자율형 작물 관리 시장 규모, 점유율, 성장 분석 : 컴포넌트별, 작물 유형별, 기술 유형별, 배포 모델별, 용도별, 최종사용자별, 지역별 - 산업 예측(2025-2032년)
Autonomous Crop Management Market Size, Share, and Growth Analysis, By Component (Software, Services), By Crop Type (Row Crops, Field Crops), By Technology Type, By Deployment Model, By Application, By End-User, By Region - Industry Forecast 2025-2032
상품코드:1670187
리서치사:SkyQuest
발행일:2025년 02월
페이지 정보:영문 199 Pages
라이선스 & 가격 (부가세 별도)
한글목차
세계의 자율형 작물 관리 시장 규모는 2023년에 24억 달러로 평가되며, 2024년 26억 9,000만 달러에서 2032년에는 67억 1,000만 달러로 성장하며, 예측 기간(2025-2032년)의 CAGR은 12.1%로 성장할 전망입니다.
자율 작물 관리 시장은 AI, 머신러닝, IoT 기술의 통합으로 정밀농업에 대한 수요가 증가하면서 크게 성장하고 있습니다. 자율 기계, 드론, 스마트 센서를 포함한 이러한 혁신은 자원 효율성을 최적화하면서 작물 수확량을 향상시킵니다. 실시간 데이터 수집을 통해 농가는 효율적인 관행을 채택하여 노동력에 대한 의존도를 줄이고 지속가능한 농업을 촉진할 수 있습니다. 자율주행 트랙터와 로봇 수확기와 같은 주요 발전은 정확한 작업을 보장하고, 구독 기반의 '서비스형 농업(FaaS: Farming as a Service)' 모델은 최첨단 자동화에 대한 저렴한 접근성을 제공합니다. Guardian Agriculture와 같은 기업은 완전 자율형 장비와 친환경 항공 곡물 관리 솔루션으로 농업에 혁명을 일으키고 있습니다. 투자와 제휴가 활발해짐에 따라 이 분야는 급속한 혁신을 이룰 준비가 되어 있으며, 대규모 농가와 소규모 농가 모두 지속가능한 생산성 향상을 달성할 수 있도록 돕고 있습니다.
목차
서론
조사의 목적
조사 범위
정의
조사 방법
정보 조달
2차와 1차 데이터 방법
시장 규모 예측
시장의 전제조건과 제한
개요
세계 시장 전망
공급과 수요 동향 분석
부문별 기회 분석
시장 역학과 전망
시장 개요
시장 규모
시장 역학
촉진요인과 기회
억제요인과 과제
Porter의 산업 분석
주요 시장 인사이트
주요 성공 요인
경쟁의 정도
주요 투자 기회
시장 에코시스템
시장의 매력 지수(2024년)
PESTEL 분석
거시경제 지표
밸류체인 분석
가격 분석
규제 상황
사례 연구
기술의 진보
자율형 작물 관리 시장 규모 : 컴포넌트별
시장 개요
소프트웨어
서비스
전문 서비스
매니지드 서비스
자율형 작물 관리 시장 규모 : 작물 유형별
시장 개요
열작물
밭작물
원예 작물
기타
자율형 작물 관리 시장 규모 : 기술 유형별
시장 개요
정밀농업
위성 영상
토양과 플랜트 모니터링
인공지능
자율형 작물 관리 시장 규모 : 배포 모델별
시장 개요
온프레미스
클라우드 기반
자율형 작물 관리 시장 규모 : 용도별
시장 개요
수율 최적화
물관리
해충과 질병 관리
노동 자동화
자율형 작물 관리 시장 규모 : 최종사용자별
시장 개요
농가
농업 사업(Agribusinesses)
조사기관
자율형 작물 관리 시장 규모
북미
미국
캐나다
유럽
독일
스페인
프랑스
영국
이탈리아
기타 유럽 지역
아시아태평양
중국
인도
일본
한국
기타 아시아태평양
라틴아메리카
브라질
기타 라틴아메리카 지역
중동 및 아프리카
GCC 국가
남아프리카공화국
기타 중동 및 아프리카
경쟁 정보
상위 5사의 비교
주요 기업의 시장 포지셔닝(2024년)
주요 시장 기업이 채택한 전략
최근 시장 동향
기업의 시장 점유율 분석(2024년)
주요 기업의 기업 개요
기업의 상세
제품 포트폴리오 분석
기업의 부문별 점유율 분석
매출의 전년대비 비교(2022-2024)
주요 기업 개요
John Deere(United States)
CNH Industrial(United Kingdom)
AGCO Corporation(United States)
Kubota Corporation(Japan)
CLAAS(Germany)
Yanmar Holdings Co., Ltd.(Japan)
Mahindra & Mahindra Ltd.(India)
Trimble Inc.(United States)
Raven Industries(United States)
Topcon Positioning Systems(United States)
Hexagon Agriculture(Sweden)
Deere & Company(United States)
Ag Leader Technology(United States)
DICKEY-john Corporation(United States)
TeeJet Technologies(United States)
Lindsay Corporation(United States)
Valmont Industries(United States)
Netafim(Israel)(Owned by Orbia)
Syngenta(Switzerland)(Owned by Sinochem)
Solinftec(Brazil)
결론과 제안
KSA
영문 목차
영문목차
Global Autonomous Crop Management Market size was valued at USD 2.4 billion in 2023 and is poised to grow from USD 2.69 billion in 2024 to USD 6.71 billion by 2032, growing at a CAGR of 12.1% during the forecast period (2025-2032).
