Automotive Millimeter-wave (MMW) Radar Industry Report, 2024
상품코드:1613810
리서치사:ResearchInChina
발행일:2024년 11월
페이지 정보:영문 503 Pages
라이선스 & 가격 (부가세 별도)
한글목차
현재 도시 NOA로 대표되는 첨단 지능형 주행 시스템은 더욱 복잡한 주행 환경과 도로에 직면해 있습니다. 따라서 인식 시스템에 대한 성능 요구 사항이 높아져 더 긴 감지 범위, 더 넓은 감지 각도 및 더 높은 정확도가 요구됩니다. 여기서 인식 시스템의 일부인 레이더는 비, 눈, 안개, 저조도 환경에서도 안정적인 성능을 발휘할 수 있으며, 특히 고성능 4D 이미징 레이더는 자율주행 시스템의 전반적인 인식 능력을 향상시킬 수 있습니다.
3D 레이더에 비해 4D 레이더(거리, 속도, 수평 방향, 수직 높이)는 송수신 채널 수를 늘려 포인트 클라우드 기능을 제공하며, 3T4R(12채널)에서 6T8R(48채널), 12T16R(192채널), 48T48R(2,304채널)로 점차 기존 레이더를 대체하고 있습니다. 채널)에 이르기까지 점점 더 높은 정확도의 포인트 클라우드 이미징을 실현하여 기존 레이더를 점차적으로 대체하고 있습니다. 다중 레이더 네트워크의 경우 LiDAR를 부분적으로 대체할 수 있습니다.
ADAS 장착 대수 및 장착률 상승에 따라 중국 승용차의 레이더 장착 대수 및 장착률도 상승하고 있으며, ResearchInChina의 데이터에 따르면 2023년 중국 승용차 1,093만 3,000대에 레이더가 장착되어 장착률이 52.0%에 달했습니다.2024년 1월부터 7월까지 653만 1,000대에 레이더가 장착되어 장착률이 57.3%에 달했습니다. 현재 자동차용 레이더 시장에는 많은 기업이 존재하며, 특히 국내 신규 진입이 증가하면서 시장 경쟁이 치열해지고 있습니다.
1. 중국의 레이더 시장 규모는 2024년 60억 위안이 넘을 것이며, 국내 레이더 제조업체는 더 높은 시장 점유율을 차지하기 시작할 것입니다.
ResearchInChina의 데이터에 따르면 전면/코너 레이더의 업계 평균 가격과 레이더 장착 수를 합산하면 2023년 중국 승용차 레이더 시장 규모는 58억 2,000만 위안으로 전년 대비 13.0% 증가했고, 2024년 1-7월 시장 규모는 30억 1,000만 위안으로 전년 대비 3.4% 증가했습니다. 전년 대비 3.4% 증가한 30억 1,000만 위안으로, 2024년 시장 규모는 60억 위안이 넘을 것으로 예상됩니다.
제품 유형별로는 전방 레이더가 가장 높은 금액과 가장 많은 탑재량을 자랑하며 전체 시장의 약 60%를 차지합니다. 다음으로 후방 코너 레이더가 2024년 1월-7월 시장 규모 10억 위안으로 전체 시장의 30% 이상을 차지했고, 전방 코너 레이더는 전체 시장의 약 7%를 차지했으며, 후방 레이더는 거의 사용되지 않아 점유율이 1% 미만에 불과했습니다.
또한 Bosch, Continental, Denso는 중국내 프론트 레이더 공급업체 중 상위 3개 업체로 총 점유율이 70% 이상의다. 그러나 Sensortech, Cheng Tech, Huawei 등 국내 업체들이 성장하면서 해마다 점유율이 하락하고 있다(상위 3개 업체의 점유율은 2022년 84.1%, 2023년 82.1%, 2024년 1월-7월 74.6%). 시장 점유율은 총 13.3%였습니다.
