¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷(iPS ¼¼Æ÷) Á¦Á¶ ½ÃÀå : »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ ¹× ¿¹Ãø(2024-2032³â)
Induced Pluripotent Stem Cells Production Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2024-2032
»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
Persistence Market Research´Â ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷(iPSCs) Á¦Á¶ ½ÃÀåÀ» »ó¼¼ÇÏ°Ô ºÐ¼®ÇÏ¿© ½ÃÀå µ¿Çâ, ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎ ¹× °úÁ¦, »õ·Î¿î µ¿Çâ¿¡ °üÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ º¸°í¼´Â 2024³âºÎÅÍ 2032³â±îÁö ½ÃÀå Àü¸ÁÀ» Ž»öÇÒ ¼ö ÀÖ´Â »ó¼¼ÇÑ µ¥ÀÌÅÍ ¹× Åë°è¸¦ ÀÌÇØ°ü°èÀÚ¿¡°Ô Á¦°øÇÕ´Ï´Ù.
¼¼°èÀÇ iPS ¼¼Æ÷ Á¦Á¶ ½ÃÀåÀº 2024³âºÎÅÍ 2032³â¿¡ °ÉÃÄ °·ÂÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹ÃøµÇ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 15.5%·Î ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ½ÃÀåÀº 2024³â ÃßÁ¤ 12¾ï ´Þ·¯¿¡¼ 2032³â ¸» 29¾ï ´Þ·¯·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÁÖ¿ä ÀλçÀÌÆ®
ÃßÁ¤ ½ÃÀå °¡Ä¡(2024³â) : 12¾ï ´Þ·¯
¿¹Ãø ½ÃÀå °¡°Ý(2032³â) : 29¾ï ´Þ·¯
¼¼°è ½ÃÀå ¼ºÀå·ü(CAGR 2024-2032³â) : 15.5%
iPS ¼¼Æ÷ Á¦Á¶ ½ÃÀå-Á¶»ç ¹üÀ§ :
À¯µµ¸¸´ÉÁٱ⼼Æ÷(iPSC)´Â ¹è¾Æ Áٱ⼼Æ÷¿Í °°Àº »óÅ·ΠÀçÇÁ·Î±×·¡¹ÖµÈ ¼ºÃ¼¼¼Æ÷¿¡¼ »ý¼ºµÇ¾î Àç»ýÀÇ·á, Áúȯ ¸ðµ¨¸µ, â¾à¿¡ Çì¾Æ¸± ¼ö ¾ø´Â °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ȯÀÚ Æ¯ÀÌÀûÀÎ iPSC¸¦ ¾ò´Â ´É·ÂÀº ¸ÂÃãÇü ÀÇ·á¿¡ À¯¸ÁÇϸç, iPSC Á¦Á¶ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
º» º¸°í¼¿¡¼´Â ¸®ÇÁ·Î±×·¡¹Ö ±â¼úÀÇ Áøº¸, ¿¬±¸ ¹× Ä¡·á¿¡ ÀÖ¾î¼ÀÇ iPSCÀÇ ÀÀ¿ëÀÇ È®´ë, Áٱ⼼Æ÷ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî, iPSC Á¦Á¶ ½ÃÀåÀÇ ´Ù¾çÇÑ Ãø¸éÀ» ´Ù·ç°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ÁÖ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× À±¸®Àû ¹è·Á¿¡ ´ëÇØ¼µµ Á¶¸íÇß½À´Ï´Ù.
½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ :
iPS ¼¼Æ÷ Á¦Á¶ ½ÃÀåÀº Àç»ý ÀÇÇÐ ºÐ¾ßÀÇ È®´ë¿Í °³ÀÎÈ Ä¡·á Á¢±Ù¹ýÀÇ Çʿ伺¿¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. iPS ¼¼Æ÷´Â ÀüÅëÀûÀÎ Ä¡·á¹ýÀÇ ÇѰ踦 ÇØ°áÇϰí ȯÀÚ °íÀ¯ÀÇ Ä¡·á¹ýÀ» °³¹ßÇÏ´Â À¯¸ÁÇÑ ¼ö´ÜÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ CRISPR-Cas9¿Í °°Àº À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ¹ßÀüÀº iPS ¼¼Æ÷ÀÇ ÀçÇÁ·Î±×·¡¹ÖÀÇ Á¤È®¼º ¹× È¿À²¼ºÀ» ³ôÀÌ°í ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
Á¤ºÎ±â°ü, Çмú±â°ü, ºñ°ø°³È¸»ç¿¡ ÀÇÇÑ Áٱ⼼Æ÷ ¿¬±¸¿¡ ´ëÇÑ ÀÚ±Ý Á¦°ø°ú ÅõÀÚ Áõ°¡°¡ ½ÃÀåÀ» ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¸¸¼º Áúȯ Áõ°¡ ¹× Çõ½ÅÀûÀÎ Ä¡·á¿¡ ´ëÇÑ ¿ä±¸´Â ½Å¾à°ú ÀǾàǰ °³¹ß¿¡¼ iPS ¼¼Æ÷ÀÇ Á߿伺À» µÞ¹ÞħÇÕ´Ï´Ù.
