New Energy Vehicle 800-1000V High-Voltage Architecture and Supply Chain Research Report, 2025
상품코드:1777126
리서치사:ResearchInChina
발행일:2025년 07월
페이지 정보:영문 600 Pages
라이선스 & 가격 (부가세 별도)
한글목차
2025년, 중국의 승용차 800-1000V 고전압 아키텍처는 '하이엔드 구성'에서 '주류 표준 구성'으로 전환되고 있습니다. 기술 발전은 에너지 효율 혁명과 고속 충전의 대중화를 촉진하고 있습니다. 단기적으로(2025년) 중국 승용차용 800-1000V 고전압 아키텍처의 대중화는 주로 경쟁적인 수요, 슈퍼차저 수요, 그리고 OEM의 슈퍼차저 파일 구축에 의해 수혜를 받을 것입니다. 장기적으로(2030년) 중국의 승용차 800-1000V 고전압 아키텍처의 보급은 주로 SiC의 현지화와 전체 도메인 고전압 생태계의 성숙에 달려있습니다.
공급망 관점에서 볼 때, 800-1000V 고전압 아키텍처는 현재 부품 공급망의 미숙함과 높은 비용으로 인해 제약을 받고 있습니다. 본 보고서에서는 800-1000V 고전압 아키텍처 기술을 6개 범주와 15개 하위 범주로 구분하고, 각 기술 분야의 공급업체, 성숙도 및 개발 동향을 평가합니다.
ResearchInChina의 통계에 따르면 2022년 중국에서 800V 고전압 아키텍처를 탑재한 승용차 모델은 13개 차종에 불과했습니다. 2024년, 중국에서 판매되는 800V 고전압 아키텍처를 탑재한 승용차 모델은 47종에 달했습니다. 2025년 상반기 현재 중국에서 판매되는 800V 고전압 아키텍처를 탑재한 승용차 모델은 70여 종에 달할 전망입니다.
800V 기술은 10만-15만 위안의 배터리 전기 승용차에 탑재되어 있습니다. 예를 들어 판매 시작 전 가격이 10 만 5,800 위안인 Leapmotor B01의 전체 범위는 800V 고전압 플랫폼이 기본으로 탑재되어 있습니다. BYD는 세계 최초로 양산형 승용차를 위한 '풀 도메인 1000V 고전압 아키텍처'를 발표하고 배터리, 모터, 전원, 에어컨 등 모든 고전압 부품에 1000V를 탑재했습니다.
ResearchInChina의 통계에 따르면 2024년 중국 800V 고전압 아키텍처 승용차 판매량은 84만 대, 전년 대비 185% 증가, 보급률은 6.9%입니다. 2025년 보급률이 9.5%에 달하고, 2030년에는 35%를 넘어설 것으로 예측됩니다. 800V 풀 도메인 고전압 아키텍처 탑재 모델 출시로 2030년까지 800-1000V 아키텍처를 탑재한 신에너지 모델이 700만 대를 넘어 현재보다 8배 이상 늘어날 것으로 예측됩니다.
800-1000V 공급망 기술 동향 : OEM이 메가 와트급 급속 충전 파일 자체 제작 속도를 높이고 있습니다.
현재 급속 충전 기술에서 주요 OEM 간의 경쟁은 점점 더 치열해지고 있으며, 각각의 기술적 특징과 우위가 다릅니다. BYD는 배터리, 전기 구동, 에너지 저장, 충전 파일 수직 통합에 의존하고 있으며, 충전 분야에서 뚜렷한 우위를 보이고 있습니다. BYD의 메가와트급 플래시 충전, Zeekr의 1.2MW 전액냉식 슈퍼차징, Tesla의 V4 슈퍼차징, Voyah의 VP1000 메가와트급 슈퍼차징, Huawei의 전액냉식 메가와트급 슈퍼차징 등이 그 예입니다.
Zeekr는 2025년 2분기에 세계 최고의 단일 피크 전력을 가진 최초의 1.2MW 전액 냉각 충전 파일과 10개의 1.2MW 수랭식 충전 파일로 구성된 메가 와트급 초급속 충전소를 공식적으로 발표했습니다. 이 장치의 단발 출력은 세계 기록을 직접 경신하여 Tesla의 V4 슈퍼차징 파일(350kW)의 3.4배, Porsche의 800V 고전압 급속 충전의 2배에 달할 전망입니다. 각각 10개의 수랭식 파일로 구성된 첫 번째 '메가와트급 충전소'가 건설 단계에 있습니다.
