48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024
상품코드:1457875
리서치사:ResearchInChina
발행일:2024년 03월
페이지 정보:영문 305 Pages
라이선스 & 가격 (부가세 별도)
한글목차
자동차 저전압 PDN 아키텍처는 12V에서 48V 시스템으로 진화
1950년부터 자동차 산업은 12V 시스템을 도입하여 자동차 조명, 엔터테인먼트, 전자 제어 장치 및 기타 저전력 전자 장치에 전력을 공급해 왔으며, 2011년 Audi, BMW, Daimler, Porsche, Volkswagen은 48V 시스템을 공동으로 출시했습니다. 시스템을 출시하고 차량 부하 수요 증가와 배기가스 규제 강화에 대응하기 위해 LV148 표준을 제정했습니다.
DC/DC 컨버터를 사용하여 48V 시스템을 원래의 12V 시스템에 통합하여 48V와 12V 구성 요소가 공존할 수 있도록 합니다.
DC/DC 컨버터를 사용하여 전원 배터리의 고전압 전력을 12V 및 48V로 변환하여 각각 다른 구성 요소를 구동합니다.
2023년 11월, 테슬라는 사이버트럭을 정식으로 납품했습니다. 저전압 배터리의 전압을 48V로 올리면 자동차 전기 제품에 필요한 큰 전력을 확보할 수 있을 뿐만 아니라 회로 내 에너지 손실과 발열을 줄일 수 있어 12V 시스템에 비해 분명한 이점이 있습니다.
사이버트럭의 의미는 매우 크며, 테슬라도 2024년 하반기에 모델 Y에 48V 시스템을 탑재할 계획이며, 테슬라의 강력한 리드는 자동차 저전압 PDN 아키텍처의 혁명을 일으킬 수 있습니다.
48V 저전압 PDN 기술의 개발 경로에는 크게 두 가지가 있습니다.
(1) 12V 48V 리던던트 시스템
현재 전통적인 48V 마일드 하이브리드 시스템은 48V와 12V 구성 요소가 공존하는 전기 토폴로지를 채택하고 있습니다. 향후 48V는 마일드 하이브리드 차량뿐만 아니라 더 많은 배터리 전기자동차의 배전 시스템에서 세 번째 전압 레일 역할을 할 수 있으며, 3 개의 레일(HV, 48V, 12V)이 동일한 차량에 공존하게 될 것이며 일부 중전력(1kW - 10kW) 부하는 48V 전원 시스템에서 작동할 수 있습니다.
또한, 자동차 12V 납축전지 역시 시장에서 퇴출을 앞두고 있습니다. 유럽은 2030년 이후 모든 신차에 납축전지를 사용하지 말라는 법령을 발표했습니다. 현재 12V 리튬 배터리는 BYD와 테슬라가 자동차에 전면적으로 채택하고 있습니다.
또한, Vicor가 제안하는 가상 E/E 아키텍처는 12V/48V 물리적 배터리를 직접 제거하여 xEV의 무게와 비용을 절감할 수 있으며, BCM6135 및 NBM2317 모듈을 기반으로 한 12V 및 48V 배터리 가상화를 특징으로 합니다. 가상화를 특징으로 합니다. 또한 48V 버스는 A/C 커패시터, 워터 펌프, 액티브 섀시 안정화 시스템 등 차량 내 고부하에 전력을 공급하는 보다 효율적인 전원 공급 장치 역할을 합니다.
(2) 48V 시스템/p>
Cybertruck의 설계에서 Tesla는 12V 전원 공급 장치를 완전히 폐기하고 차량의 모든 전기 장비를 48V 작동 범위에 넣을 계획이며, Tesla는 Zone Controller를 48V 허브로 사용하여 다른 컨트롤러에 전원을 공급할 계획입니다. 공급망 지원이 없기 때문에 Tesla는 전원 보호 장치, 48V E 퓨즈, 하이 사이드 스위치 등을 추가하여 많은 ECU를 재 설계했습니다.
48V 시스템은 여전히 장기적인 공급망 구축 주기에 직면해 있으며, 이는 엄청난 잠재적 수요를 가져옵니다.
12V 시스템이 공급할 수 있는 전력은 최대 3kW - 4kW이므로 자동차 제조업체는 전기 장비의 전력을 지속적으로 감소시켜 일정 수의 새로운 전기 장비를 통합 할 수 있습니다.
