Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Àç·á Á¤º¸ÇÐ ½ÃÀåÀº 2023³â 1¾ï 2,900¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 18.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4¾ï 1,800¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü¸ÁµË´Ï´Ù.
Åë°è ºÐ¼®°ú °°Àº ÀÎÆ÷¸Åƽ½º ±â¼úÀ» Ȱ¿ëÇÔÀ¸·Î½á Àç·á ÀÎÆ÷¸Åƽ½º´Â Àç·á âÀÛÀÇ È¿À²¼ºÀ» ³ôÀÌ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. Àç·á Á¤º¸Çд ¸Ó½Å·¯´×°ú ¹°¼º ÀÌ·Ð, ½ÇÇè, ½Ã¹Ä·¹À̼Ç, µ¥ÀÌÅͺ£À̽º, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, º¸¾È µî ´Ù¾çÇÑ ¿µ¿ªÀÇ ±â¼úÀ» °áÇÕÇÑ °ÍÀÔ´Ï´Ù. µÎ ¿µ¿ªÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ Àç·áÁ¤º¸ÇÐÀº Á¤º¸°úÇаú Àç·á°úÇÐÀÇ Á¢Á¡À̶ó°íµµ ºÒ¸®¸ç, ±× Ȱ¿ëµµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºü¸£°Ô ó¸®ÇÒ ¼ö Àִ ȯ°æÀÌ Á¶¼ºµÇ¸é¼ Àç·á Á¤º¸ÇÐÀÇ È°¿ëÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
Àç·á °úÇÐ ºÐ¾ß´Â µ¥ÀÌÅÍ ¸¶ÀÌ´×À» ÅëÇØ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, Èï¹ÌÁøÁøÇÑ »õ·Î¿î Àü¸ÁÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ ÇüÅÂÀÇ Àç·á µ¥ÀÌÅÍ¿¡ ´ëÇÑ »õ·Î¿î µ¥ÀÌÅÍ ¸¶ÀÌ´× ¾ÆÀ̵ð¾îÀÇ Áö¼ÓÀûÀÎ °³¼±°ú Àç·á Ư¼º µ¥ÀÌÅͺ£À̽ºÀÇ º¸±ÞÀº Àç·á ¼³°è¿¡ Áö¼ÓÀûÀ¸·Î ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, Àç·á Á¤º¸ÇÐ »ê¾÷¿¡¼ µ¥ÀÌÅÍ ¸¶ÀÌ´× ¹× ¸Ó½Å·¯´× ±â¼úÀÇ È°¿ëÀÌ È®´ëµÊ¿¡ µû¶ó ½ÃÀå È®ÀåÀ» »õ·Î¿î ¼º°øÀÇ °íÁö·Î ²ø¾î¿Ã¸± °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
°íºÐÀÚ Àç·á´Â ±Ý¼Ó, ¼¼¶ó¹Í, »ýü Àç·á¿Í °°Àº ´Ù¸¥ Àç·á¿Í ºñ±³ÇÒ ¶§, °íºÐÀÚ Àç·á´Â Àç·á Á¤º¸ÇÐ ºÐ¾ßÀÇ °íÀ¯ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖ¾î ÀϰüµÈ µ¥ÀÌÅͺ£À̽º¸¦ ±¸ÃàÇÏ±â ¾î·Æ½À´Ï´Ù. °íºÐÀÚÀÇ ÇüŰ¡ ¸Å¿ì ´Ù¾çÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ °íºÐÀÚ Àç·á´Â ¸Å¿ì º¹ÀâÇÏ°í °è»êÀû ¹æ¹ýÀ¸·Î À̸§À» ºÙÀ̱Ⱑ ¾î·Æ½À´Ï´Ù. °íºÐÀÚ Ä«Å×°í¸®¿¡´Â °øÁßÇÕ, °íºÐÀÚ È¥ÇÕ, Á÷¼â °íºÐÀÚ ¹× ºÐÁö °íºÐÀÚ, °íºÐÀÚ È¥ÇÕ µîµµ Æ÷ÇԵǸç, Àç·áÁ¤º¸Çп¡ Ȱ¿ëµÇ±â ¶§¹®¿¡ Á¦Ç°À» ¸¸µå´Â °úÁ¤¿¡ º¹À⼺ÀÌ ´õÇØÁ® ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
