세계의 항공우주용 3D 프린팅 시장 평가 : 플랫폼별, 용도별, 재료 유형별, 지역별, 기회 및 예측(2018-2032년)
Global 3D Printing in Aerospace Market Assessment, By Platform, By Application, By Material Type, By Region, Opportunities and Forecast, 2018-2032F
상품코드:1738258
리서치사:Markets & Data
발행일:2025년 06월
페이지 정보:영문 225 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
세계 항공우주 3D 프린팅 시장 규모는 2024년 35억 4,000만 달러에서 2032년 111억 3,000만 달러에 달할 것으로 예상되며, 예측 기간인 2025-2032년 동안 15.39%의 CAGR로 성장할 것으로 예상됩니다. 프로토타이핑의 가속화, 부품의 경량화, 저렴한 가격의 생산이 가능하기 때문에 항공우주 산업에서 부상하고 있습니다. 항공우주 산업에서 3D 프린팅의 주요 응용 분야는 가볍고 복잡한 부품, 빠른 프로토타이핑 및 조정, 기내 탐사, 정비 및 수리입니다.
적층 가공라고도 불리는 3D 프린팅은 디지털 설계에서 3D 물체를 만드는 과정으로, 기존 생산 방식에서 재료가 큰 블록 단위로 떼어내는 것과 달리 3D 변형 부품은 층층이 쌓여 제작되기 때문에 형상을 정밀하게 제어할 수 있습니다. 이 혁신적인 방법은 프로토타입, 기능성 부품, 복잡한 설계의 생산을 지원하며 항공우주 제조와 같은 산업에 더 많은 신용을 제공합니다.
예를 들어, 2025년 4월, Godrej Enterprises Group은 EOS GmbH와 제휴하여 항공우주용 3D 프린팅에 혁명을 일으켰습니다. 이 제휴는 인도의 기술 발전에서 중요한 단계이며, 제조 공정을 인증할 수 있는 능력을 가져와 인도를 세계 항공우주 발명의 주요 국가로 자리매김할 수 있는 중요한 단계입니다.
세계의 항공우주용 3D 프린팅 시장에 대해 조사 분석했으며, 시장 규모와 예측, 시장 역학, 주요 기업 개요 등의 정보를 전해드립니다.
목차
제1장 프로젝트 범위와 정의
제2장 조사 방법
제3장 미국 관세의 영향
제4장 주요 요약
제5장 고객의 소리
응답자 인구통계
구입 결정에 영향을 미치는 요인
브랜드 인지도
미충족 수요
제6장 세계의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
시장 규모 분석과 예측
금액
시장 점유율 분석과 예측
플랫폼별
항공기
무인항공기(UAV)
우주선
용도별
엔진 부품
구조 부품
우주용 부품
기타
재료 유형별
금속
플라스틱/폴리머
복합재료
기타
지역별
북미
유럽
아시아태평양
남미
중동 및 아프리카
시장 점유율 분석 : 기업별(상위 5개사와 기타)(금액)(2024년)
시장 맵 분석(2024년)
플랫폼별
용도별
재료 유형별
지역별
제7장 북미의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
시장 규모 분석과 예측
금액
시장 점유율 분석과 예측
플랫폼별
항공기
무인항공기(UAV)
우주선
용도별
엔진 부품
구조 부품
우주용 부품
기타
재료 유형별
금속
플라스틱/폴리머
복합재료
기타
점유율 : 국가별
미국
캐나다
멕시코
각국의 시장 평가
미국의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
시장 규모 분석과 예측
시장 점유율 분석과 예측
캐나다
멕시코
제8장 유럽의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
독일
프랑스
이탈리아
영국
러시아
네덜란드
스페인
튀르키예
폴란드
제9장 아시아태평양의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
인도
중국
일본
호주
베트남
한국
인도네시아
필리핀
제10장 남미의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
브라질
아르헨티나
제11장 중동 및 아프리카의 항공우주용 3D 프린팅 시장 전망(2018-2032년)
사우디아라비아
아랍에미리트
남아프리카공화국
제12장 Porter's Five Forces 분석
제13장 PESTLE 분석
제14장 시장 역학
시장 성장 촉진요인
시장 과제
제15장 시장 동향과 발전
제16장 사례 연구
제17장 경쟁 구도
시장 리더 상위 5개사 경쟁 매트릭스
상위 5개사 SWOT 분석
주요 기업 상위 10개사 상황
3D Systems Inc.
