¼¼°èÀÇ Àç·á Á¤º¸ÇÐ ½ÃÀå : Àç·áº°, ±â¹ýº°, ¿ëµµº°, Áö¿ªº° - ¿¹Ãø(-2030³â)
Material Informatics Market by Material (Chemicals, Superalloys, Solid-state Electrolytes, Composites), Technique (Statistical Analysis, Genetic Algorithm), Application (Materials Discovery, Product Development) and Region - Global Forecast to 2030
»óǰÄÚµå : 1671381
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2025³â 03¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 227 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 7,162,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,621,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,792,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,469,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ Àç·á Á¤º¸ÇÐ ½ÃÀå ±Ô¸ð´Â 2025³â 1¾ï 7,040¸¸ ´Þ·¯¿¡¼­ 2030³â±îÁö 4¾ï 1,040¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ¿¹Ãø ±â°£ µ¿¾È 19.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

Áö¼Ó °¡´ÉÇÑ Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 Àç·á Á¤º¸ÇÐ ½ÃÀåÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ ¾÷°è¿¡¼­ Áß¿äÇÏ°Ô ¿©°ÜÁö´Â °¡¿îµ¥, Á¦Á¶¾÷üµéÀº ȯ°æ ¹ßÀÚ±¹ÀÌ ÀûÀº Àç·á¸¦ Á¶»çÇÏ°í ¹ß°ßÇϱâ À§ÇØ Àç·á Á¤º¸Çи¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍÀÇ ¾ç°ú ÁúÀÌ ÃæºÐÇÏÁö ¾Ê´Ù´Â Á¡Àº Àç·á Á¤º¸ÇÐÀÇ ¼ºÀå¿¡ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2020-2030³â
±âÁØ ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
´ÜÀ§ 10¾ï ´Þ·¯
ºÎ¹® Àç·á À¯Çü, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ª
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ±âŸ Áö¿ª

"¿ø¼Ò ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù."

¿ø¼Ò ºÎ¹®Àº ¿©·¯ °¡Áö ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÎÇØ Àç·á Á¤º¸ÇÐ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¿¡³ÊÁö, ÀüÀÚ »ê¾÷¿¡¼­ ÷´Ü ¼ÒÀçÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿ì¼öÇÑ ¼º´É, ±ä ¼ö¸í, Áö¼Ó°¡´É¼ºÀ» °®Ãá »õ·Î¿î ±Ý¼Ó ¹× ÇÕ±ÝÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÃÊÇÕ±ÝÀº Á¦Æ® ¿£Áø ¹× ¹ßÀü ÀåÄ¡¿Í °°Àº ¿­¾ÇÇÑ È¯°æ¿¡ ÇʼöÀûÀ̸ç, Àç·á Á¤º¸ÇÐÀÇ ÃßÁøÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷, ž籤 ¹× dz·Â¿¡³ÊÁö¿ë °íüÀüÁö µî ¹Ì·¡ ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡¼­ °íü ÀüÇØÁúÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¬±¸ °³¹ß ÇÁ·Î¼¼½º¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Àç·á Á¤º¸ÇÐÀÇ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¼³°è ¹× ½ÇÇè¿¡ ÇÊ¿äÇÑ ¸·´ëÇÑ ½Ã°£À» Àý¾àÇÔÀ¸·Î½á ÀÌ·¯ÇÑ Àç·áÀÇ ¹ß°ß°ú ÃÖÀûÈ­¿¡ ÀÖ¾î °ÔÀÓ Ã¼ÀÎÀú°¡ µÇ°í ÀÖ½À´Ï´Ù.

"Àç·á °úÇÐ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °¡´É¼ºÀÌ ³ô½À´Ï´Ù."