ÇÕ±Ý ¼ÒÀç´Â Àç·á Á¤º¸ÇÐ ºÐ¾ß¿¡¼ ºñ¾àÀûÀÎ ¹ßÀüÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç·á Á¤º¸ÇÐÀº ÃÖ±Ù ¸î ³âµ¿¾È Àç·á ¹× ¼³°è ¹ß°ßÀ» À§ÇÑ °·ÂÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â Àç·á °úÇÐ ¹× ¿£Áö´Ï¾î¸µ °ü·Ã ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ µ¥ÀÌÅÍ °úÇÐ ¿ëµµ¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú ±â¹ýÀº »õ·Î¿î Àç·á¸¦ ¹ß°ßÇϰí Ž»öÇϱâ À§ÇØ ¹æ´ëÇÑ ½ÇÇèÀû ÇÑ°è °ø°£À» ¾ÐÃàÇϱâ À§ÇØ ¸¹Àº ºÐ¾ß¿¡¼ Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, ±× °á°ú ´Ù¾çÇÑ ½ÃÀå ¼ºÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
Àç·á Á¤º¸Çи¦ ÀÌÇØÇϰí ÇÊ¿äÇÑ ¿ëµµ¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇϱâ À§Çؼ´Â ÇÊ¿äÇÑ ±â¼úÀ» °®Ãá Àü¹®°¡°¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±âº» ´É·Â¿¡´Â µ¥ÀÌÅÍ ÀúÀå ¹× ¼öÁýÀ» À§ÇÑ µ¥ÀÌÅͺ£À̽º, ´Ù¾çÇÑ À¯Çü°ú ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®Çϱâ À§ÇÑ ±ÔÄ¢À» ÀÌÇØÇϱâ À§ÇÑ »ê¼ú°ú Åë°è°¡ Æ÷ÇԵ˴ϴÙ. µû¶ó¼ º¸´Ù Á¤¹ÐÇÑ ½Ã½ºÅÛ µµÀÔ°ú ÅëÇÕÀÌ ¿ä±¸µË´Ï´Ù. ÀÌ´Â ÀáÀçÀûÀÎ ÃÖÁ¾ »ç¿ëÀÚ°¡ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» ³Î¸® äÅÃÇÏ´Â µ¥ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇöÀç ÈÇÐ ¹× Á¦¾à, Àç·á °úÇÐ, Á¦Á¶ µî ¼ö¸¹Àº ÀÀ¿ë ºÐ¾ß´Â ±× È¿°ú¿¡ °ü°è¾øÀÌ ´ëºÎºÐ ±âÁ¸ ¹æ½ÄÀ» °í¼öÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â Á¾ÇÕÀûÀÎ °èȹÀÌ ¾ø±â ¶§¹®ÀÔ´Ï´Ù.
2020³â ÃÊ Äڷγª19ÀÇ È®»êÀ¸·Î ÀÎÇØ Àç·á°úÇаú ¿¬±¸¸¦ Æ÷ÇÔÇÑ ¿©·¯ »ç¾÷ÀÇ ±â´É°ú ¹Ì·¡°¡ ±ØÀûÀ¸·Î º¯ÈÇßÀ¸¸ç, Äڷγª19 ¹ÙÀÌ·¯½º°¡ ¿¬±¸ ´ë»ó¿¡ Æ÷ÇÔµÇ¸é¼ ´Ù¸¥ »ê¾÷¿¡µµ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ÀÇ ±¹°¡ ºÀ¼â ¹× Áß´ÜÀº ¸¹Àº »ê¾÷ÀÇ ¿¬±¸¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÄ Àç·á Á¤º¸ÇÐ »ê¾÷ÀÇ È®ÀåÀ» ´Ù½Ã ÇÑ ¹ø Áö¿¬½Ã۰í ÀÖ½À´Ï´Ù.