Products
Financials
EOS GmbH Electro Optical Systems
Ultimaker B.V.
Norsk Titanium AS
Stratasys Ltd
General Electric Company
Proto Labs, Inc.
Relativity Space, Inc.
Nikon SLM Solutions AG
제18장 전략적 제안
제19장 조사 회사 소개 및 면책사항
ksm
영문 목차
영문목차
Global 3D printing in aerospace market is projected to witness a CAGR of 15.39% during the forecast period 2025-2032, growing from USD 3.54 billion in 2024 to USD 11.13 billion in 2032. 3D printing is becoming prominent in the aerospace industry as it permits faster prototypes, lighter components and affordable production. Significant applications of 3D printing in the aerospace industry carry lightweight and complex components, high-speed prototypes and adaptations, cabin exploration, maintenance and repair.
3D printing, also known as additive manufacturing, is the process in which 3D objects from a digital design are created by layers of material in contrast to traditional manufacturing methods where materials are often subtracted by larger blocks. 3D strain components are fabricated in layers, allowing for precise control of geometry. This innovative method supports the production of prototypes, functional parts, complex designs, and provides industries such as aerospace manufacturing with enriched credentials.
For example, in April 2025, Godrej Enterprises Group collaborated with EOS GmbH to revolutionize aerospace 3D printing. This collaboration is a significant step in India's technological advancement, offering the capability to qualify manufacturing processes and establish the country as a key player in aerospace invention round the world.
Transforming Aerospace Manufacturing Through 3D Printing
3D printing is becoming increasingly prevalent for professional workloads for aerospace and metamorphic design, production, and maintenance processes. In the realm of high-speed prototypes, 3D printing allows air and space engineers to repeat and view designs quickly. This significantly reduces development time and costs. This mobility is important for testing components such as jet engine prototypes and rocket combustion chambers to ensure optimal performance before full production. Additionally, 3D printing allows for easy integration of several efficient parts of individual components, simplifying the assembly process and enhancing structural integrity. This technology revolutionizes maintenance and repair methods by enabling demand production of spare parts and reducing reliance on large stocks and long supply chains.
For example, in July 2024, GE Aviation successfully utilized 3D printing to produce fuel nozzles for jet engines, resulting in parts that are 25% lighter and five times more durable than their conventionally manufactured counterparts.
The Synergy of AI and 3D Printing: A New Era in Aerospace
Artificial Intelligence (AI) dramatically changes 3D printing in the aerospace industry, improving efficency, accuracy and innovation at various manufacturing stages.
By analyzing performance requirements and limitations, AI algorithms propose optimal designs that traditional methods may not reach.
In high temperature applications, such as printing with advanced materials such as Peek, AI plays a key role in monitoring and adapting heat input. These systems compile sensor data on a per-build basis, provide manufacturing knowledge, and ensure quality assurance. Such automation accelerates the introduction of large-scale additive manufacturing in aerospace, reducing tool costs and lead times.
For example, in July 2024, LEAP 71 utilized its AI-based software tool, Noyron, to develop and test a 3D-printed liquid propellant rocket engine. This approach streamlined the design process, enabling rapid prototyping and testing of complex engine components.