전액냉각 기술은 돌파구의 열쇠가 되고 있습니다. 기존 공랭식 충전 파일의 출력 한계는 600kW에 불과합니다. 수랭식 시스템은 폐쇄 루프 냉각수 순환을 통해 케이블 직경을 40% 압축하고, 충전 파일 무게를 35% 감소시켜 95% 이상의 전류 전달 효율을 달성했습니다. 측정 데이터에 따르면 이 기술을 탑재한 Zeekr 009는 수랭식 파일과 결합하면 10분 충전으로 500km를 주행할 수 있습니다. Zeekr 7X의 테스트에 따르면 50kWh를 10분 만에 충전하고 440km를 주행할 수 있습니다.
중국의 자동차 산업에 대해 조사분석했으며, 800-1000V 고전압 아키텍처에 관한 각 기술의 개발 동향 및 제품 솔루션 등의 정보를 제공하고 있습니다.
목차
제1장 800-1000V 고전압 아키텍처와 시장 규모의 서론
800-1000V 고전압 아키텍처의 개발
800V 고전압 차량 아키텍처
800-1000V 슈퍼차징 아키텍처
1000V 고전압 아키텍처
중국의 800-1000V 승용차 구성 데이터와 시장 규모
제2장 800-1000V 고전압 아키텍처 - 전기 구동·전력·배전 시스템의 기술적 최신 정보
800-1000V전기 구동 시스템
800V구동 시스템 - 800V 구동 모터
800V전기 구동 시스템 - 800V 모터 컨트롤러
800-1000V차량 전원 시스템
800-1000V전원 시스템 - 800-1000V OBC
800-1000V차량 전원 시스템 - 800-1000V DC/DC
800-1000V차량 전원 시스템 - 800V SiC 인버터
800-1000V배전 시스템 - 800-1000V 고전압 와이어링 하네스
800-1000V배전 시스템 - 800-1000V 고전압 커넥터
800-1000V배전 시스템 - 800-1000V 필터링 시스템
800-1000V배전 시스템 - 800-1000V 고전압 DC 릴레이
제3장 800-1000V 고전압 아키텍처 - 배터리/슈퍼차징/열관리 시스템의 기술적 최신 정보
800-1000V 슈퍼차징 배터리
800-1000V 슈퍼차징 배터리 - 대형 원통형 배터리
800-1000V 슈퍼차징 배터리 - 하이브리드차용 800V 슈퍼차징 배터리
800-1000V 슈퍼차징 시스템
800-1000V 슈퍼차징 시스템 - 1000V 메가와트 플래시 챠징
800V 슈퍼차징 시스템 - 플렉서블 차징 스택
800V 슈퍼차징 시스템 - 800V 부스트 충전 기술
800V 열관리 시스템 - 800V 에어컨 컴프레서
800V 열관리 시스템 - 800V 배터리 열관리
제4장 600-1500V 고전압 파워 디바이스의 용도와 배포
제3세대 반도체
제3세대 반도체 - 자동차 등급 SiC 디바이스
제3세대 반도체 - 자동차 등급 GaN 파워 디바이스
Sicred Microelectronics
Innoscience
Navitas Semiconductor
제5장 세계의 승용차 OEM 800-1000V 고전압 아키텍처의 배포 계획
BYD
Geely
Great Wall Motors
GAC Group
Dongfeng Motor
Chery
Xiaomi Auto
Harmony Intelligent Alliance
Xpeng Motors
NIO
Li Auto
Voyah
Leapmotor
IM Motors
BAIC(Including Arcfox)
SAIC-GM-Wuling
BMW
Mercedes-Benz
Hyundai-Kia
Renault
제6장 세계의 상용차용 800-1000V 고전압 아키텍처
상용차용 800-1000V 플랫폼 아키텍처
상용차용 800-1000V 고전압 아키텍처 - 슈퍼차징 배터리
상용차용 800-1000V 고전압 아키텍처 - 열관리 시스템
중국의 상용차용 1000V 슈퍼차징 시스템
유럽의 상용차용 1000V 슈퍼차징 시스템
상용차용 800-1000V 고전압 아키텍처 - 산업 분석 요약
제7장 Tier 1 각사의 800-1000V 고전압 아키텍처 제품과 솔루션
BorgWarner
Bosch
Valeo
Schaeffler(Vitesco Technologies)
hofer powertrain
ZF
Magna
Vicor
United Automotive Electronic Systems(UAES)
SHINRY Technology
Inovance Technology
VMAX
VREMT
FUTE Technology
Yangjie Technology
Nidec
Aptiv
Infineon
Zhongrong Electric
KSA
영문 목차
영문목차
Research on 800-1000V Architecture: to be installed in over 7 million vehicles in 2030, marking the arrival of the era of full-domain high voltage and megawatt supercharging.
