DNA ¸ÞÆ¿È °ËÃâ ±â¼ú ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼ : Á¦Ç°º°(¼Ò¸ðǰ, Àåºñ, ¼ÒÇÁÆ®¿þ¾î), ±â¼úº°(ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR), ¸¶ÀÌÅ©·Î¾î·¹ÀÌ, ½ÃÄö½Ì), ¿ëµµº°(Áß°³¿¬±¸, Áø´Ü½Ã¼ú), ÃÖÁ¾»ç¿ëÀÚº°(CRO, ¿¬±¸¼Ò, ¹ÙÀÌ¿ÀÁ¦¾à, »ý¸í°øÇбâ¾÷) ¿¹Ãø ±â°£º° Çмú¿¬±¸½Ç, ¹ÙÀÌ¿ÀÁ¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷), ¿¹Ãø ±â°£(2024-2031³â)
DNA ¸ÞÆ¿È °ËÃâ ±â¼ú ½ÃÀåÀº ¿¹Ãø ±â°£(2024-2031³â) µ¿¾È ¿¬Æò±Õ 10.3%ÀÇ ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¹è°æ¿¡´Â »ý¸í°øÇÐ ¹× Á¦¾à »ê¾÷¿¡¼ ½Å»ý ±â¾÷ÀÇ Áõ°¡, Çмú ±â°ü °£ÀÇ ÆÄÆ®³Ê½Ê È®´ë, µµ±¸, ¼ÒÇÁÆ®¿þ¾î ¹× ¼Ò¸ðǰÀÇ Á¾·ù Áõ°¡·Î ÀÎÇÑ ÈļºÀ¯ÀüÇÐÀû ¹ÙÀÌ¿À¸¶Ä¿·Î¼ DNA ¸ÞÆ¿È °ËÃâ ±â¼úÀÇ »ç¿ë È®´ë°¡ ÀÖ½À´Ï´Ù. ¹Ì±¹ ±¹¸³»ý¹°°øÇÐÁ¤º¸¼¾ÅÍ(NCBI)´Â 2023³â 9¿ù °³ÀÎÀÇ ½Ä½À°ü°ú »ýȰ½À°üÀÌ ¾ÏÀÇ ¹ßº´ ¿øÀο¡ Å« ¿µÇâÀ» ¹ÌÄ£´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ¿¬±¸¿¡ µû¸£¸é, ¹Ì±¹ ³» ¾Ï °ü·Ã »ç¸ÁÀÇ 30.0% ÀÌ»óÀº ½Ä½À°üÀÌ ¿øÀÎÀÏ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù. À¯Àüü ³» Àüü CpG ºÎÀ§ÀÇ ¾à 70.0%-80.0%°¡ ¸ÞƿȵǾî ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ º¯ÇüÀº ´Ù¾çÇÑ À¯Àüü ¿µ¿ª¿¡ ºÐÆ÷µÇ¾î ÀÖ´Â °ÍÀ¸·Î °üÂûµÇ°í ÀÖ½À´Ï´Ù.
½ÃÀå ¿ªÇÐ
Áß¾ÆÈ²»ê¿° ó¸® ±â¹Ý ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Áß¾ÆÈ²»ê¿° 󸮴 5-¸ÞÆ¿½ÃÅä½Å°ú ºñ¸ÞÆ¿È ¿°±â¸¦ ºÐ·ùÇÏ´Â µ¥ ³Î¸® »ç¿ëµÇ´Â È¿°úÀûÀÎ ¹æ¹ý Áß ÇϳªÀÔ´Ï´Ù. À¯Àüü DNA¸¦ Áß¾ÆÈ²»ê³ªÆ®·ý¿¡ ³ëÃâ½ÃŰ¸é ºñ¸ÞÆ¿È ½ÃÅä½Å(C)Àº Å»¾Æ¹Ì³ëÈµÇ¾î ¿ì¶ó½Ç(U)·Î ÀüȯµÇÁö¸¸, ¸ÞÆ¿È ½ÃÅä½ÅÀº ±×´ë·Î À¯ÁöµË´Ï´Ù. ¿ì¶ó½ÇÀº ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR)À» ÅëÇØ ÃÖÁ¾ÀûÀ¸·Î Ƽ¹Î(T)À¸·Î ÀüȯµË´Ï´Ù. ±× °á°ú, À¯ÀüÀÚÀÇ ¸ÞÆ¿È Á¤º¸°¡ ¿°±â¼¿ Á¤º¸·Î Àü´ÞµË´Ï´Ù. ¿°±â¼¿ÀÇ º¯È´Â À¶Á¡(¿Âµµ) ¹× ƯÁ¤ ½Äº° »óÈ£ÀÛ¿ë°ú °°Àº À¯ÀüÀÚÀÇ Æ¯Â¡À» º¯È½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯Â¡ÀÇ Â÷ÀÌ´Â DNA ¸ÞÆ¿È ºÐ¼®ÀÇ ±âÃʰ¡ µË´Ï´Ù.
Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS)ÀÇ Ã¤Åà Áõ°¡
Whole-Genome Bisulfite Sequencing(WGBS) ¹× Reduced Representation Bisulfite Sequencing(RRBS)°ú °°Àº NGS ±â¹Ý DNA ¸ÞÆ¿È ºÐ¼®¹ýÀº 1¿°±â ºÐÇØ´ÉÀ¸·Î Á¾ÇÕÀûÀÎ ¸ÞÆ¿È ÇÁ·ÎÆÄÀÏÀ» Á¦°øÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡ ¶§¹®¿¡ Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ÇÁ·ÎÇÊÀ» Á¦°øÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ ´õ¿í ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ¾î·¹ÀÌ ±â¹Ý ±â¼ú¿¡ ºñÇØ NGS´Â ´Ü±â°£(1ÀÏ¿¡¼ ¼öÀÏ)¿¡ ½ÉÃþÀûÀÎ ½ÃÄö½ÌÀÌ °¡´ÉÇϸç, ¸®µå(50-400 ´ºÅ¬·¹¿ÀƼµå ¹üÀ§)·Î ¾Ë·ÁÁø ¼ö½Ê¾ï °³ÀÇ ÂªÀº DNA »ùÇÃÀ» »ý¼ºÇÏ¿© Àΰ£ À¯ÀüüÀÇ ¸ðµç °¡´ÉÇÑ ¸ÞÆ¿È ºÎÀ§¸¦ ´õ Àß Ä¿¹öÇÒ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå ¼¼ºÐÈ
ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR)ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹Ãø
¼ºÀåÀ» µÞ¹ÞħÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â À¯ÀüÀÚ Æ¯ÀÌÀûÀ¸·Î DNA ¸Þƿȸ¦ Á¶»çÇϱâ À§ÇØ ÀÚÁÖ »ç¿ëµÇ´Â PCR ±â¹Ý ±â¼úÀ» µé ¼ö ÀÖ½À´Ï´Ù. ºñ¼³ÆÄÀÌÆ® ½ÃÄö½Ì, ¸ÞÆ¿È Æ¯ÀÌÀû PCR, ¸ÞÆ¿È ¹Î°¨¼º °íÇØ»óµµ ¿ëÀ¶ PCR, ½Ç½Ã°£ PCR ±â¹Ý MethyLight´Â ÀÌ ±â¼úÀÇ ¸î °¡Áö º¯ÇüÀÔ´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº À¯Àü¼º Áúȯ Ä¡·á¸¦ Áö¿øÇÏ´Â »õ·Î¿î Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» ¹ÙÀÌ¿ÀÀǾàǰ °í°´¿¡°Ô Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 1¿ù QIAGEN°ú Helix´Â NGS ¹× PCR ±â¼úÀ» »ç¿ëÇÏ¿© À¯Àü¼º Áúȯ¿¡¼ Â÷¼¼´ë ½ÃÄö¼ µ¿¹ÝÁø´ÜÀ» ÃËÁøÇϱâ À§ÇØ µ¶Á¡ ÆÄÆ®³Ê½ÊÀ» ü°áÇß½À´Ï´Ù. ÀÌ ÆÄÆ®³Ê½ÊÀº QIAGENÀÇ ¹ÙÀÌ¿ÀÁ¦¾à°úÀÇ °ü°è, NGS ¿ª·®, ¼¼°è ±ÔÁ¦¿¡ ´ëÇÑ Àü¹®Áö½ÄÀ» ¹ÙÅÁÀ¸·Î Helix(R) Laboratory PlatformÀ» Ȱ¿ëÇÕ´Ï´Ù. ½Å°æÅðÇ༺ Áúȯ, ½ÉÇ÷°üÁúȯ, ÀÚ°¡¸é¿ª Áúȯ, ¿°Áõ¼º Áúȯ µî Àü ¼¼°è ¼ö¾ï ¸íÀÌ ¾Î°í ÀÖ´Â °Ç° ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù.