The Ascendancy of 3D Printing in Aerospace
3D printing has become a transformative force in the aerospace industry, fundamentally changing how aircraft are designed, prototyped, and manufactured. The aerospace industry is the first to use this technology and is still the leading driver of this technology. 3D printing enables fast, cost-effective prototyping, allowing engineers to iterate designs and accelerate product development quickly. Additive manufacturing allows for creating strong, lightweight structures, reducing component weight by 40-60%.
For instance, in September 2023, 3D Systems received a USD 10.8 million contract award from the U.S. Air Force for advanced metal printing systems. The contract supports the development of large-scale hypersonic relevant additive manufacturing print capabilities.
North America Dominates the 3D Printing in Aerospace Market
North America has been a global leader in the 3D printing market, especially in aerospace, for many years. They use combinations of drivers, such as advanced manufacturing capabilities and substantial investment in research and development. Many aerospace companies collaborate with each other to create advanced technology. Another factor is that the US government provides them with strong financial support and boosts individual morale to develop. Companies such as Aerojet Rocketdyne, Relativity Space, and Markforged have made significant investments in research and development, leading to the acquisition of novel 3D printing technologies.
For instance, in October 2023, NASA successfully developed a lightweight aluminum rocket nozzle in collaboration with Elementum 3D. This is the step towards efficient and lightweight rocket components for future deep space missions. This nozzle is part of NASA's reactive additive manufacturing for the fourth industrial revolution project. The material withstands high temperatures and welding.
Impact of U.S. Tariffs on Global 3D Printing in Aerospace Market
Incentive for Domestic Production: Tariffs encourage companies to produce on 3D printing and manufacturing on their own country rather than exporting, as it costs them more.
Innovation Boost: Investment in new 3D technologies, materials, and processes needs to overcome tariff-related challenges.
Supply Chain Disruptions: Tariffs disrupt global supply chains, causing delays and forcing companies to find alternative suppliers.
Reduced Adoption: Higher cost can reduce the adoptions for 3D printing specially for smaller aerospace firms.
Key Players Landscape and Outlook
Continuous innovation characterizes the landscape of 3D printing in aerospace, as the companies compete to outperform one another in terms of low-cost production, easily available, lightweight, and unique features. The market forecast remains positive, owing to increased demand for low-cost and high-strength materials production through 3D printing. Manufacturers are concerned with their supply chain, energy efficiency, and environmental practices, which will likely define the industry's future. Collaborations and developing technologies are projected to increase competition in this fast-paced market.
For instance, in March 2024, 3DEO partners with IHI Aerospace to enhance 3D printing adoption and implementation of aerospace manufacturing technologies. This partnership underscores the incredible progress and potential of additive manufacturing, especially when coupled with a highly collaborative design for an additive approach.
Table of Contents
1. Project Scope and Definitions
2. Research Methodology
3. Impact of U.S. Tariffs
4. Executive Summary
5. Voice of Customers
5.1. Respondent Demographics
5.2. Factors Affecting in Purchase Decision