½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ :
À¯¸ÁÇÑ Àü¸Á°ú´Â ´Þ¸®, iPS ¼¼Æ÷ Á¦Á¶ ½ÃÀåÀº ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. iPSCÀÇ Á¦Á¶ ¹× À¯Áö¿¡ µû¸¥ ³ôÀº Á¦Á¶ ºñ¿ë ¹× ±â¼úÀû º¹À⼺Àº ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀçÇÁ·Î±×·¡¹Ö °úÁ¤¿¡¼ À¯ÀüÀÚ µ¹¿¬º¯ÀÌ¿Í Á¾¾ç¼ºÀÌ ¹ß»ýÇÒ À§ÇèÀº ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ ÃÊ·¡Çϰí ÀÓ»ó ÀÀ¿ë¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.
Áٱ⼼Æ÷ ¿¬±¸¿Í °ü·ÃµÈ À±¸®Àû ¹è·Á¿Í ±ÔÁ¦ »óȲµµ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦¿Í Áö¿ª¿¡ µû¶ó ´Ù¸¥ À±¸® ±âÁØÀº ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, iPSCÀÇ »ý»ê°ú ºÐȸ¦ À§ÇÑ Ç¥ÁØÈµÈ ÇÁ·ÎÅäÄÝÀÇ ºÎÀç´Â ¿¬±¸ °á°úÀÇ ÀçÇö¼º°ú ½Å·Ú¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.
½ÃÀå ±âȸ :
iPS ¼¼Æ÷ Á¦Á¶ ½ÃÀåÀº ±â¼ú Çõ½Å ¹× È®Àå ±âȸ¸¦ ¸¹ÀÌ Á¦°øÇÕ´Ï´Ù. ÀçÇÁ·Î±×·¡¹Ö ±â¼úÀÇ ¹ßÀü°ú º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀÎ iPS ¼¼Æ÷ Á¦ÀÛ ¹æ¹ýÀÇ °³¹ßÀº ÁÖ¿ä °ü½É ºÐ¾ßÀÔ´Ï´Ù. Áٱ⼼Æ÷ ¿¬±¸¿¡¼ ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº iPSC Á¦ÀÛ°ú ºÐÈ °úÁ¤À» ÃÖÀûÈÇÒ ÀáÀç·ÂÀ» Á¦°øÇÕ´Ï´Ù.
¿À°¡³ëÀÌµå ¹× Á¶Á÷°øÇп¡¼ÀÇ iPSCÀÇ »õ·Î¿î ÀÀ¿ë°ú °³º°È ¾àÁ¦ ½ºÅ©¸®´× Ç÷§ÆûÀÇ °³¹ß¿¡ ÀÖ¾î¼ iPSCÀÇ ÀÌ¿ëÀº Å« ¼ºÀå ±âȸ¸¦ °¡Á®¿É´Ï´Ù. Çмú±â°ü, ¿¬±¸±â°ü, »ý¸í°øÇÐ ±â¾÷ °£ÀÇ °øµ¿ ¿¬±¸´Â Çõ½ÅÀ» ÃËÁøÇϰí iPSC¸¦ ÀÌ¿ëÇÑ Ä¡·á¹ýÀÇ »ó¾÷ȸ¦ °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
Á¦2Àå ½ÃÀå °³¿ä
Á¦3Àå ½ÃÀå ¸®½ºÅ© ¹× µ¿Çâ Æò°¡
¸®½ºÅ© Æò°¡
COVID-19 À§±â ¹× À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ
°ú°ÅÀÇ À§±â¿Í ºñ±³ÇÑ COVID-19ÀÇ ¿µÇâ º¥Ä¡¸¶Å©
½ÃÀå ¸ÅÃâ¿¡ ¹ÌÄ¡´Â ¿µÇâ(10¾ï ´Þ·¯)
ÁÖ¿ä±¹¿¡ ÀÇÇÑ Æò°¡
ÁÖ¿ä ½ÃÀå ºÎ¹®º° Æò°¡
°ø±Þ¾÷ü¿¡ ´ëÇÑ ¾×¼Ç Æ÷ÀÎÆ® ¹× ±ÇÀå »çÇ×
½ÃÀå¿¡ ¿µÇâÀ» ÁÖ´Â ÁÖ¿ä µ¿Çâ
ó¹æ ¹× Á¦Ç° °³¹ß µ¿Çâ
Á¦4Àå ½ÃÀå ¹è°æ
ÁÖ¿ä ±¹°¡º° À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå
À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ±âȸ Æò°¡(10¾ï ´Þ·¯)
½ÃÀå ½Ã³ª¸®¿À ¿¹Ãø
ÅõÀÚ ½ÇÇö °¡´É¼º ºÐ¼®
¿¹Ãø ¿äÀÎ : °ü·Ã¼º ¹× ¿µÇâ
½ÃÀå ¿ªÇÐ
Á¦5Àå ÁÖ¿ä ¼º°ø ¿äÀÎ
Á¦Á¶¾÷ü´Â ħÅõÀ²Àº ³·Áö¸¸ ¼ºÀå·üÀÌ ³ôÀº ½ÃÀå¿¡ ÁÖ·Â
ºÎ¹®ÀÇ ³ôÀº ÁõºÐ ±âȸ¿¡ º£ÆÃ
ÇÇ¾î º¥Ä¡¸¶Å©
Á¦6Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå : ¼ö¿ä ºÐ¼®
°ú°Å ½ÃÀå ºÐ¼®(2019-2023³â)
ÇöÀç ¹× Àå·¡ ½ÃÀå ¿¹Ãø(2024-2032³â)
Àü³â´ëºñ ¼ºÀå µ¿Ç⠺м®
Á¦7Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå : ±Ý¾× ºÐ¼®
°ú°Å ½ÃÀå ¸ÅÃâ(10¾ï ´Þ·¯) ºÐ¼®(2019-2023³â)
ÇöÀç ¹× Àå·¡ ½ÃÀå ¸ÅÃâ(10¾ï ´Þ·¯) ¿¹Ãø(2024-2032³â)
Àü³â´ëºñ ¼ºÀå µ¿Ç⠺м®
Àý´ëÀûÀÎ $ ±âȸ ºÐ¼®
Á¦8Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼® : Á¦Ç° À¯Çüº°
¼¹® : ÁÖ¿ä Á¶»ç °á°ú
°ú°Å ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯) Á¦Ç° À¯Çüº° ºÐ¼®(2019-2023³â)
