¼¼°èÀÇ Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ½ÃÀå
Aerospace 3D Printing
»óǰÄÚµå : 1643399
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 317 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,082,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,248,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 89¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 28¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ¼¼°è ½ÃÀåÀº 2023-2030³â µ¿¾È ¿¬Æò±Õ 18.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 89¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ç×°ø±â ÃÖÁ¾ ¿ëµµ ºÎ¹®Àº CAGR 19.1%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 55¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹«ÀÎÇ×°ø±â(UAV) ÃÖÁ¾ ¿ëµµ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 17.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 11¾ï ´Þ·¯, Áß±¹Àº CAGR 20.0%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ½ÃÀåÀº 2023³â 11¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 20.0%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 17.0% ¹× 17.9%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 17.0%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

3D ÇÁ¸°ÆÃÀÌ Ç×°ø¿ìÁÖ »ê¾÷¿¡ Çõ¸íÀ» °¡Á®¿Ã ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀûÃþ Á¦Á¶·Îµµ ¾Ë·ÁÁø 3D ÇÁ¸°ÆÃÀº ºÎǰ ¹× ½Ã½ºÅÛ Á¦Á¶¿¡ Àü·Ê ¾ø´Â À¯¿¬¼º°ú È¿À²¼ºÀ» µµÀÔÇÔÀ¸·Î½á Ç×°ø¿ìÁÖ »ê¾÷¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. Àç·áÀÇ ³¶ºñ¸¦ ÁÙÀÌ°í º¹ÀâÇÑ Çü»óÀ» Á¦ÀÛÇÒ ¼ö ÀÖ´Â ´É·ÂÀº °æ·®È­¿Í ºñ¿ë °ü¸®¿¡ ÁßÁ¡À» µÎ°í ÀÖ´Â ¾÷°è¿¡¼­ ȹ±âÀûÀ̸ç, 3D ÇÁ¸°ÆÃÀ¸·Î Á¦Á¶µÈ °æ·® ºÎǰÀº ¿¬ºñ¸¦ Å©°Ô Çâ»ó½ÃÄÑ ¹Î°£ ¹× ±º¿ë Ç×°ø¿ìÁÖ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¼³°èÀÚ°¡ »õ·Î¿î °³³äÀ» ±â·ÏÀûÀÎ ¼Óµµ·Î ¹Ýº¹ÀûÀ¸·Î Å×½ºÆ®ÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á Çõ½Å Áֱ⸦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç×°ø¿ìÁÖ ±â¾÷µéÀº 3D ÇÁ¸°ÆÃÀ» Ȱ¿ëÇÏ¿© Áß·® ´ëºñ °­µµ ¹× ³»¿­¼º Çâ»ó°ú °°Àº ¼º´É Ư¼ºÀÌ °³¼±µÈ ºÎǰÀ» »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº ¿£Áø, Åͺó ¹× ±âŸ °íÀÀ·Â ºÎǰÀ» Æ÷ÇÔÇÏ´Â ÀÀ¿ë ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃÀº ¶ÇÇÑ ÇöÁöÈ­µÈ ÁÖ¹®Çü »ý»êÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á °ø±Þ¸Á ¿ªÇÐÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ¸®µå ŸÀÓ°ú Àç°í ºñ¿ëÀ» ÁÙÀ̰í Àüü °ø±Þ¸ÁÀÇ Åº·Â¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. À§¼º ºÎǰ¿¡¼­ Ç×°ø±â ³»ºÎ±îÁö 3D ÇÁ¸°ÆÃÀÇ Àû¿ë ¹üÀ§´Â °è¼Ó È®´ëµÇ°í ÀÖÀ¸¸ç, ±âÁ¸ ±â¾÷°ú ½ÅÈï ¿ìÁÖ °³¹ß ½ºÅ¸Æ®¾÷ ¸ðµÎ 3D ÇÁ¸°ÆÃÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ºÐ¾ß°¡ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, 3D ÇÁ¸°ÆÃÀº Àç·áÀÇ ³¶ºñ¸¦ ÃÖ¼ÒÈ­Çϰí ȯ°æ ģȭÀûÀÎ Àç·á¸¦ »ç¿ëÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¸ñÇ¥¿¡ ¿Ïº®ÇÏ°Ô ºÎÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡µéÀ» Á¾ÇÕÇϸé 3D ÇÁ¸°ÆÃÀÌ Ç×°ø¿ìÁÖ »ê¾÷ÀÇ ¹Ì·¡ Ãʼ®À¸·Î ¶°¿À¸£°í ÀÖ´Â ÀÌÀ¯¸¦ ¾Ë ¼ö ÀÖ½À´Ï´Ù.