In 2025, the 800-1000V high-voltage architecture for passenger cars in China is shifting from a "high-end configuration" to a "mainstream standard configuration". Technological dividends are driving an energy efficiency revolution and the popularization of fast charging. In the short term (2025), the popularization of the 800-1000V high-voltage architecture for passenger cars in China will mainly benefit from the competing needs, supercharging demand, and implementation of supercharging piles of OEMs; in the long term (2030), the popularization of the 800-1000V high-voltage architecture for passenger cars in China will mainly depend on the localization of SiC and the maturity of the full-domain high-voltage ecosystem.
From the supply chain perspective, the 800-1000V high-voltage architecture is currently limited by the insufficient maturity of the component supply chain and high costs. In this report, we divide the technologies of the 800-1000V high-voltage architecture into 6 categories and 15 subcategories, and evaluate the suppliers, maturity, and development trends of each technology segment.
According to statistics from ResearchInChina, there were only 13 passenger car models equipped with 800V high-voltage architecture in China in 2022. In 2024, there were 47 passenger car models with 800V high-voltage architecture on sale in China. As of the first half of 2025, the passenger car models with 800V high-voltage architecture on sale in China have outnumbered 70.
800V technology has been available to battery electric passenger cars priced at RMB100,000-150,000. For example, the full range of Leapmotor B01, with a starting pre-sale price of RMB105,800, is equipped with an 800V high-voltage platform as standard; BYD has launched the world's first mass-produced "full-domain 1000V high-voltage architecture" for passenger cars, which implements 1000V for all high-voltage components such as batteries, motors, power supplies, and air conditioners.
According to statistics from ResearchInChina, the sales of passenger cars with 800V high-voltage architecture in China totaled 840,000 units in 2024, a year-on-year upsurge of 185%, with a penetration rate of 6.9%. It is expected that the penetration rate will reach 9.5% in 2025 and exceed 35% in 2030. With the launch of models with 800V full-domain high-voltage architecture, it is expected that in 2030, new energy models equipped with 800-1000V architecture will exceed 7 million units, over 8 times more than the current scale.
Technology trends of 800-1000V supply chain: OEMs quicken their pace of self-building megawatt fast charging piles.
Currently, the competition among major OEMs in flash charging technology is becoming increasingly fierce, and their technical characteristics and advantages are different. BYD, relying on the vertical integration of batteries, electric drives, energy storage, and charging piles, has shown its obvious advantages in the charging field. Examples include BYD's megawatt flash charging, Zeekr's 1.2MW all-liquid-cooled supercharging, Tesla's V4 supercharging, Voyah's VP1000 megawatt supercharging, and Huawei's all-liquid-cooled megawatt-level supercharging.
Zeekr officially launched the first 1.2MW all-liquid-cooled charging pile with the world's highest single-gun peak power, in the second quarter of 2025, and a megawatt ultra-fast charging station equipped with 10 1.2MW liquid-cooled charging piles. The single-gun power of this device directly breaks the global record, 3.4 times that of Tesla's V4 supercharging pile (350kW) and twice that of Porsche's 800V high-voltage fast charging. The first "megawatt charging stations", each equipped with 10 liquid-cooled piles, have entered the construction stage.
All-liquid cooling technology has become a key to breakthrough. The power limit of traditional air-cooled charging piles is stuck at 600kW. The liquid cooling system compresses the cable diameter by 40% and reduces the weight of the charging gun by 35% through closed-loop coolant circulation, achieving a current transmission efficiency of over 95%. The measured data shows that the Zeekr 009 equipped with this technology can enable a range of 500km with a 10-minute charge when matched with a liquid-cooled pile; according to the test on Zeekr 7X, it can charge 50kWh in 10 minutes and achieve a range of 440km.
A single station with 10 supercharging piles can simultaneously support 20 vehicles (dual-gun configuration) to charge at 1.2MW power, with a total power load of 12MW, equivalent to the peak electricity consumption of a medium-sized shopping mall. This requires the power grid side to be equipped with an energy storage system and an intelligent power distribution module. Zeekr's engineers confirmed that they have jointly developed a dynamic load management system with the State Grid, intelligently adjusting the actual operating power of the charging station by +-30% with the grid load.
Technology trends of 800-1000V supply chain: 3-5C gradually becomes mainstream, and 10C high-rate batteries come.