ÇöÀç ¹× Àå·¡ ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯) ºÐ¼®°ú ¿¹Ãø : Á¦Ç° À¯Çüº°(2024-2032³â)
¼Ò¸ðǰ ¹× ŰƮ
¹Ìµð¾î
ŰƮ
±âŸ ¼Ò¸ðǰ ¹× ŰƮ
±â±â ¹× ÀåÄ¡
ÀÚµ¿È Ç÷§Æû
¼ºñ½º
Á¦Ç° À¯Çüº° ½ÃÀåÀÇ ¸Å·Â ºÐ¼®
Á¦9Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼® : ÇÁ·Î¼¼½ºº°
¼¹® : ÁÖ¿ä Á¶»ç °á°ú
°ú°Å ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯) ºÐ¼® : ÇÁ·Î¼¼½ºº°(2019-2023³â)
ÇöÀç ¹× Àå·¡ ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯) ºÐ¼®°ú ¿¹Ãø : ÇÁ·Î¼¼½ºº°(2024-2032³â)
ÇÁ·Î¼¼½ºº° ½ÃÀåÀÇ ¸Å·Â ºÐ¼®
Á¦10Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼® : ¿öÅ©Ç÷ο캰
¼¹® : ÁÖ¿ä Á¶»ç °á°ú
°ú°Å ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯) ºÐ¼® : ¿öÅ©Ç÷ο캰(2019-2023³â)
ÇöÀç ¹× Àå·¡ ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯)ÀÇ ºÐ¼®°ú ¿¹Ãø : ¿öÅ©Ç÷ο캰(2024-2032³â))
ÀçÇÁ·Î±×·¡¹Ö
¼¼Æ÷ ¹è¾ç
¼¼Æ÷Ư¼º Æò°¡ ¹× ºÐ¼®
¿£Áö´Ï¾î¸µ
±âŸ ¿öÅ©Ç÷οì
¿öÅ©Ç÷ο쿡 ÀÇÇÑ ½ÃÀåÀÇ ¸Å·Â ºÐ¼®
Á¦11Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼® : ¿ëµµº°
¼¹® : ÁÖ¿ä Á¶»ç °á°ú
°ú°Å ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯) ºÐ¼® : ¿ëµµº°(2019-2023³â)
ÇöÀç ¹× Àå·¡ ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯)ÀÇ ºÐ¼®°ú ¿¹Ãø : ¿ëµµº°(2024-2032³â)
Àç»ý ÀÇ·á
ÀǾàǰÀÇ °³¹ß ¹× ¹ß°ß
µ¶¼ºÇÐ ¿¬±¸
±âŸ ¿ëµµ
¿ëµµº° ½ÃÀåÀÇ ¸Å·Â ºÐ¼®
Á¦12Àå ¼¼°èÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼® : Áö¿ªº°
¼¹®
½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯)ÀÇ ¿ª»çÀû ºÐ¼® : Áö¿ªº°(2019-2023³â)
ÇöÀç ½ÃÀå ±Ô¸ð(10¾ï ´Þ·¯)¿Í ºÐ¼® ¹× ¿¹Ãø : Áö¿ªº°(2024-2032³â)
ºÏ¹Ì
¶óƾ¾Æ¸Þ¸®Ä«
À¯·´
¾Æ½Ã¾ÆÅÂÆò¾ç
Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«(Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«)
Áö¿ªº° ½ÃÀåÀÇ ¸Å·Â ºÐ¼®
Á¦13Àå ºÏ¹ÌÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
Á¦14Àå ¶óÆ¾¾Æ¸Þ¸®Ä«ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
Á¦15Àå À¯·´ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
Á¦17Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
Á¦18Àå ÁÖ¿ä±¹ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
¼¹®
ÁÖ¿ä ±¹°¡º° ½ÃÀå°¡Ä¡ ºñÀ² ºÐ¼®
¼¼°è ¹× ±¹°¡º° ¼ºÀå ºñ±³
¹Ì±¹ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø, 2019-2032³â
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ij³ª´Ù À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
¸ß½ÃÄÚÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ºê¶óÁúÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
µ¶ÀÏÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ÇÁ¶û½º À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ÀÌÅ»¸®¾ÆÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
