48V 저전압 PDN 아키텍처와 공급망 파노라마(2025년)
48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025
상품코드 : 1721395
리서치사 : ResearchInChina
발행일 : 2025년 04월
페이지 정보 : 영문 480 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,500 ₩ 6,485,000
Unprintable PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트의 Copy&Paste도 불가능합니다.
US $ 6,800 ₩ 9,800,000
Printable & Editable PDF (Enterprise-wide License) help
PDF 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


한글목차

오랫동안 48V 저전압 PDN 아키텍처는 48V 마일드 하이브리드에 의해 독점되어 왔으며, 48V 마일드 하이브리드의 전기 토폴로지는 상대적으로 구식이고 중국 OEM이 충분한 관심을 기울이지 않았기 때문에 주요 성장 시장이 되기가 어려웠습니다. 반면 배터리 전기자동차(BEV)와 플러그인 하이브리드 자동차(PHEV)는 고전압 배터리를 사용하여 48V 저전압 레일을 만들어 전체 E/E 시스템에 전력을 공급할 수 있습니다.

미래 BEV 플랫폼은 OEM이 48V 차량용 시스템을 탑재하는 주요 타겟이 되고 있으며, Tesla Cybertruck에 힘입어 첨단 자율주행과 섀시 바이 와이어의 보급이 확대됨에 따라 배터리 전기자동차용 48V 저전압 PDN 아키텍처는 배터리 전기자동차용 48V 저전압 PDN 아키텍처는 OEM의 주목을 받고 있으며, 이에 따라 공급망 성숙도도 빠르게 향상될 것으로 보입니다.

48V 공급망과 산업 체인의 성숙도가 빠르게 향상되었습니다.

공급망 관점에서 볼 때, 48V 아키텍처는 현재 부품 공급망의 미성숙으로 인해 제한을 받고 있습니다.

자동차 섀시 시스템, 48V 레이아웃의 바람직한 방향성

브레이크 바이 와이어, 액티브 서스펜션, 전기 파워 스티어링(EPS) 등을 포함한 자동차 섀시 시스템은 48V 가 선호되는 방향입니다.

EPS를 예로 들면, 최근 DP-EPS(듀얼 피니언 타입)와 R-EPS(랙 어시스트 타입)의 시장 점유율이 빠르게 확대되고 있습니다.

신에너지 자동차의 보급이 가속화되고 차량 중량이 증가함에 따라 조향 보조에 대한 요구가 높아지고 있습니다.

첨단 자율주행 기능의 급속한 채택으로 조향 시스템의 이중화 설계와 풀 파워 스티어링이 필요하게 되면서 DP-EPS와 R-EPS를 채택하는 차량 모델이 증가하고 있습니다.

또한, 국산 브랜드의 부상과 중상급 모델의 증가로 조향 성능과 운전 경험에 대한 기대치가 높아지고 있습니다.

중국에서는 16kN 미만의 출력을 가진 EPS 제품은 기술 성숙 단계에 도달했지만, 그 이상의 출력을 가진 성숙한 EPS 제품은 존재하지 않습니다. 한편, 시장에서 더 높은 출력을 필요로 하는 차량은 일반적으로 유압식 파워 스티어링에 의존하고 있으며, 속도 감응형 스티어링을 실현할 수 없습니다. 전기 파워 스티어링에 비해 유압 시스템은 성능이 열악하고, 개발상의 제약이 많기 때문에 적용에 어려움이 많습니다.

이에 대응하기 위해 FAW Hongqi는 "출력 20kN 이상의 중복 병렬 축 전기 파워 스티어링 시스템(R-EPS)"을 개발하여 국내 데뷔를 앞두고 있습니다. 이 시스템은 슈퍼 크루즈, 자동 주차, 차선 유지 등 L2/L3 자동 운전 기능을 지원하며 ASIL D의 기능 안전성을 달성했으며, Hongqi의 연구 개발 프로젝트 중 하나이며 이미 차량 인증을 받았습니다.