The autonomous crop management market is experiencing significant growth due to the rising demand for precision agriculture, driven by the integration of AI, machine learning, and IoT technologies. These innovations, including autonomous machinery, drones, and smart sensors, enhance crop yields while optimizing resource efficiency. Real-time data collection enables farmers to adopt efficient practices, reducing labor dependency and promoting sustainable agriculture. Key advancements like autonomous tractors and robotic harvesters ensure precise operations, while subscription-based farming-as-a-service models provide affordable access to cutting-edge automation. Companies like John Deere and Guardian Agriculture are revolutionizing agriculture with fully autonomous equipment and eco-friendly aerial crop management solutions. As investments and partnerships flourish, the sector is poised for rapid innovation, supporting both large-scale and smallholder farmers in achieving sustainable productivity enhancements.
Top-down and bottom-up approaches were used to estimate and validate the size of the Global Autonomous Crop Management market and to estimate the size of various other dependent submarkets. The research methodology used to estimate the market size includes the following details: The key players in the market were identified through secondary research, and their market shares in the respective regions were determined through primary and secondary research. This entire procedure includes the study of the annual and financial reports of the top market players and extensive interviews for key insights from industry leaders such as CEOs, VPs, directors, and marketing executives. All percentage shares split, and breakdowns were determined using secondary sources and verified through Primary sources. All possible parameters that affect the markets covered in this research study have been accounted for, viewed in extensive detail, verified through primary research, and analyzed to get the final quantitative and qualitative data.
Global Autonomous Crop Management Market Segments Analysis
Global Autonomous Crop Management Market is segmented by Component, Crop Type, Technology Type, Deployment Model, Application, End-User and region. Based on Component, the market is segmented into Software and Services. Based on Crop Type, the market is segmented into Row Crops, Field Crops, Horticultural Crops and Others. Based on Technology Type, the market is segmented into Precision Agriculture, Satellite Imagery, Soil and Plant Monitoring and Artificial Intelligence. Based on Deployment Model, the market is segmented into On-Premise and Cloud-Based. Based on Application, the market is segmented into Yield Optimization, Water Management, Pest and Disease Management and Labor Automation. Based on End-User, the market is segmented into Farmers, Agribusinesses and Research Institutions. Based on region, the market is segmented into North America, Europe, Asia Pacific, Latin America and Middle East & Africa.