Àç·á °úÇÐÀº Àç·á ¹ß°ß ¹× Çõ½Å °¡¼ÓÈ­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Àç·á Á¤º¸ÇÐ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI¿Í ¸Ó½Å·¯´×À» ÅëÇØ ¿¬±¸ÀÚµéÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ Æò°¡Çϰí, Àç·á Ư¼ºÀ» ¿¹ÃøÇϰí, ¹èÇÕÀ» Á¶Á¤ÇÏ¿© ½ÇÇè°ú ½Ã¹Ä·¹À̼ÇÀ» º¸´Ù ½Å¼ÓÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÇÇè°ú ½Ã¹Ä·¹À̼ÇÀ» ´õ ºü¸£°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù. °í¼º´É ÇÕ±Ý, ³ª³ë ¼ÒÀç, Áö¼Ó °¡´ÉÇÑ ´ëü ¼ÒÀç µî Â÷¼¼´ë ¼ÒÀç¿¡ ´ëÇÑ Á¤ºÎ ¹× ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ´Â Àç·á Á¤º¸ÇÐÀÇ È°¿ëÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­µÈ ½ÇÇè½Ç°ú °í󸮷® ½ºÅ©¸®´× ¹æ¹ýÀÇ °³¹ßÀº ½ÇÇè µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®Çϰí ÇØ¼®Çϱâ À§ÇØ Àç·áÁ¤º¸Çп¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è¿Í ÇаèÀÇ ºÎ¹® °£ Çù·Âµµ Áß¿äÇÑ ¿ä¼Ò Áß ÇϳªÀ̸ç, »ê¾÷°è´Â Æ´»õ ÀÀ¿ëÀ» À§ÇÑ »õ·Î¿î Àç·á¸¦ ã°í ÀÖ½À´Ï´Ù.

"¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È Àç·á Á¤º¸ÇÐ ½ÃÀå¿¡¼­ µÎ ¹øÂ°·Î Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù."

ÀÌ Áö¿ª¿¡´Â Áß±¹, ÀϺ», Çѱ¹, Àεµ¿Í °°Àº °æÁ¦±ÇÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç, °¢±¹Àº Àç·á°úÇÐ, ¹ÝµµÃ¼, ÷´Ü¼ÒÀç ºÐ¾ß¿¡¼­ źźÇÑ Á¦Á¶ ¹× ¿¬±¸ ¿ª·®À» º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡ÀÇ Á¤ºÎ´Â AI, ¸Ó½Å·¯´×, ºòµ¥ÀÌÅÍ ºÐ¼®¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖÀ¸¸ç, Àç·á Á¤º¸ÇÐ ¾øÀÌ´Â Àç·á Á¤º¸Çа¡ ¼º¸³µÇÁö ¾Ê½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡´Â ÃÖ°í ¼öÁØÀÇ ÀüÀÚ, ÀÚµ¿Â÷, Á¦¾à »ê¾÷ÀÌ ÁýÁߵǾî ÀÖ¾î ÷´Ü ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, º¸´Ù ½Å¼ÓÇϰí È¿°úÀûÀÎ ¼ÒÀçÀÇ ¹ß°ß°ú °³¹ßÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ È°¹ßÇÑ ÇÐ°è ¹× »ê¾÷°è Çù·Âµµ Àç·á Á¤º¸ÇÐÀÇ Çõ½ÅÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ Àç·á Á¤º¸ÇÐ(Materials Informatics) ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ÁÖ¿ä ÃËÁø¿äÀΰú ÀúÇØ¿äÀÎ, °æÀï ±¸µµ, ÇâÈÄ µ¿Çâ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÇÁ¸®¹Ì¾ö ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå Àç·á Á¤º¸ÇÐ : ÁÖ¿ä ±â¹ý°ú Åø

Á¦7Àå Àç·á Á¤º¸ÇÐ ¿ëµµ

Á¦8Àå Àç·á Á¤º¸ÇÐ ½ÃÀå : Àç·á À¯Çüº°

Á¦9Àå Àç·á Á¤º¸ÇÐ ½ÃÀå : »ê¾÷º°

Á¦10Àå Àç·á Á¤º¸ÇÐ ½ÃÀå : Áö¿ªº°

Á¦11Àå °æÀï ±¸µµ

Á¦12Àå ±â¾÷ °³¿ä

Á¦13Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global material informatics market is expected to grow from USD 170.4 million in 2025 to USD 410.4 million in 2030 at a CAGR of 19.2% over the forecast period. Growing need for sustainable materials is strongly contributing to the market growth of materials informatics. As sustainability is gaining importance among industries, producers are using materials informatics to investigate and discover materials with a lower environmental footprint. However insufficient data volume and data quality poses a challenge in material informatics growth.