48V PDN 아키텍처의 와이어 하네스는 더 높은 출력의 전기 제품을 지원할 수 있습니다. 자동차 부품은 오랫동안 12V로 개발 및 설계되어 왔기 때문에 공급업체는 48V를 위해 회로, 칩 보호 전압, 진단 등 부품을 재설계해야 합니다. 또한 48V에 대한 표준을 설정하고 신뢰성 실험, EMC 등을 다시 수행해야 합니다.
이 보고서는 중국 자동차 산업을 조사 분석하여 48V 저전압 PDN 아키텍처 개요, 시장 전망, OEM 계획, 잠재적 공급업체 등에 대한 정보를 제공합니다.
목차
제1장 48V 저전압 PDN 아키텍처 개요
48V 저전압 PDN 아키텍처의 장단점
48V 시스템의 설계 과제
48V 저전압 PDN 아키텍처의 규격과 정책
Cybertruck 48V EEA의 설계
기존 48V 마일드 하이브리드 아키텍처
제2장 48V 저전압 PDN 아키텍처의 주요 업데이트된 컴포넌트
컴포넌트에 대한 48V 저전압 PDN 아키텍처 영향
전력 아키텍처 : 재설계된 ECU
전력 아키텍처 : 새로운 저전압 PDN, 지능형 배전 박스
전력 아키텍처 : 첨단 배전 허브, 존 컨트롤러
전력 아키텍처 : 지능형 퓨즈(eFuse)
전력 아키텍처 : 48V/12V Redundant Power Supply Network, DC/DC
에너지 저장 시스템 : 48V/12V 리튬 배터리, BMS
전동 모터 제어 시스템 : 48V 마이크로모터
스티어링 시스템 : 48V 스티어링 모터
L2-L4+자율주행 시스템용 SBW 15 요건
Brake-by-Wire시스템 : 48V EMB
서스펜션 시스템 : 48V 풀 액티브 서스펜션
열관리 시스템 : 48V 냉각 팬
열관리 시스템 : 48V 전자식 워터 펌프/오일 펌프
제3장 48V 승용차 시장
국내 승용차 시장 현황
48V 저전압 PDN 아키텍처 시장 전망
제4장 OEM 48V 저전압 PDN 아키텍처 계획
Tesla
NIO
Li Auto
BYD
ZEEKR
Mercedes-Benz
GM
BMW
Volvo
주요 자동차 제조업체의 48V 저전압 PDN 아키텍처 요약
제5장 48V 저전압 PDN 아키텍처 잠재적 부품 공급업체
Bosch
Onsemi
AVL
Vicor
HMC
Wanxiang A123 Systems
Camel Group
Hunan Oil Pump
Kunshan Huguang Auto Electric
Johnson Electric
LSH
영문 목차
영문목차
Automotive low-voltage PDN architecture evolves from 12V to 48V system.
Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units and other low-power electronic devices in automobiles. In 2011, Audi, BMW, Daimler, Porsche and Volkswagen jointly launched a 48V system, and formulated the standard LV148 to meet the increasing demand for vehicle loads and stricter emission regulations.
Use a DC/DC converter to integrate the 48V system on the original 12V system, so that 48V and 12V components coexist.
Use a DC/DC converter to convert high-voltage electricity from power batteries into 12V and 48V to drive different components respectively.
In November 2023, Tesla officially delivered Cybertruck. Increasing the voltage of the low-voltage battery to 48V can ensure the high power required by vehicle appliances, and also reduce energy loss and heat generation in the circuit, which has obvious advantages over the 12V system.
Cybertruck is of great significance. Tesla also plans to incorporate the 48V system into Model Y in late 2024. Tesla's strong lead may trigger a revolution of automotive low-voltage PDN architecture.
There are mainly two 48V low-voltage PDN technology development routes:
(1) 12V+48V redundant system
Currently, conventional 48V mild hybrid systems use an electrical topology in which 48V and 12V components coexist. In the future, 48V may act as the third voltage rail of the distribution system of more battery electric vehicles in addition to mild hybrid vehicles. Three rails (HV, 48V and 12V) will coexist on the same vehicle, and some medium-power (1kW-10kW) loads can run in the 48V power supply system.