The launch of the 800V-1000V high-voltage architecture for passenger cars first aims to solve the problem of supercharging speed. To meet the needs of supercharging, the first component system to be updated in high-voltage architecture passenger cars is the battery system. In 2025, the charging rate of 800V battery systems in battery electric passenger cars on sale is mainly be 3-5C; BYD's 1000V full-domain high-voltage platform is even be equipped with 10C batteries.
The popularization of 800-1000V battery systems in automobiles is mainly thanks to the supercharging demand of new energy passenger cars and the technical support to achieve charging efficiency:
Supercharging demand: The 800V high-voltage architecture supports above 350kW supercharging, and shortens the charging time from 5% to 80% SOC to less than 20 minutes, so as to solve users' "range anxiety". The charging voltage of the 800V supercharging system is generally between 600V-1200V, and the realization of supercharging power requires the cooperation from the 800V architecture on the vehicle side.
Supporting supercharging piles: At present, China has entered the "supercharging era". As local governments vigorously promote the construction of supercharging networks, upstream and downstream enterprises in the supercharging industry chain are also actively cooperating to promote the construction of a supercharging ecosystem. At present, supercharging stations still adopt a supercharging piles + fast charging piles combination, with the charging power of supercharging piles up to more than 480kW. Liquid-cooled supercharging stations include Huawei's all-liquid-cooled supercharging stations, Xpeng's S4/S5 liquid-cooled supercharging stations, and Li Auto's 5C supercharging stations/shuttle supercharging stations).
800V high-voltage battery charging rate: With the mass production of a number of batteries with a rate of 4C or higher in 2024, high-rate batteries + 800V supercharging piles will greatly improve the energy replenishment experience for electric vehicles. In 2025, high-end models will develop towards 5-6C, low-to-mid-end models will move towards 3-4C, and plug-in hybrid models will also break through 2C.
The realization of a charging rate of 4C and above requires breakthroughs in battery materials and BMS capable of high-precision control. At present, mainstream power battery packs can support a 2C charging rate. The use of electrolyte additives, isotropic graphite, graphene and other materials can improve the conductivity of battery materials to a certain extent, thereby improving the stability of ternary materials under high voltage.
In the process of new energy vehicles moving from "range competition" to "all-scenario application", CATL has built a complete passenger car product matrix covering battery electric, hybrid, supercharging, and low-temperature scenarios through three technical routes: Qilin Battery (high density), Shenxing Battery (super fast charging), and Xiaoyao Battery (hybrid system).
CATL has expanded battery competition to multiple dimensions such as low-temperature performance, cycle life, and energy replenishment efficiency through material innovation (e.g., lithium-sodium AB system), structural optimization (CTP 3.0), and algorithm upgrade (AI BMS). The pattern of the hybrid market has been reshaped: the 400km EV mode range and 4C charging rate of Xiaoyao Battery have forced competitors to accelerate technological iteration.
Battery electric track: Qilin Series breaks the energy density ceiling through ternary lithium materials to serve high-performance vehicles; With lithium iron phosphate, Shenxing Series popularizes "long range + super fast charging" to seize the mainstream market.
Hybrid track: Xiaoyao Battery makes up for the "range shortcoming" of hybrid models, and facilitates evolution of plug-in hybrids into "real new energy vehicles" with 400km EV mode range + all-climate performance.
Supercharging ecosystem: Both Shenxing PLUS and Qilin 2.0 are equipped with AI polarization BMS algorithms, and combine with CATL's self-built supercharging network (in cooperation with Huawei/StarCharge) to form a "battery-charging-service" closed loop.
In April 2025, CATL released the second-generation Shenxing Superfast Charging Battery. With a peak charging rate of 12C and a power of 1.3 megawatts, this lithium iron phosphate (LFP) battery can achieve a 520km range with a 5-minute charge. To achieve 12C fast charging, optimizations in materials and cell design are still required. The main focus is on improving the transmission speed of lithium ions and electrons:
In terms of improving lithium ion transmission, ultra-crystalline graphite and SEI regeneration-enhanced electrolyte are used. On the one hand, they accelerate the transmission speed in the SEI layer and graphite; on the other hand, they can repair cracks in fast-charging graphite particles and improve cycle life.
The improvement of electron transmission is relatively conventional. The so-called balanced electron flow seems to be the full tab (generally, half of the winding is connected, and all laminations are full tabs); and the carbon-coated lithium iron phosphate cathode material also already exists.