비용 절감과 효율성 향상, 치열한 경쟁 속에서 그 어느 때보다 많은 OEM이 비용 효율적인 레이더를 제공할 수 있는 다양한 공급업체를 선택하기 시작했습니다. 기술이 발전하고 제품의 대량 생산 및 활용이 가속화됨에 따라 국내 레이더 공급업체는 전방 레이더(4D 레이더 포함) 및 코너 레이더(4D 레이더 포함) 분야에서 더 많은 OEM공급망 시스템에 진입하기 시작하여 이 부문에서 더 큰 시장 점유율을 확보하기 위해 노력하고 있습니다. 이 부문에서 더 큰 시장 점유율을 확보하기 위해 노력하고 있습니다.
예를 들어 2023년 10월, sinPro는 업계 최초의 전자동 4D 이미징 레이더 생산라인을 완성하여 연간 80만 대를 생산할 수 있을 것으로 예상하고 있으며, 2024년 8월에는 자체 개발한 자동차용 듀얼칩 4D 이미징 레이더 SFR-2K가 정식으로 양산에 들어갔습니다. NIO ET9, ONVO L60 등의 모델을 지원하며 양산에 돌입했습니다. 또한 Chuhang Tech는 중국 안칭시에 생산기지를 보유하고 있으며, 연간 생산능력은 180만대 이상(4D 레이더 포함), Cheng Tech의 연간 생산능력은 1,300만대 이상(4D 이미징 레이더 포함)에 달할 전망입니다.
중국의 자동차용 밀리미터파(MMW) 레이더 산업에 대한 조사분석 등의 정보를 제공하고 있습니다.
목차
제1장 자동차용 레이더의 개요
자동차용 레이더 기능의 비교
자동차용 레이더의 동작 기구
자동차용 레이더의 구성
자동차용 레이더의 분류
자동차용 레이더 기술
자동차용 레이더 산업 체인
제2장 자동차용 레이더의 응용
차내
차외
4D 레이더 응용 시나리오 1
4D 레이더 응용 시나리오 2
4D 레이더 응용 시나리오 3
4D 레이더 응용 시나리오 4
주요 4D 레이더 공급업체와 솔루션의 비교
주요 4D 레이더 탑재 차종의 비교
주요 중국과 국외 자동차용 4D 레이더 제품의 맵
제3장 자동차용 레이더 시장의 동향
정의
전체의 탑재수와 탑재율
레이더의 탑재 수와 OEM의 탑재율
상위 20 브랜드 : 레이더 탑재수별
상위 20 레이더 탑재 차종
레이더 탑재 부위 계획
레이더 탑재수 : 가격별, 차종별
차량에 대한 레이더의 탑재 수와 탑재율 : 자율주행 레벨별
레이더 시장 규모
제4장 국외 승용차용 레이더 기업
Bosch
Continental
Denso
Aptiv
ZF
Magna
Valeo
Hyundai Mobis
FORVIA Hella
제5장 중국의 승용차용 레이더 기업
Sensortech
Cheng Tech
Fusionride
sinPro
Muniu Technology
Autoroad
Chuhang Tech
HASCO
Hirige
Jingwei Hirain
Freetech
Huawei
Altos Radar
Geometrical-PAL
Nanoradar
Nova Electronics
Baolong Automotive
ANNGIC
Zongmu Technology
FinDreams Technology
JOOSPEED Electronic Technology 4D 이미징 레이더 - LR606
제6장 자동차용 레이더 칩 기업
대표적인 기업 1 : TI
대표적인 기업 2 : Arbe
대표적인 기업 3 : Uhnder
대표적인 기업 4 : Calterah
대표적인 기업 5 : Zenitai Technology
대표적인 기업 6 : Hxele Electronics
대표적인 기업 7 : Microcreative
대표적인 기업 8 : Andar Technologies
대표적인 기업 9 : SenardMicro
대표적인 기업 10 : Osemitech
기타 기업
KSA
영문 목차
영문목차
Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up.
At present, high-level intelligent driving systems represented by urban NOA are facing more complex driving environments and roads. This poses higher capability requirements for the perception system, requiring it to provide a longer detection range, a wider detection angle, and a higher accuracy. Wherein, radars, as a part of the perception system, can deliver stable performance in rain, snow, fog and low-light environments, especially high-performance 4D imaging radar which can enhance the overall perception capability of the autonomous driving system.