3D ÇÁ¸°ÆÃº° Ç×°ø¿ìÁÖ »ê¾÷ ¼ºÀå¿¡ ÀÖ¾î ¼ÒÀç Çõ½ÅÀÌ Â÷ÁöÇÏ´Â ¿ªÇÒÀº?

Àç·á Çõ½ÅÀº 3D ÇÁ¸°ÆÃÀÌ Ç×°ø¿ìÁÖ »ê¾÷¿¡ ¹ÌÄ¡´Â Çõ½ÅÀûÀÎ ¿µÇâÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ƼŸ´½ ÇÕ±Ý, °í¿Â Æú¸®¸Ó, º¹ÇÕÀç·á¿Í °°Àº °í¼º´É Àç·á´Â ÇöÀç Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ßÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ºÎǰÀ» Á¦ÀÛÇϱâ À§ÇØ ÀûÃþ °¡°ø¿¡ ÀÏ»óÀûÀ¸·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ƼŸ´½ÀÇ ¶Ù¾î³­ °­µµ ´ë Áß·®ºñ¿Í ³»½Ä¼ºÀº ±¸Á¶ ºÎǰ¿¡ ÀûÇÕÇϸç, PEEK¿Í °°Àº °í¿Â Æú¸®¸Ó´Â ¿­ ¾ÈÁ¤¼º°ú ³»È­ÇмºÀÌ ¿ä±¸µÇ´Â ºñ±Ý¼Ó ÀÀ¿ë ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, º¹ÇÕÀç·á´Â °¡º±Áö¸¸ Å« ÀÀ·ÂÀ» °ßµô ¼ö ÀÖ´Â ³»±¸¼ºÀÌ ¶Ù¾î³­ ºÎǰÀ» Á¦Á¶ÇÒ ¼ö ÀÖ¾î Ç×°ø±â ¹× ¿ìÁÖ¼± Á¦Á¶¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

»õ·Î¿î ±Ý¼Ó ºÐ¸» ¹× Çʶó¸àÆ® ±â¼úÀÇ °³¹ß·Î Àμ⠰¡´ÉÇÑ Àç·áÀÇ ¹üÀ§°¡ ³Ð¾îÁö¸é¼­ ±âÁ¸ Á¦Á¶ ¹æ½ÄÀ¸·Î´Â ºÒ°¡´ÉÇÏ´Ù°í ¿©°ÜÁ³´ø ºÎǰ Á¦Á¶ÀÇ °¡´É¼ºÀÌ ¿­·ÈÀ¸¸ç, 3D ÇÁ¸°ÆÃÀÌ ÃËÁøÇϴ ȹ±âÀûÀÎ ¹æ½ÄÀ¸·Î °æ»ç Àç·á¸¦ ÇϳªÀÇ ºÎǰ¿¡ ÅëÇÕÇÏ¿© ¿£Áö´Ï¾î°¡ ƯÁ¤ ±â´ÉÀû ¿ä±¸ »çÇ׿¡ ÃÖÀûÈ­µÈ Ư¼ºÀ» °¡Áø ºÎǰÀ» ¼³°èÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÃÖÀûÈ­µÈ Ư¼ºÀ» °¡Áø ºÎǰÀ» ¼³°èÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼ºÀº Àç·á Çõ½ÅÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, Á¦Á¶ °øÁ¤ÀÇ È¯°æ ¹ßÀÚ±¹À» ÁÙÀ̱â À§ÇØ ÀçȰ¿ë °¡´ÉÇÑ Àç·á¿Í ¹ÙÀÌ¿À ±â¹Ý Àç·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÷´Ü ¼ÒÀç ÀÎÁõÀº 3D ÇÁ¸°ÆÃµÈ Ç×°ø¿ìÁÖ ºÎǰÀÌ ¾ö°ÝÇÑ ¾ÈÀü ¹× ¼º´É ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÏ¿© 3D ÇÁ¸°ÆÃÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·áÀÇ ¹ßÀüÀº Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ß¿¡¼­ 3D ÇÁ¸°ÆÃ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù.

3D ÇÁ¸°ÆÃ ±â¼ú ¹ßÀüº° ½ÃÀå ¿ªÇÐÀº ¾î¶»°Ô Çü¼ºµÉ±î?

