·á·Î Å« ±â´ë¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù.

ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¼ö¼Ò ÀúÀå ÇÕ±ÝÀº ûÁ¤ ¿¡³ÊÁö ¿î¹ÝüÀÎ ¼ö¼Ò¸¦ ÀúÀåÇÏ°í ¿¬·áÀüÁö ¹× ±âŸ ¿ëµµ¿¡ Ȱ¿ëÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. »ê¾÷°è¿Í Á¤ºÎ°¡ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ Àç»ý ¿¡³ÊÁö·Î ÀüȯÇÔ¿¡ µû¶ó ¼ö¼Ò ÀúÀå ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ö¼Ò ÀúÀå ÇÕ±ÝÀÇ ¹ßÀü°ú ÅõÀÚ¸¦ ÃËÁøÇÏ¿© È¿À²¼º, ¿ë·® ¹× ºñ¿ë È¿À²¼ºÀ» Çâ»ó½ÃŰ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.

ÀÎÇÁ¶óÀÇ ÇѰè

¼ö¼Ò ÃæÀü¼Ò ºÎÁ·°ú °°Àº ÀÎÇÁ¶ó Á¦¾àÀº ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå¿¡ Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¦ÇÑµÈ ÀÎÇÁ¶ó´Â ¼ö¼Ò¿¬·áÀüÁöÂ÷ÀÇ º¸±ÞÀ» ¹æÇØÇÏ°í ¼ö¼ÒÀúÀå ÇÕ±Ý ¼ö¿ä¸¦ Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ö¼Ò ÃæÀü ÀÎÇÁ¶ó ±¸Ãà°ú °ü·ÃµÈ ³ôÀº ºñ¿ëÀÌ ÅõÀÚ ¹× º¸±ÞÀ» ÀúÇØÇÏ°í ½ÃÀå ¼ºÀåÀ» µÐÈ­½Ã۰í ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ÀÇ Ã¤Åà Áõ°¡

¼ö¼Ò ÇÕ±ÝÀº ÀÚµ¿Â÷ ¿îÇà¿¡ ÇʼöÀûÀÎ ¿¬·áÀüÁö¿¡¼­ ¼ö¼Ò¸¦ È¿À²ÀûÀ¸·Î ÀúÀåÇÏ°í ¹æÃâÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ģȯ°æ ¿î¼Û ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¼ö¼Ò ¿¬·áÀüÁö ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÷´Ü ¼ö¼Ò ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀåÀÌ È°¼ºÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÀÌ·¯ÇÑ ¼ºÀå Ãß¼¼°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

´ë¾È ±â¼ú°úÀÇ °æÀï

¾ÐÃà¼ö¼Ò °¡½º ¹× ź¼Ò ±â¹Ý ¼ÒÀç¿Í °°Àº ´ëü ±â¼ú°úÀÇ °æÀïÀº ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå¿¡ µµÀüÇϰí ÀÖ½À´Ï´Ù. ¾ÐÃà ¼ö¼Ò´Â ´õ °£´ÜÇÑ ÀÎÇÁ¶ó¿Í Àú·ÅÇÑ ºñ¿ëÀ» Á¦°øÇϸç, ź¼Ò ±â¹Ý ¼ÒÀç´Â ´õ ³ôÀº ÀúÀå ¿ë·®À» ¾à¼ÓÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´ëü ±â¼úµéÀº ´õ ºñ¿ë È¿À²ÀûÀ̰ųª ±â¼úÀûÀ¸·Î Áøº¸µÈ °ÍÀ¸·Î º¸ÀÌ´Â °æÀï ½ÃÀå °æÀï·Â ÀÖ´Â ÀúÀå ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ÇÕ±Ý ½ÃÀåÀ» ÀúÇØÇϰí, ¼ö¼Ò ÀúÀå Çձݿ¡¼­ ÅõÀÚ¿Í ¿¬±¸¸¦ ºÐ»ê½Ãų ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19´Â °ø±Þ¸Á Áß´Ü, ÁÖ¿ä »ê¾÷ ¼ö¿ä °¨¼Ò, ÇÁ·ÎÁ§Æ® Áö¿¬À¸·Î ÀÎÇØ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. ÀÌ·¯ÇÑ ¾î·Á¿ò¿¡µµ ºÒ±¸Çϰí, Áö¼Ó°¡´ÉÇÑ °³¹ß°ú ź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ °ü½ÉÀ¸·Î ÀÎÇØ ûÁ¤ ¿¡³ÊÁö¿Í ¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϸ鼭 ½ÃÀåÀº ȸº¹¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ Ä£È¯°æ ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀº ÀÌ ºÐ¾ßÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß º¹ÇÕ¼ö¼ÒÈ­¹° ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