Compared with 3D radar, 4D radar (distance, speed, horizontal azimuth, vertical height) provides point cloud functions by increasing the number of transmitting and receiving channels. From 3T4R (12 channels) to 6T8R (48 channels), and to 12T16R (192 channels) and even to 48T48R (2,304 channels), it offers increasingly high accuracy of point cloud imaging, gradually replacing traditional radars. In the case of multi-radar networking, it can partially replace LiDAR.
With the rising installations and installation rate of ADAS, the installations and installation rate of radars in passenger cars in China ramp up. According to the data from ResearchInChina, in 2023 radars were installed in 10.933 million passenger cars in China, with an installation rate of 52.0%; from January to July 2024, 6.531 million cars were installed with radars, with the installation rate up to 57.3%. At present, there are many players in the automotive radar market, especially more new domestic entrants intensifying the industry competition.
1. China's radar market is valued at over RMB6 billion in 2024, and domestic radar suppliers begin to grab higher market share.
Combining the industry average price of front/corner radars and the installations of radars, ResearchInChina's data shows that China's passenger car radar market was worth RMB5.82 billion in 2023, up by 13.0% year on year; from January to July 202 the market was valued at RMB3.01 billion, increasing by a small margin of 3.4% on a like-on-like basis. It is expected that the market size will exceed RMB6 billion in 2024.
In terms of product type, front radars boast high value and the largest installations, sweeping about 60% of the overall market; rear corner radars follow, with a market size of RMB1 billion from January to July 2024, or more than 30% of the overall market; front corner radars make up about 7% of the overall market; rear radars are seldom used, taking a lower than 1% share.
Moreover, by installations, Bosch, Continental, and Denso are the top three front radar suppliers in China, with a combined market share of more than 70%. However, under the impact of domestic suppliers, they have seen a declining share year by year (the share of the TOP3: 84.1% in 2022, 82.1% in 2023, and 74.6% from January to July 2024); while the share of domestic suppliers such as Sensortech, Cheng Tech and Huawei is expanding. From January to July 2024, the market share of the three companies totaled 13.3%.
In the context of cost reduction and efficiency improvement and fierce competition, ever more OEMs have begun to choose diverse suppliers that can provide cost-effective radars. As technology advances and the mass production and application of products accelerate, domestic radar suppliers have begun to enter the supply chain systems of more OEMs in the fields of front radars (including 4D radar) and corner radars (including 4D radar), scrambling for bigger market share in the segments.
For example, in October 2023, sinPro completed the industry's first fully automatic 4D imaging radar production line, expected to produce 800,000 units annually after operation. In August 2024, sinPro's self-developed automotive dual-chip 4D imaging radar SFR-2K was officially mass-produced and rolled off the production line, supporting models such as NIO ET9 and ONVO L60. In addition, Chuhang Tech has a production base in Anqing City, China, with annual capacity of more than 1.8 million radars (including 4D radars); Cheng Tech's total annual capacity of radars is up to over 13 million units (including 4D imaging radars).
2. Four development trends of radar technology
At present, the upstream end of the automotive radar industry chain is still dominated by foreign chip/chip module vendors. The main players include Infineon, ADI, NXP, ST, TI, Renesas, onsemi, Arbe and Uhnder. Yet domestic radar suppliers are also developing rapidly, and quite a few start-ups have emerged. Domestic players are led by Calterah, Osemitech, and SenardMicro.
The evolution of radar technology, especially the development of satellite architecture, helps create more cost-effective 4D radar products.
In radar design, the first thing to consider is how to improve antenna efficiency. At present, the industry is developing from microstrip antenna to waveguide antenna technology. For waveguide antennas have low energy loss, suppliers like Bosch and Continental use it. Air waveguide antennas have even lower capacity loss. Suppliers working to promote it include Aptiv (4D radar FLR4+), and XretinAl Technology (compared with microstrip antennas of the same size, its Quasi-Air Integrated Waveguide (AIW) antennas enable a gain boost of about 5dB).