Driver of the Global Autonomous Crop Management Market
The global market for autonomous crop management is significantly propelled by the growing need for precision agriculture. The integration of AI-powered drones, self-driving tractors, and IoT-enabled monitoring systems enhances operational efficiency and reduces costs, leading to more efficient resource utilization. In light of increasing worries about food security and the sustainability of farming practices, there has been a swift adoption of autonomous technologies among farmers, enabling them to achieve greater productivity levels. As these innovative solutions continue to evolve, they play a crucial role in addressing the challenges faced in modern agriculture and meet the rising global food demands.
Restraints in the Global Autonomous Crop Management Market
The Global Autonomous Crop Management market faces significant challenges due to the limited technical expertise among farmers and agribusinesses, which obstructs the large-scale adoption of these innovative solutions. Implementing AI-driven tools, IoT sensors, and robotics demands a level of sophistication and knowledge that is often lacking in rural farming communities. This gap in technical skills is exacerbated by the absence of well-structured training programs and digital literacy initiatives, resulting in slow integration of autonomous crop management technologies. Consequently, fostering adequate education and resources is essential for enhancing the capabilities of farmers and accelerating market growth.
Market Trends of the Global Autonomous Crop Management Market
The global autonomous crop management market is experiencing substantial growth, propelled by the expansion of AI and machine learning technologies in precision farming. These advancements enable farmers to achieve real-time monitoring and predictive analytics, which significantly improve decision-making processes for irrigation, pest control, and yield optimization. As a result, the agriculture sector is witnessing a shift towards more efficient, cost-effective, and sustainable practices that enhance productivity on a large scale. Ongoing investments in research and development further drive innovation, making AI-driven solutions increasingly accessible to farmers worldwide, thereby solidifying the trend towards smarter farming methodologies and sustainable agricultural practices.
Table of Contents
Introduction
Objectives of the Study
Scope of the Report
Definitions
Research Methodology
Information Procurement
Secondary & Primary Data Methods
Market Size Estimation
Market Assumptions & Limitations
Executive Summary
Global Market Outlook
Supply & Demand Trend Analysis
Segmental Opportunity Analysis
Market Dynamics & Outlook
Market Overview
Market Size
Market Dynamics
Drivers & Opportunities
Restraints & Challenges
Porters Analysis
Competitive rivalry
Threat of substitute
Bargaining power of buyers
Threat of new entrants
Bargaining power of suppliers
Key Market Insights
Key Success Factors
Degree of Competition
Top Investment Pockets
Market Ecosystem
Market Attractiveness Index, 2024
PESTEL Analysis
Macro-Economic Indicators
Value Chain Analysis
Pricing Analysis
Regulatory Landscape
Case Studies
Technological Advancement
Global Autonomous Crop Management Market Size by Component & CAGR (2025-2032)
Market Overview
Software
Services
Professional Services
Managed Services
Global Autonomous Crop Management Market Size by Crop Type & CAGR (2025-2032)
Market Overview
Row Crops
Field Crops
Horticultural Crops
Others
Global Autonomous Crop Management Market Size by Technology Type & CAGR (2025-2032)
Market Overview
Precision Agriculture
Satellite Imagery
Soil and Plant Monitoring
Artificial Intelligence
Global Autonomous Crop Management Market Size by Deployment Model & CAGR (2025-2032)
Market Overview
On-Premise
Cloud-Based
Global Autonomous Crop Management Market Size by Application & CAGR (2025-2032)
Market Overview
Yield Optimization
Water Management
Pest and Disease Management
Labor Automation
Global Autonomous Crop Management Market Size by End-User & CAGR (2025-2032)
Market Overview
Farmers
Agribusinesses
Research Institutions
Global Autonomous Crop Management Market Size & CAGR (2025-2032)
North America (Component, Crop Type, Technology Type, Deployment Model, Application, End-User)
US
Canada
Europe (Component, Crop Type, Technology Type, Deployment Model, Application, End-User)