¼¼°èÀÇ DNA ¸Þƿȭ ½ÃÀå
DNA Methylation
»óǰÄÚµå : 1786452
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 207 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

DNA ¸Þƿȭ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 41¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â DNA ¸Þƿȭ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 41¾ï ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 14.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ ±â¼úÀº CAGR 17.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 20¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼ú ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 7,610¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ DNA ¸Þƿȭ ½ÃÀåÀº 2024³â¿¡ 4¾ï 7,610¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6¾ï 3,110¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 13.6%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 13.9%¿Í 12.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ DNA ¸Þƿȭ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

DNA ¸Þƿȭ°¡ ÈÄ»ýÀ¯ÀüÇÐÀû Áø´Ü°ú Ä¡·áÀÇ »õ·Î¿î ÁöÆòÀ» ¿­ °ÍÀΰ¡?

Áß¿äÇÑ ÈÄ»ýÀ¯ÀüÇÐÀû ±âÀüÀÎ DNA ¸Þƿȭ´Â ƯÈ÷ ¾Ï, ½Å°æÁúȯ, ÀÚ°¡¸é¿ªÁúȯ µî ´Ù¾çÇÑ Áúº´À» ÀÌÇØÇϰí Áø´ÜÇϱâ À§ÇÑ Áß¿äÇÑ ¹ÙÀÌ¿À¸¶Ä¿·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. DNAÀÇ ½ÃÅä½Å ¿°±â¿¡ ¸ÞÆ¿±â¸¦ Ãß°¡ÇÔÀ¸·Î½á ±Ùº»ÀûÀÎ À¯Àü ¾ÏÈ£¸¦ º¯°æÇÏÁö ¾Ê°íµµ À¯ÀüÀÚ ¹ßÇöÀ» Á¶ÀýÇÒ ¼ö ÀÖ½À´Ï´Ù. À¯ÀüÀÚ Ä§¹¬, Å©·Î¸¶Æ¾ ¸®¸ðµ¨¸µ, À¯Àüü ¾ÈÁ¤¼º¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ë ¾ç¸é¿¡¼­ ±ÍÁßÇÑ Ç¥ÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¾¾çÇп¡¼­ ºñÁ¤»óÀûÀÎ DNA ¸Þƿȭ ÆÐÅÏÀº Á¾¾ç Çü¼ºÀÇ Ãʱâ ÁöÇ¥·Î ÀÛ¿ëÇϸç, ¶§·Î´Â Áõ»óÀÌ ³ªÅ¸³ª±â Àü¿¡µµ ¾ÏÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ´Â °í°¨µµ Áø´Ü µµ±¸¸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÇöÀç ¾×ü »ý°Ë Ç÷§ÆûÀº ºñħ½ÀÀû ¾Ï ½ºÅ©¸®´×À» À§ÇØ ¼øÈ¯ Á¾¾ç DNA(ctDNA) ¸Þƿȭ ½Ã±×´Ïó¸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Àüü Àα¸ÀÇ Á¶±â ¹ß°ß ÇÁ·Î±×·¥¿¡ Å« ÀáÀç·ÂÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ËÃ÷ÇÏÀ̸Ӻ´À̳ª ÆÄŲ½¼º´°ú °°Àº ½Å°æ ÅðÇ༺ Áúȯ¿¡¼­ ƯÁ¤ ¸Þƿȭ º¯È­´Â Á¶±â Áø´Ü ¹× Áúº´ ÁøÇà ÃßÀûÀ» À§ÇÑ ¹ÙÀÌ¿À¸¶Ä¿·Î ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÓ»óÀû À¯¿ë¼ºÀÇ È®´ë´Â ¹ÙÀ̼³ÆÄÀÌÆ® ½ÃÄö½Ì, ¸Þƿȭ ¾î·¹ÀÌ, ¸Þƿȭ ƯÀÌÀû PCR°ú °°Àº ÇÏÀ̽º·çDz ¸Þƿȭ ºÐ¼® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦¾à»çµéµµ DNA ¸Þƿȭ¸¦ Ä¡·á Ç¥ÀûÀ¸·Î ¿¬±¸Çϰí ÀÖÀ¸¸ç, ºñÁ¤»óÀûÀÎ ¸Þƿȭ¸¦ ¿ªÀü½ÃÄÑ Á¤»óÀûÀÎ À¯ÀüÀÚ ±â´ÉÀ» ȸº¹½ÃŰ´Â ÈÄ»ýÀ¯ÀüÇÐÀû ÀǾàǰ °³¹ßÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÓ»ó ¹× ¿¬±¸ Ä¿¹Â´ÏƼ°¡ ´Ù¾çÇÑ Á¶Á÷°ú Áúº´¿¡¼­ ¸Þƿȭ ÆÐÅÏÀÇ ±â´ÉÀû Àǹ̸¦ °è¼Ó ¹àÇô³»°í ÀÖ´Â °¡¿îµ¥, °Ç°­°ú Áúº´¿¡¼­ ¿¡ÇÇÀ¯ÀüüÀÇ ¿ªÇÒ¿¡ ´ëÇÑ ÀÌÇØµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó DNA ¸Þƿȭ ½ÃÀåÀº Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