Secondly, the antenna packaging technology is evolving from AoB to AiP (Antenna in Package), to reduce antenna feeder loss. A few companies such as Calterah have launched ROP(R) (Radiator-on-Package) technology, which uses solder balls to connect RF signals, has higher channel isolation, and offers a longer detection range and a wider FOV. The more advanced packaging technology LoP is being used by Continental in the production of its sixth-generation radar chips. LoP (Launch on Package) enables the electromagnetic waves emitted by the radar to propagate directly from the chip through the air waveguide, avoiding the higher energy loss and high cost caused by etching the antenna on the circuit board, achieving low cost and also improving the radar's detection performance.
Signal anti-interference is also a factor that must be taken into account. For example, one of the unique benefits of Uhnder's single 4D digital imaging radar chip with 192 virtual channels (12T 8 x 2R) is the use of advanced digital code modulation (DCM) technology, which can effectively improve the anti-interference performance of the radar system and resist interference signals in various complex environments. In addition, to prevent multiple vehicle radars from transmitting RF signals at the same time in overlapping frequency bands, Continental adopts the intelligent time synchronization approach to prevent interference between the vehicle radars. Moreover to avoid interference from radars on other vehicles when the vehicle is traveling, Code is added to the waveform and Decoding is performed as the echo signal is received. This encryption method is used to shield the interference from other vehicle radars.
In radar design, the most critical thing is that the signal processing architecture is developing towards satellite architecture. This distributed architecture can leave most of the signal processing and object recognition tasks to the central processing unit, thereby exploiting the computing power and computing resources of the central processing unit. The higher computing power and more software processing are a solution to stable detection and other problems of radars in the case of a complex scenario and multiple objects.
Satellite radars use the RF front-end and some pre-processing modules as radar modules, and integrate all the computing power into the vehicle central computing module. As communication means get optimized, some pre-processing modules can be transferred to the central computing module, thus forming a pure RF front-end radar. For example, the Altos RF Series is a non-computing front-end radar module, a radar solution deeply integrating domain controllers, with price about half of similar models with processors. It uses the computing resources of the intelligent driving domain controller or the central domain controller to generate high-quality point clouds.
Yet satellite radars also face many challenges. 1. Processing large amounts of data increases the hardware cost of domain controllers. 2.Mainstream high-compute chips' support for and compatibility with radar algorithms need to be improved and optimized. 3. OEMs now still mainly use the object-level data output by satellite radars, and have technical difficulties in using ADC data directly. So OEMs are less willing to switch between satellite radars and traditional radars, and more actual cases are needed to promote market acceptance.
Table of Contents
1 Overview of Automotive Radar
1.1 Comparison of Automotive Radar Capabilities
1.2 Working Mechanism of Automotive Radar
1.3 Composition of Automotive Radar
1.4 Classification of Automotive Radars
1.5 Automotive Radar Technology
1.5.1 Summary of Waveguide Antenna Technology and Cases of Its Impacts on Functions
1.5.2 Waveguide Antenna Technology and Cases of Its Impacts on Functions
1.5.3 AiP Technology Creates Ultra-short-range Application Scenarios for Radars
1.5.4 AiP Technology Application Scenario Cases
1.5.5 Iteration of Radar Packaging Technology
1.6 Automotive Radar Industry Chain