Also automotive 12V lead-acid batteries are about to withdraw from the market. Europe has issued a decree indicating that all new cars should no longer use lead-acid batteries beyond 2030, which poses a very big challenge to OEMs seeking alternative solutions. At present, 12V lithium batteries have been fully adopted by BYD and Tesla in cars.
Furthermore, the virtual E/E architecture proposed by Vicor directly eliminates 12V/48V physical batteries, thus reducing the weight and cost of the xEV. The E/E architecture features 12V and 48V battery virtualization based on BCM6135 and NBM2317 modules. The 48V bus also serves as a more efficient source for powering higher loads in a vehicle such as the A/C condenser, water pump and active chassis stabilization systems.
(2) 48V system
In Cybertruck design, Tesla plans to completely discard the 12V power supply and bring all the electrical equipment on the vehicle into the 48V working scope. Tesla will use a zone controller as a 48V hub to then power other controllers. Without the supply chain support, Tesla has redesigned a large number of ECUs by adding power protection device, 48V E-Fuse, high-side switch and so on.
48V systems still face a long-term supply chain deployment cycle, which will bring huge potential demand.
The power that a 12V system can provide is up to 3kW-4kW, so automakers can only integrate a certain number of new electrical devices by constantly reducing the power of electrical equipment.
The wiring harness of 48V PDN architecture can support higher-power electrical appliances. For auto parts have long been developed and designed on the 12V, suppliers have to redesign components, including circuits, chip protection voltages and diagnostics, for the sake of 48V. They also need to set standards for 48V and redo reliability experiments, EMC, etc.
The impacts of 48V on the components supply chain include:
1. Zone controllers coupled with 48V eFuse serve as the vehicle power distribution hub.
Zone controllers simplify the migration to 48V architecture. According to Tesla's design, the vehicle with zone controller architecture only needs a battery as the power supply, which can provide 48V voltage and distribute the power to zone controllers. In the configuration, the zone controllers can provide 48V voltage to the adaptive components, and also reduce the voltage to 12V for other unsuitable components.
In current stage, there are two semiconductor-based eFuse power distribution solutions by application scenarios:
Driver IC-based MOSFET discrete solution: it is suitable for constant current circuits. This solution combines a range of built-in protection functions such as overvoltage, overcurrent, short circuit and thermal protection. The current limit of the overcurrent protection can be set directly via software, which facilitates platform-based hardware application and is applicable to high current situations. The standard threshold of a single smart MOSFET in the automotive industry is 30A. In actual design, >30A high current applications are still mainly fuses + relays.
Intelligent high-side driver (HSD) switch integration solution: it integrates driver + MOSFET + current detection + thermal protection + voltage protection + EMC + diagnostics on a single chip, and is suitable for non-constant current circuits. This solution is still limited to low current load applications (<25A), with low cost and high reliability.
2. Steer-by-wire (SBW), electric power steering (EPS) and rear wheel steering motors are connected to 48V.
Vehicle electrification has increased the number and power of electrical components in vehicles, making the voltage of the automotive power supply prone to fluctuation, thus affecting the control accuracy of steer-by-wire. The design and control of brake-by-wire systems therefore need to be matched with higher-voltage automotive power supplies (e.g., 48V). For autonomous driving at L3 and above, the redundant EPS system has new requirements for 48V steering motors which can provide a quicker response to 48V systems.
According to the Steer-by-wire Technology Roadmap Exposure Draft released in April 2022, the overall goal is to realize the world's leading steer-by-wire for L3+ and L4+ autonomous driving in 2025 and 2030, with the penetration of steer-by-wire up to 5% and 30%, respectively.
3. Fully active suspension has been mass-produced for 48V hybrid electric vehicles, and will be introduced into battery electric vehicles.
The air suspension often seen in high-performance new energy vehicles is semi-active. The fully active suspension with better performance includes the 48V E-ABC system on Mercedes-Benz GLE, the 48V electromechanical coupling active suspension system on Audi A8, and the "Skyride" fully active suspension on NIO ET9, all of which adopt 48V loads supporting high power.
Mercedes-Benz GLE and Audi A8 boast 48V mild hybrid power systems, which independently control the four-wheel suspension via 48V pressure pumps and ADS+ pressure regulating valves.