º£³×·è½ºÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
¿µ±¹ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ºÏÀ¯·´ ±¹°¡ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
Áß±¹ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ÀϺ»ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
Çѱ¹ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
GCC ±¹°¡ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
³²¾ÆÇÁ¸®Ä«ÀÇ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
ÅÍŰ À¯µµ¸¸´ÉÁٱ⼼Æ÷ Á¦Á¶ ½ÃÀå ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºñÀ² ºÐ¼®
½ÃÀå ºÐ·ùº° °¡Ä¡ ºÐ¼® ¹× ¿¹Ãø(2019-2032³â)
Á¦Ç° À¯Çü
ÇÁ·Î¼¼½ºº°
¿ëµµº°
¿öÅ©Ç÷ο캰
±¹³» °æÀï ±¸µµ ¹× ±â¾÷ÀÇ ÁýÁßµµ
Á¦19Àå ½ÃÀå ±¸Á¶ ºÐ¼®
±â¾÷ Tierº° ½ÃÀå ºÐ¼®
½ÃÀå ÁýÁß
ÁÖ¿ä ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
½ÃÀå ÇöÀç ºÐ¼®
Á¦20Àå °æÀï ºÐ¼®
°æÀï ´ë½Ãº¸µå
°æÀï º¥Ä¡¸¶Å·
°æÀïÀÇ »ó¼¼
LONZA
AXOL BIOSCIENCES LTD
EVOTEC
HITACHI LTD
REPROCELL INC
FATE THERAPEUTICS.
THERMO FISHER SCIENTIFIC, INC.
MERCK KGAA(MILLIPORESIGMA)
STEMCELLFACTORY III
APPLIED STEMCELL INC.
Á¦21Àå »ç¿ëµÈ ÀüÁ¦Á¶°Ç ¹× ¾à¾î
Á¦22Àå Á¶»ç ¹æ¹ý
AJY
"Persistence Market Research provides an in-depth analysis of the global Induced Pluripotent Stem Cells (iPSCs) Production Market, offering insights into market dynamics, key growth drivers, challenges, and emerging trends. This comprehensive report equips stakeholders with detailed data and statistics to navigate the market landscape from 2024 to 2032.
The global iPSCs production market is projected to experience robust growth between 2024 and 2032, with an expected CAGR of 15.5% during this period. The market is anticipated to expand from an estimated value of USD 1.2 billion in 2024 to USD 2.9 billion by the end of 2032.
Key Insights:
Estimated Market Value (2024): USD 1.2 Billion
Projected Market Value (2032): USD 2.9 Billion
Global Market Growth Rate (CAGR 2024 to 2032): 15.5%
iPSCs Production Market - Report Scope:
Induced pluripotent stem cells (iPSCs) are generated from adult cells reprogrammed to an embryonic stem cell-like state, offering immense potential for regenerative medicine, disease modeling, and drug discovery. The ability to derive patient-specific iPSCs holds promise for personalized medicine, driving the demand for iPSC production.
The report covers various aspects of the iPSCs production market, including advancements in reprogramming technologies, the increasing application of iPSCs in research and therapy, and the growing investment in stem cell research. It also examines regulatory frameworks and ethical considerations impacting market dynamics.