R-EPS는 Jingwei HiRain이 개발한 48V 리던던트 EPS 제품으로 Type-I 레이아웃을 채택하고 있습니다.

제품 크기가 작고, 공간 배치의 유연성이 높습니다.

48V 요구 사항을 충족하도록 설계되었으며, 24V 애플리케이션과의 하위 호환성을 유지하면서 에너지 효율을 개선하기 위해 전력 소비를 크게 줄였습니다.

고출력 토크, 모터 토크는 10Nm, 출력은 최대 1.5kW로 높은 추력 요구에 대응하여 운전의 편안함과 조작성이 향상됩니다.

고급 자동 운전 및 스티어 바이 와이어 시스템의 안전 요구 사항을 충족하는 이중화 안전 설계를 제공합니다.

ISO 26262 프로세스에 따라 개발되어 고장률 <=10 FIT의 ASIL D 시스템 기능 안전성을 달성한 높은 안전 수준으로 고장 관리 안전 요구 사항을 실현합니다.

사이버 보안 지원

OTA 업데이트 지원

본 보고서는 중국 자동차 산업을 조사 분석하여 48V 저전압 전력 공급망(PDN) 개발 현황, 각 부품의 혁신, OEM 및 부품 공급업체의 PDN 전개 등의 정보를 제공합니다.

목차

제1장 48V 저전압 PDN의 정의와 표준화

제2장 48V 바디/파워트레인 부품 혁신

제3장 48V 존/전력 공급 부품 혁신

제4장 48V 섀시 시스템 부품 혁신

제5장 48V 열 관리 시스템 부품 혁신

제6장 OEM의 48V PDN 전개

제7장 부품 공급업체의 48V PDN 전개

ksm
영문 목차

영문목차

For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it sufficient attention, making it difficult to become a major incremental market. In contrast, battery electric vehicles (BEVs) and plug-in hybrids (PHEVs) can use high-voltage batteries to create a 48V low-voltage rail to power the entire E/E system.

Future BEV platforms have become the primary target for OEMs to deploy 48V automotive systems. Driven by Tesla Cybertruck, along with the increasing penetration of high-level autonomous driving and chassis-by-wire, the 48V low-voltage PDN architecture for battery electric vehicles will receive growing attention from OEMs, and the maturity of supply chain will rapidly improve accordingly.

48V supply chain and industry chain are rapidly improving maturity

From the supply chain perspective, the 48V architecture is currently limited by the insufficient maturity of component supply chains. The 48V low-voltage PDN (PDN) architecture is divided into 9 major categories and 20 subcategories, with a preliminary assessment of the development priority and technical maturity of each segmented product.

Automotive chassis system, the preferred direction of 48V layout

The automotive chassis system, including brake-by-wire, active suspension, and electric power steering (EPS), etc. are preferred directions for 48V deployment.

Taking EPS as an example, in recent years, the market share of DP-EPS (dual-pinion type) and R-EPS (rack-assisted type) has been rapidly increasing:

The accelerated penetration of new energy vehicles, along with increased vehicle weight, has raised higher demands for steering assistance.

The rapid adoption of high-level autonomous driving functions has necessitated redundant design and full-power steering in steering systems, driving more vehicle models to adopt DP-EPS or R-EPS systems.

The rise of domestic brands and the increase in mid-to-high-end models have raised expectations for steering performance and driving experience.

EPS products with an output force below 16kN have reached a mature stage of technology in China, but there are no mature EPS products with higher output forces available. Meanwhile, vehicles requiring higher output forces in the market generally rely on hydraulic power steering, which cannot achieve speed-sensitive steering. Compared to electric power steering, hydraulic systems suffer from inferior performance and challenging deployment constraints.

To address this, FAW Hongqi has developed a "redundant parallel-axis electric power steering system (R-EPS) with an output force exceeding 20kN," marking its domestic debut. This system supports L2/L3 autonomous driving functions such as super cruise, automated parking, and lane-keeping, achieving ASIL D functional safety. It has already undergone vehicle validation in one of Hongqi's R&D projects.