Áø´Ü ½Ã¼úÀÌ Å« ½ÃÀå Á¡À¯À²À» Â÷Áö
ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â ¿äÀÎÀ¸·Î´Â Áúº´°ú °ü·ÃµÈ DNA ¸ÞÆ¿È ¿µ¿ª(DMR)ÀÇ Â÷À̸¦ Àüü À¯Àüü ¹ÙÀ̼³ÆÄÀÌÆ® ½ÃÄö½Ì(WGBS) ¹× ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¹Ý ±â¼ú(¿¹: Illumina 850K ¾î·¹ÀÌ)À» Æ÷ÇÔÇÑ Æí°ß ¾ø´Â ¹æ¹ýÀ¸·Î ½Äº°ÇÒ ¼ö ÀÖ¾î Áø´Ü ¹× ÀÓ»ó ¸¶Ä¿·Î »ç¿ëÇÒ ¼ö ÀÖ´Ù´Â Á¡ µîÀÌ ÀÖ½À´Ï´Ù. ¸¶Ä¿·Î ÀÓ»óÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ´Ù´Â Á¡ µîÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ¸ÞÆ¿È Ç÷§ÆûÀ» ´õ¿í Ȱ¿ëÇÏ¿© ¾Ï ¿¹ÈÄ, ¹Ì¼¼ÀÜÁ¸º´º¯, Àç¹ß ¸ð´ÏÅ͸µ ¹× ¹ÙÀÌ¿À¸¶Ä¿ Ž»öÀ» À§ÇÑ RUO(Research Use Only) ±â¼ú ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ »õ·Î¿î ±â¼ú ¼Ö·ç¼ÇÀº °íÇü¾Ï ¿¬±¸¿¡µµ »ç¿ëÇÒ ¼ö ÀÖ´Â ¹ü¿ë¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, ¸ÂÃãÇü ºÐ·ù±â °³¹ß µî ƯÁ¤ »ç¿ë »ç·Ê¿¡¼ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¸ÂÃãÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 1¿ù GRAILÀº Áø´Ü ÈÄ ¾Ï ¿¬±¸¸¦ °¡¼ÓÈÇÒ ¼ö ÀÖ´Â ÃÖ÷´Ü ¸ÞÆ¿È ±â¹Ý ¼Ö·ç¼ÇÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ »õ·Î¿î ±â¼ú ¼Ö·ç¼ÇÀº GRAILÀÇ µ¶ÀÚÀûÀΠǥÀû ¸ÞÆ¿È Ç÷§ÆûÀ» »ç¿ëÇÏ¿© ¸»ÃÊÇ÷¾×¿¡¼ ºÐ¸®ÇÑ ¹«¼¼Æ÷ DNA(cfDNA)¸¦ ºÐ¼®ÇÏ¿© ¾Ï ½ÅÈ£¸¦ Á¶»çÇÕ´Ï´Ù. ÀáÀçÀûÀÎ »ç¿ë »ç·Ê·Î´Â ¿¹ÈÄ ¿¹Ãø, ¹Ì¼¼ ÀÜÁ¸ º´º¯ ŽÁö, ´Ù¾çÇÑ ¾ÏÁ¾ÀÇ Àç¹ß ¸ð´ÏÅ͸µ ¿¬±¸ µîÀÌ ÀÖ½À´Ï´Ù.