Scope of the Report
Years Considered for the Study2020-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Billion)
SegmentsBy Material Type, End User, and Region
Regions coveredNorth America, Europe, APAC, RoW

"Elements segment is expected to witness highest CAGR during the forecasted period in material informatics market."

The elements segment is expected to have the highest CAGR in the material informatics market due to a few critical factors. Growth in the usage of high-tech materials in the aerospace, automobile, energy, and electronics industries is pushing for new metals and alloys that promise better performance, longevity, and sustainability. Superalloys specifically are critical to harsh environments like jet engines and power generation units, requiring an accelerated push in material informatics. Moreover, the increasing use of solid-state electrolytes in future energy storage technologies, such as solid-state batteries for electric vehicles and solar and wind energy, is fueling research and development processes. Machine learning algorithms within material informatics are changing the game in the discovery and optimization of such materials by saving enormous amounts of time needed in design and experimentation.

"Material science segment is likely to witness highest CAGR in material informatics market during forecasted period."

Material science is expected to exhibit the highest CAGR in the materials informatics market due to the increasing demand for accelerated material discovery and innovation. With artificial intelligence and machine learning, researchers can evaluate enormous amounts of data, make predictions about material properties, and tailor formulations to make experimentation and simulation much faster. Investments by the government and private sector in next-generation materials, including high-performance alloys, nanomaterials, and sustainable substitutes, further fuel the use of materials informatics. The development of automated laboratories and high-throughput screening methods has also accelerated dependence on materials informatics to effectively process and interpret experimental data. Intersectoral collaboration between industry and academia is another critical factor, with industries looking for novel materials for niche applications.

"Asia Pacific is expected to hold the second largest market share of the material informatics market during forecasted period".

The region includes economies like China, Japan, South Korea, and India, each of which boasts robust manufacturing and research strengths in materials science, semiconductors, and advanced materials. The governments of all these nations proactively invest in artificial intelligence, machine learning, and big data analytics, without which material informatics cannot exist. Moreover, the concentration of top electronics, automotive, and pharmaceutical industries in the region fuels the need for advanced materials, which requires quicker and more effective material discovery and development. The intense academic and industrial cooperation in the region also speeds up innovations in material informatics.

Breakdown of primaries

The study contains insights from various industry experts, ranging from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:

The material informatics market is dominated by a few globally established players such as players Schrodinger, Inc. (US), Dassault Systemes (France), Exabyte Inc. (US), Citrine Informatics (India), Phaseshift Technologies (Canada), and AI Materia (Canada). The study includes an in-depth competitive analysis of these key players in the pharmaceutical manufacturing equipment market, with their company profiles, recent developments, and key market strategies.

Research Coverage:

The report segments the material informatics market and forecasts its size by material type, end user, and region. The report also discusses the drivers, restraints, opportunities, and challenges pertaining to the market. It gives a detailed view of the market across four main regions-North America, Europe, Asia Pacific, and RoW. Supply chain analysis has been included in the report, along with the key players and their competitive analysis in the material informatics ecosystem.

Key Benefits to Buy the Report:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 MATERIAL INFORMATICS: PROMINENT TECHNIQUES AND TOOLS

7 APPLICATIONS OF MATERIAL INFORMATICS

8 MATERIAL INFORMATICS MARKET, BY MATERIAL TYPE

9 MATERIAL INFORMATICS MARKET, BY INDUSTRY

10 MATERIAL INFORMATICS MARKET, BY REGION

11 COMPETITIVE LANDSCAPE

12 COMPANY PROFILES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â