¹«±â Àç·á ºÎ¹®Àº ÀüÀÚ, ÈÇÐ, ½Äǰ, Á¦Áö ¹× ±âŸ ºÎ¹®À» Æ÷ÇÔÇÑ ¸¹Àº Áß¿äÇÑ »ç¾÷ÀÌ ¹«±â Àç·á¿¡ Å©°Ô ÀÇÁ¸Çϰí Àֱ⠶§¹®¿¡ À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¹Ý¸é, ÇÏÀ̺긮µå ¼ÒÀç´Â ȯ°æ Ä£ÈÀûÀÌ°í »ê¾÷ ÀûÇÕ¼ºÀÌ ³ôÀº À¯±â ¹× ÇÏÀ̺긮µå Á¦Ç°¿¡ ´ëÇÑ °í°´ ¼±È£µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ¿¹»ó ±â°£ µ¿¾È ³î¶ó¿î ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àç·á °úÇÐ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »õ·Î¿î Àç·áÀÇ ¹ß°ß ¹× °³¹ß, Àç·á Á¤º¸ÇÐ Á¢±Ù¹ýÀº Àç·á °úÇÐ ÀÀ¿ë ºÐ¾ß¿¡ Àû¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. Àç·á °úÇÐÀº ´Ù¾çÇÑ Àç·á¿Í ³ª³ë ±â¼úÀ» »ç¿ëÇÕ´Ï´Ù. µû¶ó¼ Àç·á°úÇÐÀÇ ÄÄÇ»ÆÃ °úÁ¦´Â ´õ¿í ±î´Ù·Ó´Ù. ¶ÇÇÑ, ÀÌ ÁÖÁ¦´Â ƯÁ¤ ¹Ù¶÷Á÷ÇÑ ±â´ÉÀ» °¡Áø »õ·Î¿î Àç·á¿¡ ´ëÇÑ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Àç·áÀÇ »ý¼º, °ü¸® ¹× ÃÖÀûÈ °úÁ¤À» ´Ü¼øÈÇϱâ À§ÇØ ÀÌ ºÐ¾ß¿¡¼´Â ´Ù¾çÇÑ Àç·á, ¸ðµ¨¸µ Á¢±Ù¹ý, ½Ã¹Ä·¹ÀÌ¼Ç µµ±¸, ¹°¸® ±â¹Ý ¹× ¸Ó½Å·¯´× ¸ðµ¨À» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â Àç·á °úÇÐ ¹× ºÐ¼® ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ÀüÀÚ, ÈÇÐ ¹× ±âŸ ¿©·¯ ºÐ¾ßÀÇ R&D Ȱµ¿ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2020³â ¼¼°è Àç·á Á¤º¸ÇÐ ½ÃÀå¿¡¼ ºÏ¹Ì°¡ ½ÃÀå ¼öÀÍÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â ±â¼ú ¸®´õ·Î¼ÀÇ ÁöÀ§¸¦ ¹ÙÅÁÀ¸·Î ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), ºòµ¥ÀÌÅÍ, µ¥ÀÌÅÍ ºÐ¼®°ú °°Àº ÷´Ü ±â¼ú Ȱ¿ë¿¡ À־µ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °úÇÐ, ¸Ó½Å·¯´×, AIÀÇ ÅëÇÕÀº ½ÃÀåÀÇ ÀáÀç·Â¿¡ »õ·Î¿î ÆÐ·¯´ÙÀÓÀ» ¸¸µé¾î³Â½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÚµ¿Â÷, ÀüÀÚ, °Ç¼³ µî »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Ã·´Ü ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °·ÂÇÑ »ê¾÷ ¹× °æÁ¦ ¼ºÀå µî ¿©·¯ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡µéÀº Àç·á °úÇаú ±â¼úÀ» Æ÷ÇÔÇÑ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àç·á Á¤º¸ÇÐÀÇ È®´ë´Â µ¥ÀÌÅÍ °úÇÐ ¹× Àç·á °úÇÐ ÀÎÀç°¡ dzºÎÇÏ°í ¿¬±¸°³¹ßÀ» Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥À¸·Î ÀÎÇØ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Materials Informatics Market is accounted for $129 million in 2023 and is expected to reach $418 million by 2030 growing at a CAGR of 18.3% during the forecast period. By utilizing informatics techniques like statistical analysis, materials informatics aims to increase the effectiveness of material creation. Materials Informatics" combines machine learning with technology from a variety of domains, including theory of properties, experiments, simulations, databases, cloud computing, security, etc. Due to the advancement of technology in both domains, materials informatics also known as the confluence of information science and materials science has seen an increase in its use. The environment has permitted the high-speed handling of enormous volumes of data, which has promoted the use of materials informatics.