The R-EPS incorporates a 48V redundant EPS product developed by Jingwei HiRain, featuring a Type-I layout:

Compact product size, offering greater flexibility in spatial arrangement

Designed to meet 48V requirements, significantly reducing power consumption for improved energy efficiency while remaining backward-compatible with 24V applications

High output torque, with motor torque reaching 10Nm and power up to 1.5kW, meeting high thrust demands for enhanced driving comfort and handling

Redundant safety design, fulfilling the safety requirements of advanced autonomous driving and steer-by-wire systems

High safety level, achieving ASIL D system functional safety, developed in compliance with ISO 26262 processes, with a failure rate <=10 FIT, enabling fail-operational safety requirements

Supports cybersecurity

Supports OTA updates

Since braking and steering require high-power motors, traditional 12V low-voltage system cannot meet the power demands. Xiaomi Auto has adopted a 48V architecture for scenarios such as brake-by-wire and steer-by-wire, including:

48V EMB: Xiaomi's intelligent chassis utilizes a 48V low-voltage system, upgrading from the SU7's 12V DPB+ESP10.0 electro-hydraulic braking to a 48V four-wheel fully dry electromechanical braking system.

48V steer-by-wire system: Xiaomi's steer-by-wire system employs a fully redundant design in the hand force simulator and tire actuator, with backup for critical components such as power supply, communication, sensors, main chips, and circuits. This meets ASIL-D functional safety requirements, providing the highest level of safety assurance.

The automotive power supply system is witnessing strong demand for power ICs such as medium-voltage MOSFETs above 80V and 100V GaN FETs

In automotive power supply systems, particularly with ongoing reconstruction of vehicle ECUs, the demand for power ICs is exceptionally high. For current automotive controller hardware design, the power supply system serves as a crucial component, providing electricity to sensors, microcontrollers, actuators, communication modules, and other elements.

48V can function as a vehicle's third voltage rail: even in new energy vehicles equipped with high-voltage systems, a 48V power rail may be introduced to operate medium-power loads (typically between 1kW to 10kW). This development will lead to the widespread adoption of high-voltage (400V/800V) to 48V DC-DC converters.

In 48V systems, the maximum voltage of a fully charged battery pack reaches 60V, rendering traditional low-voltage MOSFETs used in 12V systems obsolete. Consequently, multiple manufacturers have recently introduced medium-voltage MOSFETs rated above 80V specifically for automotive 48V applications.

In April 2024, Infineon launched its first product under the advanced OptiMOS(TM) 7 80V technology-IAUCN08S7N013. This product is designed for automotive DC-DC converters and 48V motor control applications (such as EPS).

In June 2024, onsemi introduced its latest T10 PowerTrench series, also offering 80V medium-voltage MOSFETs for automotive 48V systems. The T10 technology employs a shielded gate trench structure, reducing ringing, overshoot, and noise through its industry-leading soft recovery body diode (Qrr, Trr), achieving a balance between performance and recovery characteristics.

Beyond silicon-based MOSFETs, the GaN industry is also eyeing automotive 48V systems. Several power GaN manufacturers, including EPC, TI, Infineon, and DanXi Technology, have launched 100V GaN FET products targeting 48V automotive applications. Thanks to their high frequency, high efficiency, and compact size, 100V GaN FETs are becoming a key technology for 48V system upgrades and intelligent applications. Major products include:

Innoscience INS2002: A 100V half-bridge driver set for release in 2025, featuring an integrated smart bootstrap switch and adjustable dead time, supporting bidirectional 48V/12V DC-DC conversion for high-frequency applications like motor drives and Class-D audio amplifiers.

Texas Instruments (TI) LMG2100R044 & LMG3100R017: 100V GaN chips with integrated drivers in QFN packaging, compatible with 3.3V-12V logic-level inputs. Suitable for data centers and automotive power systems, they reduce peripheral components while improving power density.

GaN Systems (under Infineon) GS61008T: A 100V/90A silicon-based GaN HEMT supporting top-side cooling, initially used in energy storage and industrial motor drives, with early versions still deployed in some automotive systems.

