µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÇÁ·Î¼¼¼­ À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Data Center Accelerator Market Forecasts to 2030 - Global Analysis By Type, Processor Type, Application, End User and By Geography
»óǰÄÚµå : 1503316
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,027,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,625,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,222,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,893,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀåÀº 2024³â¿¡ 319¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí 2030³â¿¡´Â 1,091¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, CAGR 22.7%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ´Â µ¥ÀÌÅͼ¾ÅÍÀÇ ¼º´É°ú È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Æ¯Á¤ °è»ê ÀÛ¾÷À» °¡¼ÓÈ­ÇÏ°í ¿ÀÇÁ·ÎµåÇϴ Ư¼ö Çϵå¿þ¾î ¿ä¼Ò·Î, GPU, FPGA, ASIC¸¦ Æ÷ÇÔÇÑ ÀÌ·¯ÇÑ °¡¼Ó±â´Â ºòµ¥ÀÌÅÍ ºÐ¼®, ÀΰøÁö´É(AI), ¸Ó½Å·¯´×, °í¼º´É ÄÄÇ»ÆÃ(HPC) µî Çö´ë ¿ëµµÀÇ ±î´Ù·Î¿î ÀÛ¾÷ ºÎÇϸ¦ °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù, °í¼º´É ÄÄÇ»ÆÃ(HPC) µî ÃֽŠ¿ëµµÀÇ ±î´Ù·Î¿î ÀÛ¾÷ ºÎÇϸ¦ °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ´Â ±âÁ¸ CPUÀÇ °íºÎÇÏ Ã³¸® ÀÛ¾÷À» ´ë½ÅÇÏ¿© 󸮷®À» Å©°Ô Çâ»ó½Ã۰í Áö¿¬ ½Ã°£À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

International Data Corporation(IDC)¿¡ µû¸£¸é µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ¼¼°è ½ÃÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ AI ¹× ¸Ó½Å·¯´× ±â¼ú äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÇâÈÄ ¼ö³â°£ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸Ó½Å·¯´×°ú AI¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀÚ¿¬¾î ó¸®, À̹ÌÁö ¹× À½¼º ÀνÄ, ÀÚÀ²ÁÖÇàÂ÷ ¹× ±âŸ AI ¹× ¸Ó½Å·¯´× ¿ëµµ´Â ¸Å¿ì ºü¸¥ ¼Óµµ·Î ¼ºÀåÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ¸¹Àº º´·Ä ó¸® ´É·ÂÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ºü¸¥ ÇнÀ ½Ã°£°ú º¸´Ù È¿°úÀûÀÎ Ãß·Ð ÀÛ¾÷Àº µ¥ÀÌÅͼ¾ÅÍÀÇ °¡¼Ó±â, ƯÈ÷ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¿Í º¹ÀâÇÑ ¾Ë°í¸®ÁòÀ» ó¸®Çϱâ À§ÇØ ±¸ÃàµÈ GPU¿Í Àü¿ë AI ĨÀ» ÅëÇØ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ ÀÇ·á, ±ÝÀ¶, ÀÚµ¿Â÷ ¹× ¼Ò¸Å ºÎ¹®ÀÇ ±â¾÷ÀÌ ÀÇ»ç°áÁ¤, °í°´ °æÇè ¹× ¿î¿µ È¿À²¼ºÀ» °³¼±Çϱâ À§ÇØ ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ À¯Áöº¸¼ö ¹× ÅëÇÕ

µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ÅëÇÕÀº ±â¼úÀûÀ¸·Î ¾î·Æ°í Àü¹®ÀûÀÎ Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÇöÀçÀÇ Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ³×Æ®¿öÅ© ¾ÆÅ°ÅØÃ³¿ÍÀÇ È£È¯¼ºÀ» º¸ÀåÇÏ´Â °ÍÀÌ ÀÌ·¯ÇÑ º¹À⼺À» ¾ß±âÇÕ´Ï´Ù. ¶ÇÇÑ ±âÁ¸ CPU¿Í Ư¼ö °¡¼Ó±â¸¦ ¸ðµÎ °®Ãá À̱âÁ¾ È¥ÇÕ ÄÄÇ»ÆÃ ȯ°æÀ» À¯Áö ¹× °ü¸®ÇÏ·Á¸é ÷´Ü Áö½Ä°ú ¸®¼Ò½º°¡ ÇÊ¿äÇÕ´Ï´Ù. Á¶Á÷ÀÌ Àü¹®°¡¸¦ °í¿ëÇÏ°í ±³À°ÇÏ´Â µ¥ ºñ¿ëÀ» ÁöÃâÇØ¾ß ÇÏ´Â °æ¿ì, µµÀÔÀÌ Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ¿î¿µ ºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Çϵå¿þ¾îÀÇ ±â¼úÀû Áøº¸

´õ °­·ÂÇϰí È¿À²ÀûÀÎ GPU, FPGA, ¸ÂÃãÇü ASICÀÇ °³¹ß µî °¡¼Ó±â Çϵå¿þ¾îÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ¸¹Àº ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¼º´É Çâ»ó, ¿¡³ÊÁö È¿À²¼º ¹× ¿ëµµº° ÃÖÀûÈ­¸¦ ÅëÇØ ´Ù¾çÇÑ ÀÌ¿ë »ç·Ê¿¡¼­ °¡¼Ó±â¸¦ ´õ¿í ¸Å·ÂÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ¹× ¾çÀÚ ÄÄÇ»ÆÃ°ú °°Àº »õ·Î¿î ±â¼úÀº ±âÁ¸ °¡¼Ó±â¿Í ÇÔ²² µ¥ÀÌÅͼ¾ÅÍ¿¡ ´õ º¹ÀâÇÏ°í °è»ê·®ÀÌ ¸¹Àº ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ ±Þ°ÝÇÑ º¯È­

µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍÀÇ ºü¸¥ ±â¼ú ¹ßÀü ¼Óµµ´Â ÁÖ¸ñÇÒ ¸¸ÇÑ À§ÇèÀ» °¡Á®¿É´Ï´Ù. ±â¾÷Àº ½Ã´ëÀÇ ¼±µÎ¿¡ ¼­±â À§ÇØ ²÷ÀÓ¾øÀÌ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇØ¾ß Çϸç, ÀÌ´Â ¸¹Àº ÀÚ¿øÀ» ÇÊ¿ä·Î ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´õ »õ·Ó°í Á¤±³ÇÑ ¼Ö·ç¼ÇÀÌ µîÀåÇϸé ÇöÀçÀÇ ±â¼úÀº °ð ±¸½ÄÀÌ µÉ ¼öµµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¾÷Àº ±â¼ú ¹ßÀü¿¡ ´ëÀÀÇϱâ À§ÇØ Á¤±âÀûÀ¸·Î ÀÎÇÁ¶ó¸¦ ¾÷±×·¹À̵åÇØ¾ß ÇϹǷΠÀÌ·¯ÇÑ ºü¸¥ º¯È­ÀÇ °á°ú·Î ³ôÀº ºñ¿ëÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ µðÁöÅÐ Çõ½Å, ¿ø°Ý ±Ù¹« ¿É¼Ç ¹× Ŭ¶ó¿ìµå ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ´Â ±â¾÷°ú ¼ÒºñÀÚ°¡ µðÁöÅÐ Ç÷§Æû¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ µ¥ÀÌÅÍ »ý¼º ¹× ó¸® ¿ä±¸°¡ ±ÞÁõÇÔ¿¡ µû¶ó ¼º´É°ú È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇØ µµÀԵǾú½À´Ï´Ù. ±×·¯³ª Àü¿°º´Àº »ý»ê Áö¿¬, ºÎǰ ºÎÁ·, °ø±Þ¸Á È¥¶õÀ» ÃÊ·¡ÇÏ¿© Á¦Á¶¾÷ü¸¦ ¾Ð¹ÚÇÏ°í »õ·Î¿î °¡¼Ó±â ±â¼ú äÅÃÀ» ´ÊÃß¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ Áß °í¼º´É ÄÄÇ»ÆÃ °¡¼Ó±â ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î Àü¸Á

µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå¿¡¼­ °í¼º´É ÄÄÇ»ÆÃ(HPC) °¡¼Ó±â ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. °úÇÐ ¿¬±¸, ±ÝÀ¶, ¿£Áö´Ï¾î¸µ, ±¹¹æ µîÀÇ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ´ë±Ô¸ð µ¥ÀÌÅÍ ºÐ¼®, º¹ÀâÇÑ °è»ê ¹× ½Ã¹Ä·¹À̼ǰú °°Àº °íºÎÇÏ ÀÛ¾÷¿¡ ÇÊ¿äÇÑ ÄÄÇ»ÆÃ ¼º´ÉÀº ÁÖ·Î HPC °¡¼Ó±â¸¦ ÅëÇØ °ø±ÞµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °í±Þ ¸ðµ¨¸µ, ÀΰøÁö´É, ¸Ó½Å·¯´× ¿ëµµÀÇ Çʿ伺Àº ÀÌ·¯ÇÑ ºÎ¹®¿¡¼­ ÄÄÇ»ÆÃ ¼º´É¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖÀ¸¸ç, À̰ÍÀÌ HPC °¡¼Ó±â°¡ ½ÃÀåÀ» Áö¹èÇϰí ÀÖ´Â ÀÌÀ¯ÀÔ´Ï´Ù.

GPU(±×·¡ÇÈ Ã³¸® Àåºñ) ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå¿¡¼­ GPU(Graphical Processing Unit) ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ¸ç, GPU´Â ¶Ù¾î³­ º´·Ä ó¸® ´É·ÂÀ¸·Î ÀÎÇØ ¸Ó½Å·¯´×, ÀΰøÁö´É(AI), °í¼º´É ÄÄÇ»ÆÃ(HPC)°ú °°Àº ÃֽŠ¿ëµµ¿¡ ÇÊ¿äÇÑ º¹ÀâÇÑ °è»êÀ» °ü¸®ÇÏ´Â µ¥ ÀûÇÕÇϱ⠶§¹®¿¡ Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×, ÀΰøÁö´É(AI), °í¼º´É ÄÄÇ»ÆÃ µî ÃֽŠ¿ëµµ¿¡¼­ ¿ä±¸µÇ´Â º¹ÀâÇÑ ¿¬»ê °ü¸®¿¡ ÀûÇÕÇϱ⠶§¹®¿¡ Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±âÁ¸ CPUº¸´Ù ¼Óµµ¿Í ¼º´ÉÀÌ Å©°Ô Çâ»óµÈ ¾ÆÅ°ÅØÃ³ ´öºÐ¿¡ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¿Í º¹ÀâÇÑ ¾Ë°í¸®ÁòÀ» ºü¸£°í È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª :

ºÏ¹Ì´Â IT, ÀÇ·á, ±ÝÀ¶, E-Commerce µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ¼±µµÀûÀÎ ±â¼ú ±â¾÷°ú °­·ÂÇÑ ÀÎÇÁ¶ó, µ¥ÀÌÅÍ Ã³¸® ´É·Â¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä·Î ÀÎÇØ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ¼¼°è ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºòµ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´×, ÀΰøÁö´É(AI) µî ÷´Ü ±â¼úÀÇ Á¶±â µµÀÔÀÌ ÀÌ Áö¿ª¿¡ ÇýÅÃÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú¿¡´Â ÄÄÇ»ÆÃ È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â °­·ÂÇÑ °¡¼Ó±â°¡ ÇÊ¿äÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÑ Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÔ´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­, ¸¹Àº »ê¾÷ÀÇ µðÁöÅÐÈ­, Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼­ ±â¼ú ÇãºêÀÇ ¼³¸³ÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Àα¸ Áõ°¡¿Í ½º¸¶Æ®Æù, »ç¹°ÀÎÅͳÝ(IoT) ±â±â, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¼­ºñ½ºÀÇ º¸±ÞÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ »ý¼º·®ÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾ç ±â¾÷ÀÌ °æÀï ¿ìÀ§¸¦ È®º¸ÇÏ°í ¹æ´ëÇÑ ¿öÅ©·Îµå¸¦ È¿À²ÀûÀ¸·Î °ü¸®Çϱâ À§ÇØ µ¥ÀÌÅÍ Áß½ÉÀû »ç°í¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó °í¼º´É µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå À̱×Á¦Å¥Æ¼ºê °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå : ÇÁ·Î¼¼¼­ À¯Çüº°

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅͼ¾ÅÍ ¾×¼¿·¯·¹ÀÌÅÍ ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä °³¹ß

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Data Center Accelerator Market is accounted for $31.98 billion in 2024 and is expected to reach $109.12 billion by 2030 growing at a CAGR of 22.7% during the forecast period. Data center accelerators are specialized hardware elements that accelerate and offload particular computational tasks to improve the performance and efficiency of data centers. These accelerators-which include GPUs, FPGAs, and ASICs-are designed to withstand the rigorous workloads of contemporary applications, which include big data analytics, artificial intelligence (AI), machine learning, and high-performance computing (HPC). Moreover, data center accelerators can greatly increase throughput and decrease latency by taking on demanding processing tasks from conventional CPUs.

According to the International Data Corporation (IDC), the global market for data center accelerators is projected to grow significantly over the next few years, driven by the increasing adoption of AI and machine learning technologies in various industries.

Market Dynamics:

Driver:

Growing needs for machine learning and AI

Natural language processing, image and speech recognition, autonomous cars, and other AI and machine learning applications are growing at a very fast pace, which makes them demand a lot of processing power in parallel. Rapid training times and more effective inference operations are made possible by data center accelerators, especially GPUs and specialized AI chips, which are built to handle the large datasets and intricate algorithms involved. Additionally, in order to improve decision-making, customer experience, and operational efficiency, businesses in the healthcare, finance, automotive, and retail sectors are driving this demand.

Restraint:

Complex maintenance and integration

Data center accelerator integration can be technically challenging and necessitate specialized knowledge. The requirement to guarantee compatibility with current hardware, software, and network architectures gives rise to this complexity. Furthermore, it takes advanced knowledge and resources to maintain and manage a heterogeneous computing environment with both conventional CPUs and specialized accelerators. Adoption may be hampered if organizations must spend money on expert hiring or training, which would raise operating expenses even more.

Opportunity:

Technological progress in hardware

There are a lot of opportunities due to ongoing advancements in accelerator hardware, such as the creation of GPUs, FPGAs, and customized ASICs that are more powerful and efficient. Accelerators are now more appealing for a variety of use cases due to their increased performance, energy efficiency, and application-specific optimization as a result of these developments. Moreover, newer technologies like neuromorphic computing and quantum computing may be able to work with conventional accelerators to give data centers new ways to handle tasks that are even more intricate and computationally demanding.

Threat:

Quick changes in technology

The rapid pace of technological progress in data center accelerators presents a noteworthy risk. To stay ahead of the curve, businesses must continually invest in research and development, which can require a lot of resources. There's also the chance that as newer, more sophisticated solutions appear, current technologies will quickly become outdated. Additionally, businesses may incur higher costs as a result of this rapid change since they must regularly upgrade their infrastructure to keep up with advancements in technology.

Covid-19 Impact:

The COVID-19 pandemic had a major effect on the market for data center accelerators, driving up demand for digital transformation, remote work options, and cloud services across various industries. Data center accelerators were adopted to improve performance and efficiency as a result of a surge in data generation and processing needs brought about by businesses and consumers relying more and more on digital platforms. However, the pandemic also resulted in production delays, shortages of components, and disruptions to the supply chain, which put manufacturers under pressure and slowed the adoption of new accelerator technologies.