The field of material science has undergone a revolution because to data mining, and exciting new prospects are now available. Additionally, it is anticipated that continual improvements in new data mining ideas for various forms of material data and the proliferation of material property databases will continue to have an influence on material design. Moreover, due to the growing use of data mining and machine learning technologies in the material informatics industry would propel market expansion to new heights of success.
When compared to other materials like metals, ceramics, or biomaterials, polymer materials have a unique trait in the field of material informatics that makes the building of a coherent database difficult. Due to the large variety of polymer morphologies, these polymer materials are extremely complicated, making it challenging to name them using computational methods. The polymer category, which also covers copolymerization, polymer mixing, linear versus branched polymers, and polymer blending are utilized for material informatics, adding complexity to the process of creating a product which impedes the growth of the market
For the materials informatics sector, alloy material has experienced exponential expansion, the field of many primary elements or high entropy that permits alloy formation. Additionally, materials informatics has become a potent tool for material and design discovery in recent years. It is employed in data science applications to tackle challenges related to material science and engineering. These cutting-edge technical methods are utilized in a number of contexts to condense vast experimental restriction spaces in order to locate or look for newly discovered materials thus creating a wide range of opportunities for the growth of the market.
Experts with the requisite skill set are essential for comprehending and smoothly integrating material informatics into necessary applications. These fundamental abilities include databases for storing and gathering data as well as arithmetic and statistics to comprehend rules for processing various sorts and amounts of data. Therefore, the system must be installed and integrated with more accuracy. This is a significant obstacle to the wider adoption of these solutions by potential end users. Currently, numerous application fields such as chemical & pharmaceutical, materials science and manufacturing are mostly continuing to follow conventional techniques, regardless of the effectiveness of these. This is because there is no overarching plan in place which is hampering the market growth.
The functioning and future potential of several businesses, including material science and research, have been drastically altered by the dissemination of COVID-19 at the beginning of the year 2020. Other industries were influenced as a result of the COVID-19 virus being the subject of study. Additionally, the country's lockdown and standstill in manufacturing have had a detrimental influence on research in a number of industries, which has once again slowed the expansion of the material informatics industry.
The inorganic materials segment is estimated to have a lucrative growth, due to this is mostly because to the substantial reliance on inorganic materials that many significant businesses, including those in the electronics, chemicals, food, paper, and other sectors, have. On the other hand, hybrid materials see phenomenal growth throughout the anticipated time frames due to rising customer inclination for organic and hybrid products that are environmentally benign and also more industry-compatible.
The materials science segment is anticipated to witness the highest CAGR growth during the forecast period. The discovery and development of novel materials, material informatics approaches can be applied in materials science applications. A variety of materials and nanotechnology are used in materials science. This makes computing issues in materials science more challenging. This subject also sees ongoing development into novel materials with certain desired functionality. To make the processes of material creation, management, and optimization simpler, various materials, modelling approaches, simulation tools, and physics-based and machine-learning models are utilized in this sector.
North America is projected to hold the largest market share during the forecast period owing to rising investments in the field of material science and analysis as well as rising R&D activities across numerous sectors including electronics, chemicals, and many others, North America held the majority of market revenue share in the global material informatics market in 2020. The area also takes the lead in the use of cutting-edge technologies including artificial intelligence (AI), machine learning (ML), big data, and data analytics due to its status as a technological leader. Data science, machine learning, and AI integration have created a new paradigm for market possibilities.
Asia Pacific is projected to have the highest CAGR over the forecast period, owing to number of factors, including the area's strong industrial and economic expansion, which has raised demand for advanced materials across industries including automotive, electronics, and construction, the Asia-Pacific region is anticipated to have the largest growth throughout the projection period. Furthermore, nations like China, India, and Japan have made significant investments in research and development, including the science and technology of materials. The expansion of material informatics in the Asia-Pacific area is also aided by the availability of a big talent pool in data science and materials science, as well as government measures to support research and development.
Some of the key players profiled in the Materials Informatics Market include: Alpine Electronics Inc., Phaseshift Technologies, Exabyte.io, Schrodinger, Materials Zone Ltd., Mat3ra, BASF, Citrine Informatics, Nutonian Inc., Dassault Systemes, Kebotix, AI Materia, Lumiant Corporation, Sun Innovations, Mitsubishi, Fujitsu, InSilixa and MRL Materials Resources LLC