2 Application of Automotive Radar
2.1 In-cabin
2.1.1 In-cabin Application Scenarios of Radars and Realized Functions
2.1.2 Possible In-cabin Application Scenarios
2.1.3 In-cabin Application of Radars - Comparison of Main Suppliers and Solutions
2.1.4 In-cabin Application of Radars - Comparison of OEM Cases
2.2 Out-cabin
2.2.1 Out-cabin Application Scenarios and Realized Functions (Classified by Detection Range)
2.2.2 Out-cabin Application Scenarios and Realized Functions (Classified by Installation Location)
2.2.3 Application Scenarios and Realized Functions of Front Radar - Comparison of Main Suppliers and Solutions
2.2.4 Application Scenarios and Realized Functions of Corner Radar - Comparison of Main Suppliers and Solutions
2.2.5 Possible Out-cabin Application Scenarios - Traditional Radar
2.2.6 Possible Out-cabin Application Scenarios - 4D radar
2.3 4D Radar Application Scenario 1
2.4 4D Radar Application Scenario 2
2.5 4D Radar Application Scenario 3
2.6 4D Radar Application Scenario 4
2.7 Comparison of Main 4D Radar Suppliers and Solutions
2.8 Comparison of Main 4D Radar-equipped Vehicle Models
2.9 Main Chinese and Foreign Automotive 4D Radar Products Map
3 Automotive Radar Market Trends
Definition
3.1 Overall Installations and Installation Rate
3.2 Radar Installations and Installation Rate of OEMs by Type
3.3 TOP 20 Brands by Radar Installations
3.4 TOP 20 Vehicle Models by Radar Installations
3.5 Radar Installation Location Schemes
3.5.1 Front Radar
3.5.2 Corner Radar
3.5.3 Rear Radar
3.6 Installation of Radars by Price Range of Vehicle Models
3.6.1 Installations and Installation Rate of Radars by Price Range of Vehicle Models, 2022
3.6.2 Installations and Installation Rate of Radars by Price Range of Vehicle Models, 2023
3.6.3 Installations and Installation Rate of Radars by Price Range of Vehicle Models, 2024
3.6.4 Installations and Installation Rate of Radars in >RMB500,000 Models
3.6.5 Installations and Installation Rate of Radars in RMB400,000-500,000 Models
3.6.6 Installations and Installation Rate of Radars in RMB350,000-400,000 Models
3.6.7 Installations and Installation Rate of Radars in RMB300,000-350,000 Models
3.6.8 Installations and Installation Rate of Radars in RMB250,000-300,000 Models
3.6.9 Installations and Installation Rate of Radars in RMB200,000-2500,000 Models
3.6.10 Installations and Installation Rate of Radars in RMB150,000-200,000 Models
3.6.11 Installations and Installation Rate of Radars in RMB100,000-150,000 Models
3.6.12 Installations and Installation Rate of Radars in RMB0-100,000 Models
3.7 Installations and Installation Rate of Radars in Vehicles by Autonomous Driving Level
3.7.1 Installations and Installation Rate of Radars in L0 Passenger Cars
3.7.2 Installations and Installation Rate of Radars in L1 Passenger Cars
3.7.3 Installations and Installation Rate of Radars in L2 Passenger Cars
3.7.4 Installations and Installation Rate of Radars in L2+ Passenger Cars
3.7.5 Installations and Installation Rate of Radars in L2.5 Passenger Cars
3.7.6 Installations and Installation Rate of Radars in L2.9 Passenger Cars
3.8 Radar Market Size
3.8.1 Number of Radars Installed
3.8.2 Radar Market Size
3.8.3 Competitive Pattern of Front Radar
3.8.4 Competitive Pattern of Corner Radar
3.8.5 Relationships between Radar Suppliers and OEMs
4 Foreign Passenger Car Radar Companies
4.1 Bosch
4.1.1 Revenue
4.1.2 Autonomous Driving Product Layout
4.1.3 Autonomous Driving Solutions
4.1.4 Passenger Car Front Radars
4.1.5 Commercial Vehicle Front Radars & Corner Radars
4.1.6 6th Generation Radar
4.1.7 4D Front Radar
4.1.8 Front Radars
4.1.9 Upstream Products of Front Radar
4.1.10 Corner Radars
4.1.11 Upstream Products of Corner Radar
4.1.12 Installations and Installation Rate of Front Radars in Passenger Cars (by Radar Model), 2022-2024 (Jan-Jul)
4.1.13 Installations and Installation Rate of Front Radars in Passenger Cars (by TOP15 OEMs), 2022-2024 (Jan-Jul)
4.1.14 Installations and Installation Rate of Corner Radars in Passenger Cars (by TOP15 OEMs), 2022-2024 (Jan-Jul)