3D ÇÁ¸°ÆÃ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº Ç×°ø¿ìÁÖ »ê¾÷ÀÇ ½ÃÀå ¿ªÇÐÀ» Å©°Ô Çü¼ºÇϰí ÀÖÀ¸¸ç, SLS(Selective Laser Sintering), EBM(Electron Beam Melting), DMLS(Direct Metal Laser Sintering) µî ±â¼úÀº °íÁ¤¹ÐÇÏ°í °ß°íÇÑ ºÎǰÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýµéÀº Á¦Á¶ °øÁ¤À» ¿Ïº®ÇÏ°Ô Á¦¾îÇÏ¿© Àϰü¼º°ú ǰÁúÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ÀüÅëÀûÀÎ ÀûÃþ °øÁ¤°ú ÀûÃþ ±â¼úÀ» °áÇÕÇÑ ÇÏÀ̺긮µå Á¦Á¶´Â º¹ÀâÇÑ Ç×°ø¿ìÁÖ ºÎǰ Á¦Á¶¿¡¼­ µÎ °¡Áö Á¢±Ù¹ýÀÇ ÀåÁ¡À» ¸ðµÎ Ȱ¿ëÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº ÇÑ ¹øÀÇ Á¶Çü¿¡¼­ Àüü Ç×°ø±â ¼½¼ÇÀ» Á¦ÀÛÇÒ ¼ö ÀÖ´Â ´ëÇü 3D ÇÁ¸°ÅÍÀÇ µîÀåÀÔ´Ï´Ù. ÀÌ Çõ½ÅÀº Á¶¸³ ½Ã°£À» Å©°Ô ´ÜÃàÇÏ°í ¿©·¯ °³ÀÇ Á¢Çպΰ¡ ÇÊ¿äÇÏÁö ¾Ê¾Æ ±¸Á¶Àû ¹«°á¼ºÀ» Çâ»ó½Ã۸ç, 3D ÇÁ¸°ÆÃ ¿öÅ©Ç÷ο쿡 ÀΰøÁö´É°ú ¸Ó½Å·¯´×À» ÅëÇÕÇÏ¿© ¼³°è ¹× Á¦Á¶ °úÁ¤À» ´õ¿í °£¼ÒÈ­ÇßÀ¸¸ç, AI ±â¹Ý ÃÖÀûÈ­ µµ±¸¸¦ ÅëÇØ ºÎǰÀÇ ¼º´ÉÀ» °³¼±ÇÏ°í °áÇÔÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ Àμ⠸Ű³º¯¼ö¸¦ ÀÚµ¿À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ºÎǰÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ°í °áÇÔÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ÇÁ¸°ÆÃ ÆÄ¶ó¹ÌÅ͸¦ ÀÚµ¿À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿ìÁÖ °³¹ß ºÐ¾ß´Â Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ¿¡ ÀÖ¾î Æ¯È÷ ¿ªµ¿ÀûÀÎ ºÐ¾ß·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, SpaceX¿Í Blue Origin°ú °°Àº ±â¾÷µéÀÌ ¿£Áø, ¿ìÁÖ¼±, ¿ìÁÖ¼± ¹× °ÅÁÖ ½Ã¼³¿¡ 3D ÇÁ¸°ÆÃ ºÎǰÀ» Ȱ¿ëÇϸ鼭 Çõ½ÅÀûÀÎ ÇÁ¸°ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì¼¼ Á߷ ȯ°æ¿¡¼­ÀÇ ºÎǰ Á¦Á¶ ´É·ÂÀº ¿ìÁÖ Á¤°ÅÀåÀ̳ª ¹Ì·¡ÀÇ ´Þ ±âÁö¿¡¼­ ÁÖ¹®Çü ºÎǰ »ý»êÀ» °¡´ÉÇÏ°Ô ÇÏ´Â »õ·Î¿î ¿µ¿ªÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº Ç×°ø¿ìÁÖ »ê¾÷ÀÌ ¼³°è, Á¦Á¶ ¹× Áö¼Ó°¡´É¼º¿¡ Á¢±ÙÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ¼ºÀåÀº ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, °¢ ¿äÀÎÀº ¾÷°èÀÇ ÁøÈ­ÇÏ´Â ¿ì¼±¼øÀ§¿Í °úÁ¦¸¦ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·Â Áß Çϳª´Â ¹Î°£Ç×°ø±â¿Í ±º¿ë±â ¸ðµÎ¿¡¼­ ¿¬ºñ È¿À²°ú ź¼Ò ¹èÃâ·® °¨¼Ò¿¡ Á÷Á¢ÀûÀ¸·Î ±â¿©ÇÏ´Â °æ·® ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. °íµµ·Î ¸ÂÃãÈ­µÈ ºÎǰÀ» Á¦ÀÛÇÒ ¼ö ÀÖ´Â 3D ÇÁ¸°ÆÃÀÇ ´É·ÂÀº À§¼º ½Ã½ºÅÛ, ¹«ÀÎÇ×°ø±â, ¿ìÁÖ¼± µî ¸ÂÃãÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. Ç×°ø¿ìÁÖ ºÐ¾ß°¡ Àüµ¿È­·Î ÀüȯµÊ¿¡ µû¶ó 3D ÇÁ¸°ÆÃÀº ¿¡³ÊÁö È¿À²À» ³ôÀ̱â À§ÇÑ °æ·® ¹èÅ͸® ÄÉÀ̽º¿Í ÷´Ü ³Ã°¢ ½Ã½ºÅÛ °³¹ß¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