DNA ¸ÞÆ¿È °ËÃâ ±â¼ú ¼¼°è ½ÃÀåÀº ºÏ¹Ì(¹Ì±¹, ij³ª´Ù), À¯·´(¿µ±¹, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ, µ¶ÀÏ, ÇÁ¶û½º, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Àεµ, Áß±¹, ÀϺ», Çѱ¹, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª(Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, Áß³²¹Ì)À¸·Î ¼¼ºÐȵǾî ÀÖ½À´Ï´Ù.
À¯·´ÀÇ DNA ¸ÞÆ¿È °ËÃâ ±â¼ú ¼ö¿ä È®´ë
ÀÌ ¿µ¿ªÀÇ ¼ºÀåÀº ½Ä½À°ü, È£¸£¸ó, ½ºÆ®·¹½º, ¾à¹°, ȯ°æ ÈÇÐÁ¦Ç° ³ëÃâ°ú °°Àº ȯ°æÀû ¿äÀο¡ ÀÇÇØ ¿µÇâÀ» ¹Þ´Â DNA ¸ÞÆ¿ÈÀÇ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ ÀϺΠ½Å°æÁ¤½ÅÁúȯ(Á¤½ÅºÐ¿Áõ, ¿ì¿ïÁõ, ADHD), ½Å°æ¹ß´ÞÀå¾Ö(·¹Æ®ÁõÈıº), ½Å°æÅðÇ༺Áúȯ(¾ËÃ÷ÇÏÀ̸Ӻ´), ÀÎÁöÀå¾Ö¸¦ Æ÷ÇÔÇÑ Àΰ£ ½Å°æÁúȯ°ú °°Àº DNA ¸ÞÆ¿È ±â¹Ý ÁúȯÀÇ Áõ°¡°¡ DNA ¸ÞÆ¿È °ËÃâ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¡ µû¸£¸é, 2023³â 6¿ù ±âÁØ À¯·´¿¡¼ 5,000¸¸ ¸í¿¡¼ 7,500¸¸ ¸íÀÇ ¾î¸°ÀÌ¿Í ¼ºÀÎÀÌ Á¶±â ¹ßº´ ½Å°æ ¹ß´Þ ÁúȯÀ» ¾Î°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì°¡ ÁÖ¿ä ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù.
ºÏ¹Ì´Â Agilent Technologies, Inc, Bio-Rad Laboratories, Inc, Illumina, Inc, Thermo Fisher Scientific Inc µî DNA ¸ÞÆ¿È °ËÃâ ±â¼úÀ» Á¦°øÇÏ´Â ¾÷üµéÀÇ Á¸Àç·Î ÀÎÇØ Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¹è°æ¿¡´Â °ËÃâ ±â¼ú ¹× ºÐ¼® Ç÷§ÆûÀÇ °³¼±°ú ´õºÒ¾î DNA ¸ÞƿȰ¡ ´Ù¾çÇÑ »ý¹°ÇÐÀû °úÁ¤°ú Áúº´¿¡ ¹ÌÄ¡´Â ±â´É¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ DNA ¸ÞÆ¿È ÇÁ·ÎÆÄÀϸµÀº ³× °¡Áö Áúº´ ±×·ìÀÇ È®½ÇÇÑ ÇÏÀ§ ºÐ·ù¸¦ °¡´ÉÇÏ°Ô Çϰí, DNA ¸ÞÆ¿È ¹ÙÀÌ¿À¸¶Ä¿ÀÇ Ãß°¡´Â Áúº´ À§ÇèÀÇ °èÃþÈ ¹× ºÐ·ù¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. DNA ¸ÞÆ¿È ¹ÙÀÌ¿À ¸¶Ä¿ÀÇ Ãß°¡´Â Áúº´ À§ÇèÀÇ °èÃþȸ¦ Å©°Ô °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2024³â 6¿ù, DNA ½ÃÄö½Ì ¹× ¾î·¹ÀÌ ±â¹Ý ±â¼ú ±â¾÷ Illumina Inc.´Â Â÷¼¼´ë ½ÃÄö½Ì µ¥ÀÌÅÍ ºÐ¼®À» À§ÇØ Illumina Connected Software Æ÷Æ®Æú¸®¿ÀÀÇ ÀϺÎÀÎ "DRAGEN" ¼ÒÇÁÆ®¿þ¾îÀÇ ÃֽйöÀüÀÎ "DRAGENT" v4.0À» ¹ßÇ¥Çß½À´Ï´Ù. DRAGENT" v4.3À» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ¿Ü¿¡µµ RNA Á¤È®µµ Çâ»ó, ¹«¼Õ½Ç ORA(Original Read Archive) ¾ÐÃà ±â´ÉÀÇ È®Àå, Àΰ£ ¸ÞÆ¿È µ¥ÀÌÅÍ ¹× ºñÀΰ£ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ³ôÀº ¾ÐÃà·ü Áö¿ø µî ´Ù¾çÇÑ °³¼±»çÇ×ÀÌ Æ÷ÇԵƽÀ´Ï´Ù.