DanXi Technology DXC6010S1C: A 100V GaN chip (35A/12mΩ) with integrated driver, compatible with traditional silicon controllers. Designed for microinverters and motor drives, it simplifies power path design.

In 12V+48V hybrid electrical architectures, the 48V zonal controller serves as the core energy conversion and management node. UAES's zonal controller solution adopts a 48V/12V compatible design. For the 48V portion, an additional DC/DC stage handles 48V-to-12V power conversion and reverse polarity protection. Short-term implementations may rely on added DC/DC converter chips, but in the long run, adopting 48V PMIC chip technology could eliminate this stage, reducing costs.

Tesla follows a similar approach, using zonal controllers as 48V hubs to distribute power to other vehicle controllers. In its Gen4 zonal controllers, Tesla integrates DC/DC conversion supporting 48V/12V transformation and employs 48V E-fuses for power distribution management.

The standardization of 48V is a critical step toward mass production of 48V systems

Standardization is key to the testing, validation, and production line upgrades for 48V vehicles and components. Currently, voltage requirements and testing for electrical and electronic equipment in road vehicles are primarily based on 12V-24V systems. The first standard for 48V was LV148, which was later replaced by Germany's VDA320. The current standard is ISO 21780:2020. Other relevant standards for electric vehicle safety and testing include ISO 6469 and ISO 21498. In the future, as 48V low-voltage power supply network architectures develop, it is expected that ISO/SAE/GB/LV will introduce more requirements and testing standards for 48V electrical and electronic equipment.

China has recently released the recommended national standard GB/T 45120-2024, "Road vehicles-Supply voltage of 48 V-Electrical requirements and tests." This standard is modified from ISO 21780:2020, which was developed based on the electrical requirements for components in 48V mild hybrid vehicles with a DC 48V power supply. Other DC 48V power supply components may also refer to this standard.

In summary, the standardization and supply chain maturity of 48V systems have significantly accelerated. However, new vehicles still require a 2-3 years cycle for system validation, development, testing, and certification. It is estimated that the inflection point for 48V architecture adoption will occur around 2028.

The industry driver for 48V architecture lies in OEMs' high-performance and differentiated vehicle pre-research planning. The 48V architecture will first be deployed in high-end battery electric vehicles equipped with 800-1000V high-voltage platforms, high-performance powertrains, and advanced autonomous driving features. The industry's momentum primarily depends on the mass production timelines of leading OEMs, such as:

Tesla is prioritizing 48V system trials in premium models like the Cybertruck to gather data and cultivate the supply chain. The upgraded Model S/X is planned to adopt the 48V architecture first in 2025, followed by a gradual rollout across the entire lineup (Model Y will not introduce 48V in 2025). Tesla will use OTA updates to enhance low-voltage system functions in existing vehicles, buying time for hardware iterations.

NIO ET9, based on the NT 3.0 platform, has proactively implemented a redundant 12V and 48V architecture, with the 48V system specifically supporting high-power loads such as the FAS fully active suspension.

Xiaomi Auto is introducing the 48V architecture in applications like brake-by-wire and steer-by-wire systems.

Tesla, NIO, and Xiaomi may gradually adopt the 48V low-voltage PDN architecture between 2025 and 2026. However, due to gaps in the supply chain, they still face a lengthy adoption cycle. Other OEMs' 48V low-voltage PDN platforms remain in the planning stage, with market entry expected to take at least 2-3 years. As new architecture models hit the market, ResearchInChina predicts that by 2030, the adoption of 48V architecture in BEVs will surpass the one-million-unit milestone.

Table of Contents

1 Definition and Standardization of 48V Low-voltage Power Distribution Network (PDN)

2 48V Vehicle Body/Powertrain Component Innovations

3 48V Zonal /Power Supply Component Innovations

4 48V Chassis System Component Innovations

5 48V Thermal Management System Component Innovations

6 48V PDN Deployment of OEMs

7 48V PDN Deployment of Parts Suppliers

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기