CALB, based on the One-Stop design and manufacturing concept, has upgraded to a "U-type" cylindrical battery that supports 6C fast charging:
Compared with the tabless structure, the "U-type" design shortens the current path by 70%, reduces the structural internal resistance by 50% and the DC internal resistance by 40%, increases the Z-direction space utilization by 3%, and cuts the number of welding machines in the production line by about 70%.
In addition to lower resistance and higher space utilization brought by structural optimization, combined with chemical material system technology, CALB stated that the U-type cylindrical battery can achieve 6C fast charging with a cell energy density of 300Wh/kg.
Technology trends of 800-1000V supply chain: electric drive system
At the Auto Shanghai 2025, all Tier 1 exhibitors have launched electric drive systems adapted to 800V high-voltage platforms. The high-voltage transformation of electric drive systems has become an industry consensus. The main development trends include the following:
Multi-integrated design of electric drive systems: Functional modules such as motor, reducer, controller, DC/DC, and PDU are highly integrated, with volume reduced by 30% and power density exceeding 5kW/kg (industry average is about 3.5kW/kg).
Large-scale application of wide-bandgap semiconductors: The proportion of SiC (silicon carbide) and GaN (gallium nitride) devices exceeds 60%, the switching frequency is increased to more than 20kHz, and the system loss is reduced by 15%-20%.
New motor technology - axial flux motor: Power density reaches 6kW/kg, suitable for scenarios such as in-wheel motors.
Less-rare-earth permanent magnet motors: Use ferrite or nanocrystalline materials to avoid the risk of rare earth supply, with costs reduced by 20%.
Breakthroughs in motor miniaturization and quietness: The noise of flat-wire oil-cooled motors is less than 70dB.
Under 800V high-power fast charging, the demand for thermal management has upgraded, requiring optimized motor design (for example, Xiaomi SU7 improves NVH through the high-frequency characteristics of SiC): Xiaomi SU7 Ultra is equipped with an 871V high-voltage platform, which adopts a self-developed Q7 motor (with a speed of 21,000rpm) and SiC electronic control, enabling a 220km range with 5-minute charge, and also optimizes the NVH performance through the high-frequency characteristics of SiC modules.
800-1000V electric drive systems use SiC (silicon carbide) power modules to improve efficiency, adopt oil-cooling technology to enhance heat dissipation, and utilize flat wire motors to increase power density. Their modular design supports different voltage platforms, high integration reduces volume and weight, and intelligent control algorithms are employed to enhance performance.
Expanded power range: Magna eDrive covers 50-250kW, meeting the needs of A0-class to SUV models;
Voltage platform upgrade: The actual operating voltage of IM LS6 reaches 875V, nearly 10% higher than the industry's nominal 800V;
Cost control: Further cost reduction is required for SiC modules and low-rare-earth materials (such as Nidec's magnetic steel cooling optimization);
Thermal management limits: Ultra-high-speed motors with 24,000rpm put forward higher requirements for heat dissipation (InfiMotion's mechanical limit is 28,000rpm).
Table of Contents
1 Introduction to 800-1000V High-Voltage Architecture and Market Size
1.1 Development of 800-1000V High-Voltage Architecture
800-1000V High-Voltage Architecture - Definition and Introduction
New Energy Vehicle 800V High-Voltage Architecture Enters A Boom Period
Currently, New Energy Vehicles Are in the Transition from 800V Charging to Full-Domain 800V
1.2 800V High-Voltage Vehicle Architecture
400V to 800V Design Solutions
High-Voltage Electrical Topology
Components and Parts Requiring Upgrades
Vehicle Component Upgrade Selection (1)
Vehicle Component Upgrade Selection (2)
1.3 800-1000V Supercharging Architecture
800-1000V Supercharging Architecture
Charging Rate
Policies and Regulations
Standards and Specifications
ChaoJi Charging System
1.4 1000V High-Voltage Architecture
Next-Gen Technology Direction of High-Voltage Architecture for New Energy Vehicles
Status Quo of 1000V High-Voltage Vehicles
1500V Silicon Carbide (SiC) Power Modules
1.5 China's 800-1000V Passenger Car Configuration Data and Market Size
Statistics on China's On-Sale 800-1000V High-Voltage Architecture Passenger Car Models and Sales (1)
Statistics on China's On-Sale 800-1000V High-Voltage Architecture Passenger Car Models and Sales (2)
Statistics on China's On-Sale 800-1000V High-Voltage Architecture Passenger Car Models and Sales (3)
Statistics on China's On-Sale 800-1000V High-Voltage Architecture Passenger Car Models and Sales (4)
Competitive Landscape of China's On-Sale 800-1000V High-Voltage Architecture Passenger Cars