Market Growth Drivers:
The iPSCs production market is driven by the expanding field of regenerative medicine and the need for personalized therapeutic approaches. iPSCs offer a promising avenue for developing patient-specific treatments, addressing the limitations of traditional therapies. Additionally, advancements in gene editing technologies, such as CRISPR-Cas9, enhance the precision and efficiency of iPSC reprogramming, boosting market growth.
Increased funding and investment in stem cell research by government bodies, academic institutions, and private companies further propel the market. The rising prevalence of chronic diseases and the need for innovative treatments underscore the significance of iPSCs in drug discovery and development.
Market Restraints:
Despite the promising outlook, the iPSCs production market faces challenges. High production costs and technical complexities associated with iPSC generation and maintenance can hinder market growth. The risk of genetic mutations and tumorigenicity during the reprogramming process raises safety concerns, impacting clinical applications.
Ethical considerations related to stem cell research and the regulatory landscape also pose challenges. Stringent regulations and varying ethical standards across regions can limit market expansion. Additionally, the lack of standardized protocols for iPSC production and differentiation affects the reproducibility and reliability of research outcomes.
Market Opportunities:
The iPSCs production market presents numerous opportunities for innovation and expansion. Advancements in reprogramming technologies and the development of safer, more efficient methods for generating iPSCs are key areas of focus. The integration of artificial intelligence and machine learning in stem cell research offers potential for optimizing iPSC production and differentiation processes.
Emerging applications of iPSCs in organoid and tissue engineering, as well as their use in developing personalized drug screening platforms, present significant growth opportunities. Collaborations between academic institutions, research organizations, and biotechnology companies can drive innovation and accelerate the commercialization of iPSC-based therapies.
Competitive Landscape and Business Strategies:
Leading companies in the iPSCs production market include FUJIFILM Cellular Dynamics, Inc., Lonza Group Ltd., and Takara Bio Inc. These companies focus on product innovation, research and development, and strategic collaborations to maintain their competitive edge. FUJIFILM Cellular Dynamics is known for its high-quality iPSC lines, while Lonza Group emphasizes scalable production solutions. Takara Bio leverages its expertise in gene editing and cell culture technologies to offer comprehensive iPSC services.
Strategic partnerships, mergers, and acquisitions are commonly employed to expand market presence and access new technologies. Companies are also investing in clinical trials to demonstrate the safety and efficacy of iPSC-based therapies, fostering confidence among healthcare professionals and regulatory bodies.
Key Companies Profiled:
FUJIFILM Cellular Dynamics, Inc.
Lonza Group Ltd.
Takara Bio Inc.
Thermo Fisher Scientific Inc.
Merck KGaA
REPROCELL Inc.
Stemcell Technologies Inc.
Cellular Engineering Technologies Inc.
Cynata Therapeutics Limited
BrainXell, Inc.
iPSCs Production Market Segmentation:
By Product Type
Instruments/Devices
Automated Platforms
Consumables & Kits
Kits
Others
Services
By Process
By Workflow
Reprogramming
Cell Culture
Cell Characterization/Analysis
Engineering
Others
By Application
Drug Development and Discovery
Regenerative Medicine
Toxicology Studies
Others
By Region
North America
Latin America
Europe
APAC
MEA
Table of Contents
1. Executive Summary
1.1. Global Market Outlook
1.2. Summary of Statistics
1.3. Key Market Characteristics & Attributes
1.4. Analysis and Recommendations
2. Market Overview
2.1. Market Coverage
2.2. Market Definition
3. Market Risks and Trends Assessment
3.1. Risk Assessment
3.1.1. COVID-19 Crisis and Impact on Induced Pluripotent Stem Cells Production Market
3.1.2. COVID-19 Impact Benchmark with Previous Crisis
3.1.3. Impact on Market Value (US$ Bn)
3.1.4. Assessment by Key Countries
3.1.5. Assessment by Key Market Segments
3.1.6. Action Points and Recommendation for Suppliers
3.2. Key Trends Impacting the Market
3.3. Formulation and Product Development Trends
4. Market Background
4.1. Induced Pluripotent Stem Cells Production Market, by Key Countries
4.2. Induced Pluripotent Stem Cells Production Market Opportunity Assessment (US$ Bn)
4.2.1. Total Available Market
4.2.2. Serviceable Addressable Market
4.2.3. Serviceable Obtainable Market
4.3. Market Scenario Forecast
4.3.1. Demand in optimistic Scenario
4.3.2. Demand in Likely Scenario
4.3.3. Demand in Conservative Scenario
4.4. Investment Feasibility Analysis
4.4.1. Investment in Established Markets
4.4.1.1. In Short Term
4.4.1.2. In Long Term
4.4.2. Investment in Emerging Markets
4.4.2.1. In Short Term
4.4.2.2. In Long Term
4.5. Forecast Factors - Relevance & Impact
4.5.1. Top Companies Historical Growth
4.5.2. Growth in Automation, By Country
4.5.3. Induced Pluripotent Stem Cells Production Adoption Rate, By Country
4.6. Market Dynamics
4.6.1. Market Driving Factors and Impact Assessment
4.6.2. Prominent Market Challenges and Impact Assessment
4.6.3. Induced Pluripotent Stem Cells Production Market Opportunities
4.6.4. Prominent Trends in the Global Market & Their Impact Assessment
5. Key Success Factors
5.1. Manufacturers' Focus on Low Penetration High Growth Markets
5.2. Banking on with Segments High Incremental Opportunity
5.3. Peer Benchmarking
6. Global Induced Pluripotent Stem Cells Production Market Demand Analysis 2019-2023 and Forecast, 2024-2032
6.1. Historical Market Analysis, 2019-2023
6.2. Current and Future Market Projections, 2024-2032
6.3. Y-o-Y Growth Trend Analysis
7. Global Induced Pluripotent Stem Cells Production Market Value Analysis 2019-2023 and Forecast, 2024-2032
7.1. Historical Market Value (US$ Bn) Analysis, 2019-2023
7.2. Current and Future Market Value (US$ Bn) Projections, 2024-2032
7.2.1. Y-o-Y Growth Trend Analysis
7.2.2. Absolute $ Opportunity Analysis
8. Global Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032, By Product Type
8.1. Introduction / Key Findings
8.2. Historical Market Size (US$ Bn) Analysis By Product Type, 2019-2023
8.3. Current and Future Market Size (US$ Bn) Analysis and Forecast By Product Type, 2024-2032
8.3.1. Consumables & Kits
8.3.1.1. Media
8.3.1.2. Kits
8.3.1.3. Other Consumables & Kits
8.3.2. Instruments/Devices
8.3.3. Automated Platforms
8.3.4. Services
8.4. Market Attractiveness Analysis By Product Type
9. Global Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032, By Process
9.1. Introduction / Key Findings
9.2. Historical Market Size (US$ Bn) Analysis By Process, 2019-2023
9.3. Current and Future Market Size (US$ Bn) Analysis and Forecast By Process, 2024-2032
9.3.1. Manual
9.3.2. Automated
9.4. Market Attractiveness Analysis By Process
10. Global Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032, By Workflow
10.1. Introduction / Key Findings
10.2. Historical Market Size (US$ Bn) Analysis By Workflow, 2019-2023
10.3. Current and Future Market Size (US$ Bn) Analysis and Forecast By Workflow, 2024-2032
10.3.1. Reprogramming
10.3.2. Cell Culture
10.3.3. Cell Characterization/Analysis
10.3.4. Engineering
10.3.5. Other Workflows
10.4. Market Attractiveness Analysis By Workflow
11. Global Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032, By Application
11.1. Introduction / Key Findings
11.2. Historical Market Size (US$ Bn) Analysis By Application, 2019-2023
11.3. Current and Future Market Size (US$ Bn) Analysis and Forecast By Application, 2024-2032
11.3.1. Regenerative Medicine
11.3.2. Drug Development and Discovery
11.3.3. Toxicology Studies
11.3.4. Other Applications
11.4. Market Attractiveness Analysis By Application
12. Global Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032, By Region
12.1. Introduction
12.2. Historical Market Size (US$ Bn) Analysis By Region, 2019-2023