5.3. Brand Awareness
5.4. Unmet Needs
6. Global 3D Printing in Aerospace Market Outlook, 2018-2032F
6.1. Market Size Analysis & Forecast
6.1.1. By Value
6.2. Market Share Analysis & Forecast
6.2.1. By Platform
6.2.1.1. Aircraft
6.2.1.2. Unmanned Aerial Vehicles (UAVs)
6.2.1.3. Spacecraft
6.2.2. By Application
6.2.2.1. Engine Components
6.2.2.2. Structural Components
6.2.2.3. Space Components
6.2.2.4. Others
6.2.3. By Material Type
6.2.3.1. Metals
6.2.3.2. Plastics/Polymers
6.2.3.3. Composites
6.2.3.4. Others
6.2.4. By Region
6.2.4.1. North America
6.2.4.2. Europe
6.2.4.3. Asia-Pacific
6.2.4.4. South America
6.2.4.5. Middle East and Africa
6.2.5. By Company Market Share Analysis (Top 5 Companies and Others - By Value, 2024)
6.3. Market Map Analysis, 2024
6.3.1. By Platform
6.3.2. By Application
6.3.3. By Material Type
6.3.4. By Region
7. North America 3D Printing in Aerospace Market Outlook, 2018-2032F
7.1. Market Size Analysis & Forecast
7.1.1. By Value
7.2. Market Share Analysis & Forecast
7.2.1. By Platform
7.2.1.1. Aircraft
7.2.1.2. Unmanned Aerial Vehicles (UAVs)
7.2.1.3. Spacecraft
7.2.2. By Application
7.2.2.1. Engine Components
7.2.2.2. Structural Components
7.2.2.3. Space Components
7.2.2.4. Others
7.2.3. By Material Type
7.2.3.1. Metals
7.2.3.2. Plastics/Polymers
7.2.3.3. Composites
7.2.3.4. Others
7.2.4. By Country Share
7.2.4.1. United States
7.2.4.2. Canada
7.2.4.3. Mexico
7.3. Country Market Assessment
7.3.1. United States 3D Printing in Aerospace Market Outlook, 2018-2032F*
7.3.1.1. Market Size Analysis & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share Analysis & Forecast
7.3.1.2.1. By Platform
7.3.1.2.1.1. Aircraft
7.3.1.2.1.2. Unmanned Aerial Vehicles (UAVs)
7.3.1.2.1.3. Spacecraft
7.3.1.2.2. By Application
7.3.1.2.2.1. Engine Components
7.3.1.2.2.2. Structural Components
7.3.1.2.2.3. Space Components
7.3.1.2.2.4. Others
7.3.1.2.3. By Material Type
7.3.1.2.3.1. Metals
7.3.1.2.3.2. Plastics/Polymers
7.3.1.2.3.3. Composites
7.3.1.2.3.4. Others
7.3.2. Canada
7.3.3. Mexico
All segments will be provided for all regions and countries covered
8. Europe 3D Printing in Aerospace Market Outlook, 2018-2032F
8.1. Germany
8.2. France
8.3. Italy
8.4. United Kingdom
8.5. Russia
8.6. Netherlands
8.7. Spain
8.8. Turkey
8.9. Poland
9. Asia-Pacific 3D Printing in Aerospace Market Outlook, 2018-2032F
9.1. India
9.2. China
9.3. Japan
9.4. Australia
9.5. Vietnam
9.6. South Korea
9.7. Indonesia
9.8. Philippines
10. South America 3D Printing in Aerospace Market Outlook, 2018-2032F
10.1. Brazil
10.2. Argentina
11. Middle East and Africa 3D Printing in Aerospace Market Outlook, 2018-2032F
11.1. Saudi Arabia
11.2. UAE
11.3. South Africa
12. Porter's Five Forces Analysis
13. PESTLE Analysis
14. Market Dynamics
14.1. Market Drivers
14.2. Market Challenges
15. Market Trends and Developments
16. Case Studies
17. Competitive Landscape
17.1. Competition Matrix of Top 5 Market Leaders
17.2. SWOT Analysis for Top 5 Players
17.3. Key Players Landscape for Top 10 Market Players
17.3.1. 3D Systems Inc.
17.3.1.1. Company Details
17.3.1.2. Key Management Personnel
17.3.1.3. Products
17.3.1.4. Financials
17.3.1.5. Key Market Focus and Geographical Presence
17.3.1.6. Recent Developments/Collaborations/Partnerships/Mergers and Acquisition
17.3.2. EOS GmbH Electro Optical Systems
17.3.3. Ultimaker B.V.
17.3.4. Norsk Titanium AS
17.3.5. Stratasys Ltd
17.3.6. General Electric Company
17.3.7. Proto Labs, Inc.
17.3.8. Relativity Space, Inc.
17.3.9. ExOne Operating, LLC
17.3.10. Nikon SLM Solutions AG
Companies mentioned above DO NOT hold any order as per market share and can be changed as per information available during research work.