ET9, the first model based on NIO's all-electric platform NT3.0, integrates three core hardware systems (steer-by-wire, rear wheel steering and fully active suspension) for the first time. NIO ET9 supports both 12V and 48V systems, that is, two 12V systems plus a 48V system in the vehicle system. The 48V system is specially designed to support high-power loads, such as fully active suspension (FAS).
4. Redundant topology of 12V/48V power supply
Tesla expects to completely eliminate the 12V power supply and realize intelligent power distribution through zone controllers, which is too radical for most OEMs. The coexistence of 12V and 48V power supply networks and the DC/DC conversion may still be preferred by most OEMs.
12V buses continuously supply power to ignition, lighting, infotainment and audio systems, while 48V buses powers active chassis system, air conditioning compressor, adjustable suspension, electric supercharger, turbocharger and even regenerative brake.
From the perspective of high-level autonomous driving redundancy systems, most conventional vehicles only have a single-circuit main power supply system. When the single-circuit power supply system can't provide power due to failure, the electrical loads of the vehicles, including autonomous driving systems, can't work normally. For the vehicles that are in the autonomous driving mode, there is a risk of losing control. In this case, 12V and 48V redundant power supply networks come into being.
In addition, the potential impacts of 48V on the components supply chain are reflected in super-high-compute central computing units, low-voltage intelligent power distribution units, low-voltage wiring harness units, 12V/48V lithium batteries and BMS, 48V DC/DC converters, 48V micromotors, 48V braking systems, 48V cooling fans, 48V electronic water/oil pumps and more. In a word, 48V low-voltage PDN architecture will have a fairly profound impact on the automotive industry.
Table of Contents
1 Overview of 48V Low-voltage Power Distribution Network (PDN) Architecture
1.1 Advantages and Disadvantages of 48V Low-voltage PDN Architecture
1.1.1 Development History of Automotive Low-voltage PDN Architecture
1.1.2 48V Low-voltage PDN Architecture VS 12V Low-voltage PDN Architecture
1.1.3 Development Necessity of 48V Low-voltage PDN Architecture
1.1.4 What Are the Advantages of 48V System for Electric Vehicles over Conventional 12V System? (1)
1.1.5 What Are the Advantages of 48V System for Electric Vehicles over Conventional 12V System? (2)
1.1.6 What Are the Advantages of 48V System for Electric Vehicles over Conventional 12V System? (3)
1.1.7 48V Low-voltage PDN Architecture Can Reduce Copper Usage and Costs
1.1.8 48V Low-voltage PDN Architecture Can Support Higher-power Appliances
1.1.9 48V Low-voltage PDN Architecture Can Reduce Wiring Harnesses
1.1.10 48V Low-voltage PDN Architecture Can Make xEV Lighter, Which Is of Great Significance to xEV (1)
1.1.11 48V Low-voltage PDN Architecture Can Make xEV Lighter, Which Is of Great Significance to xEV (2)
1.1.12 48V Low-voltage PDN Architecture Can Make xEV Lighter, Which Is of Great Significance to xEV (3)
1.1.13 Difficulties and Obstacles in Popularizing 48V Low-voltage PDN Architecture (1)
1.1.14 Difficulties and Obstacles in Popularizing 48V Low-voltage PDN Architecture (2)
1.2 48V System Design Challenges
1.2.1 48V System Design: Voltage Control
1.2.2 48V System Design: Energy Management Challenges
1.2.3 48V System Design: Arc Discharge & Ground Failure
1.2.4 48V System Design: Dual Voltage System CAN Bus Communication & Electromagnetic Compatibility (EMC)
1.3 Standards and Policies for 48V Low-voltage PDN Architecture
1.3.1 ISO 16750-2: 2023 Road Vehicles - Environmental Conditions and Testing for Electrical and Electronic Equipment - Part 2: Electrical Loads
1.3.2 ISO 21780:2020 Road Vehicles - Supply Voltage of 48V - Electrical Requirements and Tests
1.3.3 GB/T 28046 Road Vehicles - Environmental Conditions and Testing for Electrical and Electronic Equipment
1.3.4 GB 18384-2020 Electric Vehicles Safety Requirements
1.3.5 LV 124 Quality and Reliability Test Standard Established by German Automotive Manufacturers