12.3. Current Market Size (US$ Bn) & Analysis and Forecast By Region, 2024-2032
12.3.1. North America
12.3.2. Latin America
12.3.3. Europe
12.3.4. Asia Pacific
12.3.5. Middle East and Africa (MEA)
12.4. Market Attractiveness Analysis By Region
13. North America Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032
13.1. Introduction
13.2. Pricing Analysis
13.3. Historical Market Value (US$ Bn) Trend Analysis By Market Taxonomy, 2019-2023
13.4. Market Value (US$ Bn) & Forecast By Market Taxonomy, 2024-2032
13.4.1. By Country
13.4.1.1. U.S.
13.4.1.2. Canada
13.4.1.3. Rest of North America
13.4.2. By Product Type
13.4.3. By Process
13.4.4. By Application
13.4.5. By Workflow
13.5. Market Attractiveness Analysis
13.5.1. By Country
13.5.2. By Product Type
13.5.3. By Process
13.5.4. By Application
13.5.5. By Workflow
14. Latin America Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032
14.1. Introduction
14.2. Pricing Analysis
14.3. Historical Market Value (US$ Bn) Trend Analysis By Market Taxonomy, 2019-2023
14.4. Market Value (US$ Bn) & Forecast By Market Taxonomy, 2024-2032
14.4.1. By Country
14.4.1.1. Brazil
14.4.1.2. Mexico
14.4.1.3. Rest of Latin America
14.4.2. By Product Type
14.4.3. By Process
14.4.4. By Application
14.4.5. By Workflow
14.5. Market Attractiveness Analysis
14.5.1. By Country
14.5.2. By Product Type
14.5.3. By Process
14.5.4. By Application
14.5.5. By Workflow
15. Europe Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032
15.1. Introduction
15.2. Pricing Analysis
15.3. Historical Market Value (US$ Bn) Trend Analysis By Market Taxonomy, 2019-2023
15.4. Market Value (US$ Bn) & Forecast By Market Taxonomy, 2024-2032
15.4.1. By Country
15.4.1.1. Germany
15.4.1.2. France
15.4.1.3. U.K.
15.4.1.4. Italy
15.4.1.5. Benelux
15.4.1.6. Nordic Countries
15.4.1.7. Rest of Europe
15.4.2. By Product Type
15.4.3. By Process
15.4.4. By Application
15.4.5. By Workflow
15.5. Market Attractiveness Analysis
15.5.1. By Country
15.5.2. By Product Type
15.5.3. By Process
15.5.4. By Application
15.5.5. By Workflow
16. Asia Pacific Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032
16.1. Introduction
16.2. Pricing Analysis
16.3. Historical Market Value (US$ Bn) Trend Analysis By Market Taxonomy, 2019-2023
16.4. Market Value (US$ Bn) & Forecast By Market Taxonomy, 2024-2032
16.4.1. By Country
16.4.1.1. China
16.4.1.2. Japan
16.4.1.3. South Korea
16.4.1.4. Rest of Asia Pacific
16.4.2. By Product Type
16.4.3. By Process
16.4.4. By Application
16.4.5. By Workflow
16.5. Market Attractiveness Analysis
16.5.1. By Country
16.5.2. By Product Type
16.5.3. By Process
16.5.4. By Application
16.5.5. By Workflow
17. Middle East and Africa Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032
17.1. Introduction
17.2. Pricing Analysis
17.3. Historical Market Value (US$ Bn) Trend Analysis By Market Taxonomy, 2019-2023
17.4. Market Value (US$ Bn) & Forecast By Market Taxonomy, 2024-2032
17.4.1. By Country
17.4.1.1. GCC Countries
17.4.1.2. South Africa
17.4.1.3. Turkey
17.4.1.4. Rest of Middle East and Africa
17.4.2. By Product Type
17.4.3. By Process
17.4.4. By Application
17.4.5. By Workflow
17.5. Market Attractiveness Analysis
17.5.1. By Country
17.5.2. By Product Type
17.5.3. By Process
17.5.4. By Application
17.5.5. By Workflow
18. Key Countries Induced Pluripotent Stem Cells Production Market Analysis 2019-2023 and Forecast 2024-2032
18.1. Introduction
18.1.1. Market Value Proportion Analysis, By Key Countries
18.1.2. Global Vs. Country Growth Comparison
18.2. US Induced Pluripotent Stem Cells Production Market Analysis
18.2.1. Value Proportion Analysis by Market Taxonomy
18.2.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.2.2.1. By Product Type
18.2.2.2. By Process
18.2.2.3. By Application
18.2.2.4. By Workflow
18.3. Canada Induced Pluripotent Stem Cells Production Market Analysis
18.3.1. Value Proportion Analysis by Market Taxonomy
18.3.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.3.2.1. By Product Type
18.3.2.2. By Process
18.3.2.3. By Application
18.3.2.4. By Workflow
18.4. Mexico Induced Pluripotent Stem Cells Production Market Analysis
18.4.1. Value Proportion Analysis by Market Taxonomy
18.4.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.4.2.1. By Product Type
18.4.2.2. By Process
18.4.2.3. By Application
18.4.2.4. By Workflow
18.5. Brazil Induced Pluripotent Stem Cells Production Market Analysis
18.5.1. Value Proportion Analysis by Market Taxonomy
18.5.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.5.2.1. By Product Type
18.5.2.2. By Process
18.5.2.3. By Application
18.5.2.4. By Workflow
18.6. Germany Induced Pluripotent Stem Cells Production Market Analysis
18.6.1. Value Proportion Analysis by Market Taxonomy
18.6.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.6.2.1. By Product Type