DNA ¸ÞÆ¿È °ËÃâ ±â¼ú ½ÃÀå¿¡ ÁøÃâÇÑ ÁÖ¿ä ±â¾÷À¸·Î´Â Agilent Technologies, Inc, Bio-Rad Laboratories, Inc, Illumina, Inc, QIAGEN N.V., Thermo Fisher Scientific Inc. µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ °¢ ȸ»ç´Â Á¦ÈÞ, ÇÕº´, Àμö µîÀÇ Àü·«À» Àû¿ëÇÏ°í »ç¾÷ È®Àå ¹× Á¦Ç° °³¹ß¿¡ Á¡Á¡ ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù.
ÃÖ±Ù µ¿Çâ
DNA Methylation Detection Technology Market Size, Share & Trends Analysis Report by Product (Consumables, Instruments and Software), by Technology (Polymerase Chain Reaction (PCR), Microarray and Sequencing), by Application (Translational Research and Diagnostic Procedure), and by End-Users (Contract Research Organization (CRO), Research and Academic Laboratories and Biopharmaceutical and Biotech Companies) Forecast Period (2024-2031)
DNA methylation detection technology market is anticipated to grow at a significant CAGR of 10.3% during the forecast period (2024-2031). The market growth is attributed to increasing emerging startups in the biotechnology and pharmaceutical industries, growing partnerships between academic institutions, and growing use of DNA methylation detection technology as epigenetic biomarkers with an increasing range of tools, software, and consumables. According to the National Center for Biotechnology Information (NCBI), in September 2023, an individual's diet and lifestyle significantly influence cancer etiology. Studies suggest that dietary habits may contribute to over 30.0% of cancer-related mortalities in the US. It has been observed that around 70.0%-80.0% of all CpG sites in the genome undergo methylation, and this modification is distributed across diverse genomic regions.
Market Dynamics
Increasing Demand for Techniques Based on Bisulfite Treatment
Bisulfite treatment is one of the widely used and effective methods for categorizing 5-methyl cytosine and nonmethylated bases. Exposing the genomic DNA to sodium bisulfite induces nonmethylated cytosine (C) deamination and converts it to uracil (U), while the methylated cytosine remains intact. Uracil is finally converted to thymine (T) following the Polymerase Chain Reaction (PCR). As a result, the gene methylation information is transmitted to the sequence information. The gene features, such as melting point (temperature) and specific identification interactions, change owing to the sequence changes. The differences between these features form the basis of the DNA methylation analysis.
Growing Adoption of Next-Generation Sequencing (NGS)
NGS-based methods for DNA methylation analysis, such as Whole-Genome Bisulfite Sequencing (WGBS) and Reduced Representation Bisulfite Sequencing (RRBS), are growing more widespread owing to their ability to provide comprehensive methylation profiles at single-base resolution. Compared to array-based technologies, NGS made possible deep sequencing in a short time (from one to a few days), producing billions of short DNA samples known as reads (ranging from 50-400 nucleotides) and providing better coverage of all possible methylation sites in the human genome.