º¹ÇÕ¼ö¼ÒÈ­¹° ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. º¹ÇÕ¼ö¼ÒÈ­¹°Àº ³ôÀº ¼ö¼Ò ÀúÀå ¿ë·®À» °¡´ÉÇÏ°Ô ÇÏ´Â º¹ÀâÇÑ ºÐÀÚ ±¸Á¶¸¦ Ư¡À¸·Î ÇÏ´Â ¼ö¼Ò ÀúÀå ÇÕ±ÝÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ¾Ë¶ó³×ÀÌÆ® ¹× ¼ö¼ÒÈ­ ºØ¼Ò¿Í °°Àº ¹°ÁúÀÌ Æ÷ÇԵǸç, Àû´çÇÑ ¿Âµµ¿Í ¾Ð·Â¿¡¼­ ¼ö¼Ò¸¦ ÀúÀåÇÏ°í ¹æÃâÇÏ´Â ´É·ÂÀ¸·Î À¯¸íÇÕ´Ï´Ù. º¹ÇÕ¼ö¼ÒÈ­¹°Àº Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ±â¼ú ¹ßÀüÀ» À§ÇÑ ¿¬·áÀüÁö ÀÚµ¿Â÷, ÈÞ´ë¿ë ÀüÀÚ±â±â µî ÀÛ°í È¿À²ÀûÀÎ ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿¡ À¯¸ÁÇÑ ¼ÒÀçÀÔ´Ï´Ù.

¿¹Ãø ±â°£ Áß È­ÇÐ Èí¼ö ±â¼ú ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

È­ÇÐ Èí¼ö ±â¼ú ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ CAGR ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ö¼Ò ÀúÀå ÇÕ±ÝÀÇ È­ÇÐ Èí¼ö ±â¼úÀº ¼ö¼Ò¸¦ Èí¼öÇÏ°í ¹æÃâÇÏ´Â °¡¿ªÀûÀÎ È­ÇÐ ¹ÝÀÀÀ» ¼ö¹ÝÇÕ´Ï´Ù. ÀÌ °øÁ¤Àº ÀϹÝÀûÀ¸·Î ±Ý¼Ó ¼ö¼ÒÈ­¹°°ú °°Àº ¹°ÁúÀ» »ç¿ëÇÏ¿© ƯÁ¤ Á¶°Ç¿¡¼­ ¼ö¼Ò¸¦ Èí¼öÇϰí Á¶°ÇÀÌ º¯°æµÇ¸é ¼ö¼Ò¸¦ ¹æÃâÇÕ´Ï´Ù. ¼ö¼Ò¸¦ ¾ÈÀüÇÏ°í °í¹Ðµµ·Î ÀúÀåÇÏ´Â È¿À²ÀûÀÎ ¹æ¹ýÀ̸ç, ¿¬·áÀüÁö, ÈÞ´ë¿ë ÀüÀÚ±â±â, ¾ÈÁ¤ÀûÀÎ ¼ö¼Ò °ø±Þ ¹× À¯ÅëÀ» ¿ä±¸ÇÏ´Â ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀåÀº Àç»ý ¿¡³ÊÁö ¹× ¼ö¼Ò ¿¬·á ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀϺ», Çѱ¹, Áß±¹°ú °°Àº ±¹°¡µéÀÌ ½ÅÈï °æÁ¦±¹ ¹ßÀüÀ» À§ÇÑ Á¤ºÎÀÇ ½ÇÁúÀûÀÎ Áö¿ø°ú »ê¾÷ ±¸»óÀ» ÅëÇØ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀϺ»ÀÇ '¼ö¼Ò ±âº» Àü·«'°ú Çѱ¹ÀÇ ¼ö¼Ò ·Îµå¸ÊÀº ÀÌ·¯ÇÑ ³ë·ÂÀÇ ÇÑ ¿¹ÀÔ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ ºÎ¹®ÀÇ ¼ö¼Ò¿¬·áÀüÁöÂ÷·ÎÀÇ Àüȯ°ú ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ ¹ßÀüÀº ÀÌ Áö¿ª ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀåÀº ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ È®´ë¿Í ¼ö¼Ò ÀÎÇÁ¶ó ±¸Ãà¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù°¡ ±× ¼±µÎ¿¡ ÀÖÀ¸¸ç, ¼ö¼Ò ÀúÀå ¹× ¿¬·áÀüÁö ±â¼úÀ» Áö¿øÇÏ´Â Á¤ºÎ ¹× ¹Î°£ ºÎ¹® ±¸»óÀÌ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎ´Â ¼ö¼Ò¸¦ ¿¡³ÊÁö ÀÚ¸³°ú ź¼Ò ¹èÃâ·® °¨ÃàÀÇ ÇÙ½É ¿ä¼Ò·Î ÁÖ¸ñÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Ãß¼¼´Â ´õ¿í °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾÷°è ¸®´õ¿Í ¿¬±¸ ±â°üÀÇ Çù·ÂÀº ¼ö¼Ò ÀúÀå Àç·áÀÇ ¹ßÀüÀ» ÃËÁøÇÏ°í ½ÃÀå Àü¸ÁÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå : ÀúÀå ¿ë·®º°