°ËÃâ ±â¼úÀÇ Çõ½ÅÀº DNA ¸Þƿȭ »óȲÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

°ËÃâ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ¿¬±¸ÀÚ¿Í ÀÓ»óÀǰ¡ DNA ¸Þƿȭ¸¦ Á¶»çÇÏ´Â ¹æ¹ýÀ» À籸¼ºÇÏ¿© ÇØ»óµµ¿Í È®À强À» ¸ðµÎ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¸Þƿȭ ƯÀÌÀû PCRÀ̳ª ¹ÙÀ̼³ÆÄÀÌÆ® º¯È¯ ±â¼ú°ú °°Àº ÀüÅëÀûÀÎ ¹æ¹ýÀº ÇöÀçµµ ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, ÀüÀåÀ¯Àüü ¹ÙÀ̼³ÆÄÀÌÆ® ½ÃÄö½Ì(WGBS), Ãà¼Ò Ç¥½Ã ¹ÙÀ̼³ÆÄÀÌÆ® ½ÃÄö½Ì(RRBS), Oxford Nanopore³ª PacBio¿Í °°ÀÌ È­ÇÐÀû Ä¡·á¸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â È­ÇÐÀû Ä¡·á°¡ ÇÊ¿ä ¾ø´Â Á÷Á¢ ¸Þƿȭ °ËÃâÀ» °¡´ÉÇÏ°Ô ÇÏ´Â 3¼¼´ë ½ÃÄö½Ì ±â¼ú°ú °°Àº Â÷¼¼´ë Ç÷§Æû¿¡ ÀÇÇØ º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù. ÀÌ »õ·Î¿î ÅøÀº ´õ ³ôÀº Á¤È®µµ, ´õ ³ÐÀº À¯Àüü Ä¿¹ö¸®Áö, ±âÁ¸ ±â¼ú·Î´Â ³õÄ¥ ¼ö ÀÖ´Â ¸Þƿȭ ÆÐÅÏÀÇ ¹Ì¹¦ÇÑ º¯È­¸¦ °¨ÁöÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÏ·ç¹Ì³ªÀÇ Infinium Ç÷§Æû°ú °°Àº °í󸮷® ¸Þƿȭ ¾î·¹ÀÌ´Â ÀÌÁ¦ ÇÑ ¹øÀÇ ½ÇÇèÀ¸·Î ¼ö½Ê¸¸ °³ÀÇ CpG ºÎÀ§¸¦ ÇÁ·ÎÆÄÀϸµÇÒ ¼ö ÀÖ¾î ¿¡ÇÇÀ¯Àüü Àüü¿¡ ´ëÇÑ ¿¬±¸(EWAS)¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ¶ÇÇÑ, ´ÜÀÏ ¼¼Æ÷ ¸Þƿȭ ½ÃÄö½ÌÀº ¼¼Æ÷ ƯÀÌÀûÀÎ ÈÄ»ýÀ¯ÀüÇÐÀû ȯ°æ¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇϰí, ¹ß»ý »ý¹°ÇÐ ¹× Áúº´ÀÇ ÀÌÁú¼ºÀ» ¹ß°ßÇÒ ¼ö Àֱ⠶§¹®¿¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº ¸Þƿȭ ±â¹Ý Áúº´ ¸¶Ä¿ÀÇ ÀÚµ¿ ÆÐÅÏ ÀÎ½Ä ¹× ¿¹Ãø ¸ðµ¨¸µÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ´É·ÂÀ» ´õ¿í ÁõÆø½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ÀúÀÚ¿ø ȯ°æ¿¡¼­ÀÇ ¾Ï Áø´ÜÀ» À§ÇØ ÈÞ´ë °¡´ÉÇÑ POC(Point-of-Care)Çü ¸Þƿȭ °ËÃ⠽ýºÅÛÀÌ °³¹ßµÇ°í ÀÖÀ¸¸ç, ÈÄ»ýÀ¯ÀüÇÐÀû °Ë»çÀÇ ¹ÎÁÖÈ­¸¦ À§ÇÑ ÃßÁøÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¿¬±¸ È¿À²À» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ¹ß°ßÇÑ ÁÖÁ¦ÀÇ ÀÓ»ó Àû¿ëÀ» °¡¼ÓÈ­ÇÏ¿© Á¤¹ÐÀÇ·á Àü·«ÀÇ Áß½ÉÃàÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¸Þƿȭ ±â¹Ý µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ È®´ëµÉ±î?