18.6.2.2. By Process
18.6.2.3. By Application
18.6.2.4. By Workflow
18.7. France Induced Pluripotent Stem Cells Production Market Analysis
18.7.1. Value Proportion Analysis by Market Taxonomy
18.7.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.7.2.1. By Product Type
18.7.2.2. By Process
18.7.2.3. By Application
18.7.2.4. By Workflow
18.8. Italy Induced Pluripotent Stem Cells Production Market Analysis
18.8.1. Value Proportion Analysis by Market Taxonomy
18.8.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.8.2.1. By Product Type
18.8.2.2. By Process
18.8.2.3. By Application
18.8.2.4. By Workflow
18.9. BENELUX Induced Pluripotent Stem Cells Production Market Analysis
18.9.1. Value Proportion Analysis by Market Taxonomy
18.9.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.9.2.1. By Product Type
18.9.2.2. By Process
18.9.2.3. By Application
18.9.2.4. By Workflow
18.10. UK Induced Pluripotent Stem Cells Production Market Analysis
18.10.1. Value Proportion Analysis by Market Taxonomy
18.10.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.10.2.1. By Product Type
18.10.2.2. By Process
18.10.2.3. By Application
18.10.2.4. By Workflow
18.11. Nordic Countries Induced Pluripotent Stem Cells Production Market Analysis
18.11.1. Value Proportion Analysis by Market Taxonomy
18.11.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.11.2.1. By Product Type
18.11.2.2. By Process
18.11.2.3. By Application
18.11.2.4. By Workflow
18.12. China Induced Pluripotent Stem Cells Production Market Analysis
18.12.1. Value Proportion Analysis by Market Taxonomy
18.12.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.12.2.1. By Product Type
18.12.2.2. By Process
18.12.2.3. By Application
18.12.2.4. By Workflow
18.13. Japan Induced Pluripotent Stem Cells Production Market Analysis
18.13.1. Value Proportion Analysis by Market Taxonomy
18.13.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.13.2.1. By Product Type
18.13.2.2. By Process
18.13.2.3. By Application
18.13.2.4. By Workflow
18.14. South Korea Induced Pluripotent Stem Cells Production Market Analysis
18.14.1. Value Proportion Analysis by Market Taxonomy
18.14.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.14.2.1. By Product Type
18.14.2.2. By Process
18.14.2.3. By Application
18.14.2.4. By Workflow
18.15. GCC Countries Induced Pluripotent Stem Cells Production Market Analysis
18.15.1. Value Proportion Analysis by Market Taxonomy
18.15.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.15.2.1. By Product Type
18.15.2.2. By Process
18.15.2.3. By Application
18.15.2.4. By Workflow
18.16. South Africa Induced Pluripotent Stem Cells Production Market Analysis
18.16.1. Value Proportion Analysis by Market Taxonomy
18.16.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.16.2.1. By Product Type
18.16.2.2. By Process
18.16.2.3. By Application
18.16.2.4. By Workflow
18.17. Turkey Induced Pluripotent Stem Cells Production Market Analysis
18.17.1. Value Proportion Analysis by Market Taxonomy
18.17.2. Value Analysis and Forecast by Market Taxonomy, 2019-2032
18.17.2.1. By Product Type
18.17.2.2. By Process
18.17.2.3. By Application
18.17.2.4. By Workflow
18.17.3. Competition Landscape and Player Concentration in the Country
19. Market Structure Analysis
19.1. Market Analysis by Tier of Companies
19.2. Market Concentration
19.3. Market Share Analysis of Top Players
19.4. Market Presence Analysis
19.4.1. By Regional footprint of Players
19.4.2. Product footprint by Players
20. Competition Analysis
20.1. Competition Dashboard
20.2. Competition Benchmarking
20.3. Competition Deep Dive
20.3.1. LONZA
20.3.1.1. Product Portfolio
20.3.1.2. Key Strategies
20.3.1.3. Key Developments
20.3.2. AXOL BIOSCIENCES LTD
20.3.2.1. Product Portfolio
20.3.2.2. Key Strategies
20.3.2.3. Key Developments
20.3.3. EVOTEC
20.3.3.1. Product Portfolio
20.3.3.2. Key Strategies
20.3.3.3. Key Developments
20.3.4. HITACHI LTD
20.3.4.1. Product Portfolio
20.3.4.2. Key Strategies
20.3.4.3. Key Developments
20.3.5. REPROCELL INC
20.3.5.1. Product Portfolio
20.3.5.2. Key Strategies
20.3.5.3. Key Developments
20.3.6. FATE THERAPEUTICS.
20.3.6.1. Product Portfolio
20.3.6.2. Key Strategies
20.3.6.3. Key Developments
20.3.7. THERMO FISHER SCIENTIFIC, INC.
20.3.7.1. Product Portfolio
20.3.7.2. Key Strategies
20.3.7.3. Key Developments
20.3.8. MERCK KGAA (MILLIPORESIGMA)
20.3.8.1. Product Portfolio
20.3.8.2. Key Strategies
20.3.8.3. Key Developments
20.3.9. STEMCELLFACTORY III
20.3.9.1. Product Portfolio
20.3.9.2. Key Strategies
20.3.9.3. Key Developments
20.3.10. APPLIED STEMCELL INC.
20.3.10.1. Product Portfolio
20.3.10.2. Key Strategies
20.3.10.3. Key Developments
21. Assumptions and Acronyms Used
22. Research Methodology