Á¦7Àå ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå : ÆÇ¸Åä³Îº°

Á¦8Àå ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ¼ö¼Ò ÀúÀå ÇÕ±Ý ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Hydrogen Storage Alloys Market is accounted for $3.54 billion in 2024 and is expected to reach $5.21 billion by 2030 growing at a CAGR of 7.8% during the forecast period. Hydrogen storage alloys are materials that can absorb and release hydrogen gas through reversible chemical reactions. These alloys, often composed of metals such as nickel, titanium, or rare earth elements, form metal hydrides when they absorb hydrogen. Their primary use is in hydrogen storage systems, providing a safe, efficient means to store hydrogen for various applications, including fuel cells and energy storage. These alloys are valued for their high storage capacity, stability, and ability to release hydrogen at controllable rates under specific conditions.

According to the International Energy Agency, hydrogen produced via an electrolysis mechanism offers enormous potential for the future and shows great promise as a cheap fuel option.

Market Dynamics:

Driver:

Growing demand for clean energy

Hydrogen storage alloys play a critical role in storing hydrogen, a clean energy carrier, for later use in fuel cells and other applications. As industries and governments shift towards renewable energy sources to reduce carbon emissions, the demand for hydrogen storage technologies rises. This drives advancements and investments in hydrogen storage alloys, enhancing their efficiency, capacity, and cost-effectiveness, thereby boosting market growth.

Restraint:

Infrastructure limitations

Infrastructure limitations such as the scarcity of hydrogen refuelling stations pose a significant challenge to the hydrogen storage alloys market. Limited infrastructure hampers the widespread adoption of hydrogen fuel cell vehicles, restricting the demand for these alloys. Additionally, the high cost associated with establishing hydrogen refuelling infrastructure deters investment and adoption, thereby slowing down market growth.

Opportunity:

Rising adoption in automotive sector

Hydrogen alloys are essential for efficiently storing and releasing hydrogen in fuel cells, which are crucial for vehicle operation. As the demand for eco-friendly transportation solutions increases, automakers are investing more in hydrogen fuel cell technology. This drives the need for advanced hydrogen storage solutions, thus boosting the market for hydrogen storage alloys. Enhanced focus on reducing carbon emissions further accelerates this growth trend.

Threat:

Competition from alternative technologies

Competition from alternative technologies like compressed hydrogen gas and carbon-based materials pose a challenge to the hydrogen storage alloys market. Compressed hydrogen offers a simpler infrastructure and lower costs, while carbon-based materials promise higher storage capacities. These alternatives hamper the alloys market by providing competitive storage solutions that may be perceived as more cost-effective or technologically advanced, potentially diverting investment and research away from hydrogen storage alloys.