ÇöÀç ÁøÇà ÁßÀÎ ¸ÂÃãÀÇ·á¿Í Á¤¹ÐÀÇ·á·ÎÀÇ ÀüȯÀº ¸ÂÃãÇü Áø´Ü, ¿¹ÈÄ ¿¹Ãø, Ä¡·á ¹æÄ§ °áÁ¤À» À§ÇÑ µµ±¸·Î¼­ DNA ¸Þƿȭ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¾Ï Ä¡·á¿¡¼­ ¸Þƿȭ ÇÁ·ÎÆÄÀϸµÀº Á¾¾çÀÇ ¾ÆÇü, °ø°Ý¼º, Ä¡·á È¿°ú °¡´É¼º¿¡ µû¶ó ȯÀÚ¸¦ °èÃþÈ­ÇÏ¿© Á¾¾ç Àü¹®Àǰ¡ º¸´Ù È¿°úÀûÀ¸·Î Ä¡·á¸¦ Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ƯÈ÷ Æó¾Ï, À¯¹æ¾Ï, ´ëÀå¾Ï µî¿¡¼­´Â ¸Þƿȭ ÆÐÅÏ¿¡ ±â¹ÝÇÑ µ¿¹ÝÁø´Ü¾àÀ» °³¹ßÇÏ¿© ƯÁ¤ ¾à¹°ÀÇ »ç¿ëÀ» À¯µµÇϰí ÀÖ½À´Ï´Ù. »êÀü °Ë»ç¿¡¼­ ºñħ½ÀÀû »êÀü °Ë»ç(NIPS)¿¡¼­ ¸Þƿȭ ±â¹Ý ºÐ¼®Àº žÆÀÇ DNA¿Í »ê¸ðÀÇ DNA¸¦ ±¸º°Çϱâ À§ÇØ »ç¿ëµÇ¾î ħ½ÀÀû ÀýÂ÷ ¾øÀÌ À¯ÀüÀÚ ÀÌ»óÀ» °ËÃâÇÏ´Â Á¤È®µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¸Þƿȭ ¹ÙÀÌ¿À¸¶Ä¿´Â Á¤½ÅÀÇÇÐ ºÐ¾ß¿¡¼­µµ ȯ°æ ½ºÆ®·¹½º ¿äÀÎÀÇ ÈÄ»ýÀ¯ÀüÇÐÀû ¿µÇâ°ú Á¤½Å°Ç°­¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÀÌÇØÇϱâ À§ÇØ ¿¬±¸µÇ°í ÀÖÀ¸¸ç, ¿¹Ãø ¹× ¿¹¹æÀû °³ÀÔÀ» À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ýȰ½À°ü, ¿µ¾ç, ȯ°æ ³ëÃâÀÌ ¸ÞÆ¿·Ò¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î ¾Ë·ÁÁ® Àֱ⠶§¹®¿¡ ¼ÒºñÀÚ Áß½ÉÀÇ ÈÄ»ýÀ¯ÀüÇÐÀû °Ë»ç ¼­ºñ½º°¡ Àα⸦ ²ø°í ÀÖÀ¸¸ç, °³ÀÎÀÇ ¸Þƿȭ ÇÁ·ÎÇÊÀ» ±â¹ÝÀ¸·Î ³ëÈ­, °Ç°­ »óÅÂ, Áúº´ ¼ÒÀο¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¸Þƿȭ µ¥ÀÌÅ͸¦ Àü»çüÇÐ, ´Ü¹éÁúüÇÐ µî ´Ù¸¥ ¿À¹Í½º °èÃþ°ú °áÇÕÇÏ¿© Á¾ÇÕÀûÀΠȯÀÚ ÇÁ·ÎÆÄÀÏÀ» »ý¼ºÇϰí, ´õ ¸¹Àº Á¤º¸¿¡ ±â¹ÝÇÑ ÀÓ»óÀû ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¹ÙÀÌ¿À Á¦¾à»çµéÀº ¸Þƿȭ ºÐ¼®À» ½Å¾à°³¹ß ÆÄÀÌÇÁ¶óÀο¡ ÅëÇÕÇÏ¿© ½Å±Ô Ÿ°Ù ¹ß±¼, Áúº´ ¸ðµ¨ °ËÁõ, ÈÄ»ýÀ¯ÀüÇÐÀû ¾àÈ¿ ¸ð´ÏÅ͸µ¿¡ ½Ç½Ã°£À¸·Î Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ȯÀÚÀÇ ±â´ëÄ¡°¡ ÁøÈ­Çϰí ÇコÄɾ º¸´Ù Àû±ØÀûÀÎ µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨·Î ÀüȯµÊ¿¡ µû¶ó, DNA ¸Þƿȭ ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ÀÓ»ó ¹× ¼ÒºñÀÚ °Ç°­ ºÐ¾ß ¸ðµÎ¿¡¼­ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