The High Performance Computing Accelerator segment is expected to be the largest during the forecast period

The High Performance Computing (HPC) Accelerator segment holds the largest market share in the data center accelerator market. The computational power needed for demanding tasks like large-scale data analysis, intricate computations, and simulations-all essential in domains like scientific research, finance, engineering, and defense-is largely supplied by HPC accelerators. Moreover, the need for advanced modeling, artificial intelligence, and machine learning applications is driving an increasing demand for computational capabilities in these domains, which is why HPC accelerators are dominating the market.

The Graphical Processing Unit (GPU) segment is expected to have the highest CAGR during the forecast period

The Graphical Processing Unit (GPU) segment of the Data Center Accelerator Market has the highest CAGR. GPUs are becoming more and more popular because of their superior parallel processing capabilities, which make them perfect for managing the intricate computations needed by contemporary applications like machine learning, artificial intelligence (AI), and high-performance computing (HPC). Additionally, large data sets and complex algorithms can be processed quickly and efficiently thanks to their architecture, which offers a noticeable speed and performance boost over conventional CPUs.

Region with largest share:

Due to the presence of significant technology companies, a strong infrastructure, and a high demand for data processing capabilities across a variety of industries, including IT, healthcare, finance, and e-commerce, North America continues to hold the largest share of the global market for data center accelerators. Furthermore, early adoption of cutting-edge technologies such as big data analytics, machine learning, and artificial intelligence (AI) benefits the region. These technologies require strong accelerators to improve computational efficiency.

Region with highest CAGR:

The data center accelerator market's highest CAGR is seen in the Asia-Pacific region. Rapid urbanization, rising digitization in a number of industries, and the establishment of technology hubs in nations like China, India, Japan, and South Korea are the main drivers of this growth. Due to the region's growing population, widespread use of smart phones, Internet of Things (IOT) devices, and cloud computing services, there is a surge in the generation of data. Additionally, high-performance data center accelerators are becoming more and more necessary as companies in Asia-Pacific depend more and more on data-driven insights to obtain a competitive edge and manage enormous workloads effectively.

Key players in the market

Some of the key players in Data Center Accelerator market include NVIDIA Corporation, Google Inc., Cisco Systems, Inc., Qualcomm Technologies, Inc., Fujitsu, NEC Corporation, Intel Corporation, Advanced Micro Devices, Inc, Wave Computing, Meta Inc., SambaNova Systems, Inc., Leapmind Inc., Dell Inc., Micron Technology, Inc. and Huawei Technologies.

Key Developments:

In March 2024, Networking major Cisco has signed an agreement with the Karnataka government to train 40,000 people in cybersecurity skills and awareness. Women will represent half of the trained workforce to help meet the growing need for such skills as organisations bolster the cybersecurity.

In February 2024, Technology giant Google has signed its largest ever power purchase agreement (PPA) with offshore wind projects off the coast of the Netherlands as part of efforts to green its power supply and hit climate targets. Renewable power project developers are increasingly tying their electricity output to long-term PPAs to provide revenue security, while corporate buyers are keen to lock in supply and ensure they meet targets for sourcing clean power.

In September 2023, Qualcomm Technologies, Inc. announced that it has entered into an agreement with Apple Inc. to supply Snapdragon(R) 5G Modem?RF Systems for smartphone launches in 2024, 2025 and 2026. This agreement reinforces Qualcomm's track record of sustained leadership across 5G technologies and products

Types Covered:

Processor Types Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Data Center Accelerator Market, By Type

6 Global Data Center Accelerator Market, By Processor Type

7 Global Data Center Accelerator Market, By Application

8 Global Data Center Accelerator Market, By End User

9 Global Data Center Accelerator Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â