Market Segmentation
Polymerase Chain Reaction (PCR) is projected to hold the Largest Market Share
The primary factors supporting the growth include PCR-based techniques, which are frequently employed to investigate DNA methylation on a gene-specific basis. Bisulfite sequencing, methylation-specific PCR, methylation-sensitive high-resolution melting PCR, and real-time PCR-based MethyLight are some variations of this technique. The key players bring a new innovative solution to biopharmaceutical customers in support of hereditary disease therapies. For instance, in January 2023, QIAGEN and Helix launched an exclusive partnership to advance next-generation sequencing companion diagnostics in hereditary diseases using NGS and PCR technologies. Additionally, the partnership to leverage the Helix(R) Laboratory Platform powered by QIAGEN's biopharma relationships, NGS capabilities, and global regulatory expertise. Addressing health burdens in neurodegenerative diseases, cardiovascular diseases, and auto-immune and inflammatory diseases that affect hundreds of millions globally.
Diagnostic Procedure to Hold a Considerable Market Share
The factors supporting segment growth include differential DNA Methylation Regions (DMRs) associated with disease can be identified in an unbiased manner including Whole-Genome Bisulfite Sequencing (WGBS) and microarray-based techniques (such as Illumina 850K array), which can be clinically used as diagnostic markers. To further leverage the methylation platform and major key players introducing Research Use Only (RUO) technology solution for cancer prognosis, minimal residual disease and recurrence monitoring and biomarker discovery. The new technology solution has the versatility to be used in solid tumor research and can be customized to improve performance in specific use cases, including custom classifier development. For instance, in January 2023, GRAIL introduced a state-of-the-art methylation-based solution to accelerate cancer research in the post-diagnosis setting. The new technology solution uses GRAIL's proprietary targeted methylation platform to analyze cell-free DNA (cfDNA) isolated from peripheral blood for cancer signal interrogation. Potential research use cases include prognosis, minimal residual disease detection, and recurrence monitoring across different cancer types in research studies.
The global DNA methylation detection technology market is further segmented based on geography including North America (the US, and Canada), Europe (the UK, Italy, Spain, Germany, France, and the Rest of Europe), Asia-Pacific (India, China, Japan, South Korea, and Rest of Asia-Pacific), and the Rest of the World (the Middle East & Africa, and Latin America).
Growing Demand for DNA Methylation Detection Technology in Europe
The regional growth is attributed to the increasing DNA methylation influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals. Additionally, increasing DNA methylation-based diseases such as human neurological diseases, including several neuropsychiatric illnesses (schizophrenia, depression, ADHD), neurodevelopmental disorder (Rett syndrome), neurodegenerative disease (Alzheimer's disease), and cognitive impairment drive the demand for DNA methylation detection technology. According to the CORDIS-EU, in June 2023, between 50 to 75 million children and adults in Europe suffer from early onset neurodevelopmental conditions.
North America Holds Major Market Share
North America holds a significant share owing to the presence of DNA Methylation Detection Technology offering companies such as Agilent Technologies, Inc., Bio-Rad Laboratories, Inc., Illumina, Inc., Thermo Fisher Scientific Inc., and others. The market growth is attributed to the improvements in detection techniques and analytical platforms as well as increasing awareness of the function that DNA methylation plays in a variety of biological processes and disorders that drive the growth of the market. DNA methylation profiling allows for the robust sub-classification of four disease groupings, and the addition of DNA methylation biomarkers can greatly enhance disease-risk stratification. For instance, in June 2024, Illumina Inc., in DNA sequencing and array-based technologies, introduced DRAGENT" v4.3, the latest version of its DRAGEN'" software, part of the Illumina Connected Software portfolio, for analysis of next-generation sequencing data. Other advancements include RNA accuracy improvements and the extension of lossless Original Read Archive (ORA) compression functionality, which can now support human methylation data and nonhuman data with a high compression ratio.
The major companies serving the DNA methylation detection technology market include Agilent Technologies, Inc., Bio-Rad Laboratories, Inc., Illumina, Inc., QIAGEN N.V., and Thermo Fisher Scientific Inc. among others. The market players are increasingly focusing on business expansion and product development by applying strategies such as collaborations, mergers and acquisitions to stay competitive in the market.
Recent Developments