DNA ¸Þƿȭ ½ÃÀåÀ» ¹ßÀü½Ãų ÁÖ¿ä ¼ºÀå Ã˸ÅÁ¦´Â ¹«¾ùÀΰ¡?

DNA ¸Þƿȭ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼úÀû ¼º¼÷µµ, Áúº´¿¡ ƯȭµÈ ¾ÖÇø®ÄÉÀ̼Ç, ÁøÈ­ÇÏ´Â ÀÓ»ó ÇàÀ§, Á¤¹Ð Áø´Ü¿¡ ´ëÇÑ »ç¿ëÀÚ ¼ö¿ä µî ¿©·¯ °¡Áö ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ƯÈ÷ ¾Ï Áø´Ü, ƯÈ÷ Á¶±â ¹ß°ß ¹× ¸ð´ÏÅ͸µ¿¡¼­ ¸Þƿȭ ¹ÙÀÌ¿À¸¶Ä¿ÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, ¸Þƿȭ ½Ã±×´Ïó´Â ±âÁ¸ÀÇ À¯ÀüÀÚ º¯ÀÌ¿¡ ºñÇØ ¿ì¼öÇÑ ¹Î°¨µµ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó FDA ½ÂÀÎ ºÐ¼®¹ýÀ» Æ÷ÇÔÇÑ »õ·Î¿î ¾×ü »ý°Ë °Ë»çÀÇ °³¹ß ¹× »ó¿ëÈ­°¡ ÁøÇàµÇ¾î ¾Ï Áø´Ü ¹× °ü¸® ¹æ½ÄÀ» ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ÖƼ¿À¹Í½º ¿¬±¸ÀÇ ºÎ»óÀº »ý¹°ÇÐÀû Áö½Ä âÃâÀÇ ÇÙ½É ¿ä¼ÒÀÎ ¸Þƿȭ ºÐ¼®À» Æ÷ÇÔÇÑ ÅëÇÕ Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ½Å°æº¯¼º, ÀÚ°¡¸é¿ªÁúȯ, ´ë»çÁõÈıº°ú °°Àº º¹ÀâÇÑ ¸¸¼ºÁúȯÀÇ À¯º´·üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¸Þƿȭ°¡ Áß¿äÇÑ ÃÊÁ¡À¸·Î ¶°¿À¸£°í ÀÖ´Â ÈÄ»ýÀ¯ÀüÇÐÀû ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ º¸´Ù Á¾ÇÕÀûÀÎ Á¶»ç°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, °Ë»çÀÇ ºÐ»êÈ­ ¹× ÀçÅÃÈ­ Ãß¼¼´Â ½ÇÇè½Ç ¼öÁØÀÇ Á¤È®µµ¸¦ À¯ÁöÇϸ鼭 °£ÆíÇÏ°í »ç¿ëÇϱ⠽¬¿î ¸Þƿȭ ºÐ¼®ÀÇ Çʿ伺À» âÃâÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ ±â°ü Ãø¸é¿¡¼­´Â Á¤ºÎ ¹× ÀÚ¼± ´ÜüÀÇ ÀÚ±Ý Áö¿ø Áõ°¡¿¡ ÈûÀÔ¾î Çмú ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê¿Í °øÁß º¸°Ç ÇÁ·Î±×·¥ÀÌ ´ë±Ô¸ð ¸Þƿȭ ÇÁ·ÎÆÄÀϸµÀ» µµÀÔÇÏ¿© Áý´Ü ¼öÁØÀÇ Áúº´ À§ÇèÀ» ÀÌÇØÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º Åø°ú È®Àå °¡´ÉÇÑ ºÐ¼®ÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ¸®¼Ò½º¿¡ Á¦¾àÀÌ Àִ ȯ°æ¿¡¼­µµ ¸Þƿȭ ±â¼úÀ» Æø³Ð°Ô äÅÃÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÇÑÆí, Á¦¾à»çµéÀº ¸Þƿȭ ÇÁ·ÎÆÄÀϸµÀ» ÅëÇØ Ç¥Àû Ä¡·áÀÇ ´ë»óÀÌ µÇ´Â ȯÀÚ±ºÀ» ½Äº°Çϰí, ƯÈ÷ ÈļºÀ¯Àüü ÀǾàǰ °³¹ß¿¡¼­ ¾à¹°ÀÇ È¿´ÉÀ» ¸ð´ÏÅ͸µÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú ¸Þƿȭ ±â¹Ý Áø´ÜÀ» À§ÇÑ Ç¥ÁØÈ­ ÇÁ·¹ÀÓ¿öÅ©ÀÇ ÃâÇöÀº ½ÃÀå äÅÃÀ» È®´ëÇÏ´Â µ¥ ÇÊ¿äÇÑ °ËÁõ°ú ½Å·Ú¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇϸ鼭µµ »óÈ£ ¿¬°üµÈ ÃËÁø¿äÀεéÀÌ °áÇÕÇÏ¿© ¸Þƿȭ Áø´Ü ½ÃÀåÀÌ ÀÇ·á ¹× ºÐÀÚ ¿¬±¸ÀÇ ¹Ì·¡¿¡ ´õ¿í µÎµå·¯Áö°í ¿µÇâ·Â ÀÖ´Â ¿ªÇÒÀ» ÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ ±â¼ú, ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼ú, ½ÃÄö½Ì ±â¼ú, ±âŸ ±â¼ú), Á¦Ç°(¼Ò¸ðǰ, ŰƮ¡¤½Ã¾à, È¿¼Ò, ±â±â¡¤¼ÒÇÁÆ®¿þ¾î), ¿ëµµ(À¯ÀüÀÚ Ä¡·á ¿ëµµ, ÀÓ»ó ¿¬±¸ ¿ëµµ, Áø´Ü ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(º´¿ø¡¤Áø´Ü ¿¬±¸¼Ò ÃÖÁ¾ ¿ëµµ, Á¦¾à¡¤¹ÙÀÌ¿À ±â¾÷ ÃÖÁ¾ ¿ëµµ, ¿¬±¸¡¤Çмú±â°ü ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global DNA Methylation Market to Reach US$4.1 Billion by 2030