Covid-19 Impact

The covid-19 pandemic disrupted the hydrogen storage alloys market due to supply chain interruptions, decreased demand from key industries, and delayed projects. Despite these setbacks, the market is poised for recovery with increasing investments in clean energy and hydrogen technologies, spurred by the global emphasis on sustainable development and reducing carbon emissions. The post-pandemic focus on green energy is expected to drive long-term growth in this sector.

The complex hydrides segment is expected to be the largest during the forecast period

The complex hydrides segment is estimated to have a lucrative growth. Complex hydrides are a type of hydrogen storage alloy characterized by intricate molecular structures that enable high hydrogen storage capacities. They include materials like alanates and borohydrides, known for their ability to store and release hydrogen at moderate temperatures and pressures. Complex hydrides are promising for applications requiring compact and efficient hydrogen storage solutions, such as fuel cell vehicles and portable electronics, aiming to advance sustainable energy technologies.

The chemical absorption technology segment is expected to have the highest CAGR during the forecast period

The chemical absorption technology segment is anticipated to witness the fastest CAGR growth during the forecast period. Chemical absorption technology in hydrogen storage alloys involves reversible chemical reactions where hydrogen is absorbed and released. This process typically utilizes materials like metal hydrides, which absorb hydrogen under certain conditions and release it when conditions change. It's an efficient method for storing hydrogen safely and densely, crucial for applications in fuel cells, portable electronics, and energy storage systems seeking reliable hydrogen supply and distribution.

Region with largest share:

The hydrogen storage alloys market in the Asia Pacific region is experiencing significant growth due to increasing investments in renewable energy and hydrogen fuel technologies. Countries like Japan, South Korea, and China are leading the charge with substantial government support and industrial initiatives aimed at developing hydrogen economies. Japan's "Basic Hydrogen Strategy" and South Korea's hydrogen roadmap exemplify this commitment. Additionally, the automotive sector's shift towards hydrogen fuel cell vehicles and advancements in energy storage technologies further propel market expansion in this region.

Region with highest CAGR:

The hydrogen storage alloys market in North America is witnessing robust growth driven by rising investments in clean energy solutions and the development of hydrogen infrastructure. The U.S. and Canada are at the forefront, with substantial governmental and private sector initiatives supporting hydrogen storage and fuel cell technologies. The U.S. Department of Energy's focus on hydrogen as a key element in achieving energy independence and reducing carbon emissions underscores this trend. Moreover, collaborations between industry leaders and research institutions are fostering advancements in hydrogen storage materials, enhancing market prospects.

Key players in the market

Some of the key players profiled in the Hydrogen Storage Alloys Market include BASF SE, AMETEK Specialty Metal Products, Mitsui Kinzoku ACT Corporation, Linde PLC, ESG Edelmetall-Service GmbH & Co. KG, Hitachi Corporation, Hydrogenious LOHC Technologies GmbH, ICL - Industrial Commodity Holdings, INFINIUM Metals, Magnesium Elektron Limited, Materion Corporation, Air Liquide S.A, China Rare Metal Material Corporation, Neo Performance Materials Inc., Sandvik Materials Technology, ABSCO Limited, Hydrexia Energy Technology and LAVO System.

Key Developments:

In April 2023, Hydrexia Energy Technology (China) (Hydrexia), a leading integrated hydrogen technology solution provider, has announced the launch of its innovative Metal Hydride Trailer (MH-100T) for hydrogen storage and distribution.

In August 2022, LAVO unveils new metal hydride alloy energy storage technology. The LAVO-led collaborative initiative, which also includes UNSW, Design + Industry, Providence, GHD, Varley, and Greater Springfield, has received a $221,875 co-investment from AMGC.

Types Covered:

Storage Capacities Covered:

Sales Channels Covered:

Technologies Covered:

Applications Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Hydrogen Storage Alloys Market, By Type

6 Global Hydrogen Storage Alloys Market, By Storage Capacity

7 Global Hydrogen Storage Alloys Market, By Sales Channel

8 Global Hydrogen Storage Alloys Market, By Technology

9 Global Hydrogen Storage Alloys Market, By Application

10 Global Hydrogen Storage Alloys Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â