The global market for DNA Methylation estimated at US$1.8 Billion in the year 2024, is expected to reach US$4.1 Billion by 2030, growing at a CAGR of 14.6% over the analysis period 2024-2030. Polymerase Chain Reaction Technology, one of the segments analyzed in the report, is expected to record a 17.4% CAGR and reach US$2.0 Billion by the end of the analysis period. Growth in the Microarray Technology segment is estimated at 11.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$476.1 Million While China is Forecast to Grow at 13.6% CAGR

The DNA Methylation market in the U.S. is estimated at US$476.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$631.1 Million by the year 2030 trailing a CAGR of 13.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.9% and 12.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.4% CAGR.

Global DNA Methylation Market - Key Trends & Drivers Summarized

Is DNA Methylation Unlocking New Frontiers in Epigenetic Diagnostics and Therapeutics?

DNA methylation, a key epigenetic mechanism, is emerging as a crucial biomarker for understanding and diagnosing a wide array of diseases, particularly cancer, neurological disorders, and autoimmune conditions. By adding a methyl group to the cytosine base in DNA, this process can regulate gene expression without altering the underlying genetic code. Its role in gene silencing, chromatin remodeling, and genome stability makes it a valuable target for both research and clinical applications. In oncology, aberrant DNA methylation patterns serve as early indicators of tumorigenesis, allowing for the development of highly sensitive diagnostic tools that detect cancers at their earliest stages, sometimes even before symptoms appear. Liquid biopsy platforms now leverage circulating tumor DNA (ctDNA) methylation signatures for non-invasive cancer screening, offering immense potential for population-wide early detection programs. Moreover, in neurodegenerative diseases like Alzheimer’s and Parkinson’s, specific methylation changes are being explored as biomarkers for early diagnosis and disease progression tracking. This expanding clinical utility has propelled demand for high-throughput methylation analysis technologies such as bisulfite sequencing, methylation arrays, and methylation-specific PCR. Pharmaceutical companies are also exploring DNA methylation as a therapeutic target, aiming to develop epigenetic drugs that can reverse abnormal methylation and restore normal gene function. As the clinical and research communities continue to unveil the functional implications of methylation patterns across various tissues and diseases, the DNA methylation market is witnessing significant growth, underpinned by a growing understanding of the epigenome’s role in health and disease.

How Are Innovations in Detection Technologies Transforming the DNA Methylation Landscape?

Rapid advancements in detection technologies are reshaping the way researchers and clinicians study DNA methylation, enhancing both resolution and scalability. Traditional methods like methylation-specific PCR and bisulfite conversion techniques, while still widely used, are being complemented by next-generation platforms such as whole-genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and third-generation sequencing technologies like Oxford Nanopore and PacBio, which enable direct methylation detection without the need for chemical treatment. These newer tools provide higher accuracy, broader genomic coverage, and the ability to detect subtle changes in methylation patterns that may be missed by older technologies. High-throughput methylation arrays, such as Illumina’s Infinium platforms, are now capable of profiling hundreds of thousands of CpG sites across the genome in a single experiment, making them indispensable for epigenome-wide association studies (EWAS). Additionally, single-cell methylation sequencing is gaining traction, offering insights into cell-specific epigenetic landscapes and enabling discoveries in developmental biology and disease heterogeneity. The integration of artificial intelligence and machine learning is further amplifying these capabilities by allowing automated pattern recognition and predictive modeling of methylation-based disease markers. Moreover, portable and point-of-care methylation detection systems are being developed, particularly for cancer diagnostics in low-resource settings, highlighting a push toward more democratized epigenetic testing. These technological innovations are not only enhancing research efficiency but are also accelerating the clinical translation of DNA methylation findings, positioning it as a central pillar in precision medicine strategies.

Is the Growing Emphasis on Personalized Medicine Expanding Demand for Methylation-Based Tools?

The ongoing shift toward personalized and precision medicine is significantly boosting demand for DNA methylation analysis as a tool for individualized diagnostics, prognostics, and therapeutic decisions. In cancer care, for instance, methylation profiling helps stratify patients by tumor subtype, aggressiveness, and likely treatment response, enabling oncologists to tailor therapies more effectively. Companies are developing companion diagnostics based on methylation patterns to guide the use of specific drugs, particularly in cancers of the lung, breast, and colon. In prenatal testing, methylation-based assays are being used to distinguish fetal DNA from maternal DNA in non-invasive prenatal screening (NIPS), increasing the accuracy of detecting genetic anomalies without invasive procedures. Methylation biomarkers are also being explored in psychiatry to understand the epigenetic effects of environmental stressors and their impact on mental health, paving the way for predictive and preventive interventions. Moreover, with lifestyle, nutrition, and environmental exposures known to influence the methylome, consumer-oriented epigenetic testing services are gaining popularity, offering insights into aging, wellness, and disease predisposition based on an individual’s methylation profile. The combination of methylation data with other omics layers-such as transcriptomics and proteomics-is creating comprehensive patient profiles that can drive more informed clinical decision-making. Biopharmaceutical companies are increasingly integrating methylation analysis into drug discovery pipelines, using it to identify novel targets, validate disease models, and monitor epigenetic drug effects in real-time. As patient expectations evolve and healthcare shifts toward more proactive, data-driven models, the demand for DNA methylation-based solutions is poised to grow across both clinical and consumer health sectors.

What Are the Key Growth Catalysts Propelling the DNA Methylation Market Forward?

The growth in the DNA methylation market is driven by several factors rooted in technological maturity, disease-focused applications, evolving clinical practices, and user demand for precision diagnostics. Foremost among these is the expanding role of methylation biomarkers in cancer diagnostics, particularly for early detection and monitoring, where methylation signatures offer superior sensitivity compared to traditional genetic mutations. This is leading to the development and commercialization of new liquid biopsy tests, including FDA-approved assays, that are changing how cancers are diagnosed and managed. Additionally, the rise of multi-omics research is fueling demand for integrated platforms that include methylation analysis as a core component of biological insight generation. The increasing prevalence of complex, chronic diseases like neurodegeneration, autoimmune disorders, and metabolic syndromes is prompting more comprehensive investigations into epigenetic mechanisms, with methylation emerging as a key focus. Moreover, the growing trend of decentralized and home-based testing is creating a need for simplified, user-friendly methylation assays that maintain laboratory-level accuracy. On the institutional side, academic research initiatives and public health programs are incorporating large-scale methylation profiling to understand population-level disease risk, supported by increased funding from government and philanthropic organizations. The availability of cloud-based bioinformatics tools and scalable analytics is enabling broader adoption of methylation technologies even in resource-constrained settings. Meanwhile, pharmaceutical companies are using methylation profiling to identify patient subsets for targeted therapies and to monitor drug efficacy, especially in the development of epigenetic drugs. Finally, increasing regulatory approvals and the emergence of standardization frameworks for methylation-based diagnostics are providing the necessary validation and trust to expand market adoption. Collectively, these diverse yet interconnected drivers are propelling the DNA methylation market toward a more prominent and impactful role in the future of medicine and molecular research.

SCOPE OF STUDY:

The report analyzes the DNA Methylation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Polymerase Chain Reaction Technology, Microarray Technology, Sequencing Technology, Other Technologies); Product (Consumables, Kits & Reagents, Enzymes, Instruments & Software); Application (Gene Therapy Application, Clinical Research Application, Diagnostics Application, Other Applications); End-Use (Hospital & Diagnostics Laboratories End-Use, Pharma & Biotech Companies End-Use, Research & Academia End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â