Ç×°ø»ç¿Í ¹æÀ§ »ê¾÷üµéÀº ºñ¿ë È¿À²ÀûÀÎ MRO(Maintenance, Repair, Overhaul) ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. ÁÖ¹®Çü ±³Ã¼ ºÎǰÀÇ ÁÖ¹®Çü »ý»êÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ´Ù¿îŸÀÓÀÌ ÁÙ¾îµé°í ´ë±Ô¸ð Àç°í°¡ ÇÊ¿ä ¾ø¾îÁü¿¡ µû¶ó MRO °üÇà¿¡ Çõ¸íÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ģȯ°æÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¿©Çà ¿É¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚ Çൿ, ƯÈ÷ ȯ°æ ģȭÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¿©Çà ¿É¼Ç¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó Ç×°ø¿ìÁÖ ±â¾÷µéÀº ģȯ°æÀûÀÎ Á¦Á¶ °øÁ¤°ú Àç·á »ç¿ëÀ» À§ÇØ 3D ÇÁ¸°ÆÃÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÀûÃþ °¡°ø ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀüÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÃֽŠ3D ÇÁ¸°ÅÍÀÇ ¼Óµµ, Á¤È®µµ ¹× È®À强ÀÌ Çâ»óµÊ¿¡ µû¶ó Á¦Á¶¾÷ü´Â Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ßÀÇ ³ôÀº »ý»ê Ç¥ÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ±â¾÷°ú 3D ÇÁ¸°ÆÃ ±â¾÷ÀÇ Çù·ÂÀº Çõ½ÅÀ» ÃËÁøÇÏ°í »õ·Î¿î ±â¼úÀ» ºü¸£°Ô µµÀÔÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, NASAÀÇ Artemis ÇÁ·Î±×·¥¿¡¼­ÀÇ 3D ÇÁ¸°ÆÃ »ç¿ë°ú °°Àº Á¤ºÎÀÇ ÅõÀÚ¿Í ³ë·ÂÀº ¿ìÁÖ Å½»ç ¹× ±¹¹æ¿¡¼­ ÀÌ ±â¼úÀÇ Àü·«Àû Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀ» ÅëÇØ Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ½ÃÀåÀº ±â¼ú Çõ½Å, Áö¼Ó°¡´É¼º, »ê¾÷ÀÇ È®ÀåµÈ ½Ã¾ß¸¦ ¿øµ¿·ÂÀ¸·Î »ï¾Æ °­·ÂÇÑ ¼ºÀå ±Ëµµ¸¦ ±×¸®°í ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦°ø(Ç×°ø¿ìÁÖ¿ë 3D ÇÁ¸°ÅÍ,Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ Àç·á,Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ¼­ºñ½º,Ç×°ø¿ìÁÖ 3D ÇÁ¸°ÆÃ ¼ÒÇÁÆ®¿þ¾î), ÃÖÁ¾ ¿ëµµ(Ç×°ø±â ÃÖÁ¾ ¿ëµµ,¹«ÀÎÇ×°ø±â(UAV) ÃÖÁ¾ ¿ëµµ,¿ìÁÖ¼± ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 50°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Aerospace 3D Printing Market to Reach US$8.9 Billion by 2030

The global market for Aerospace 3D Printing estimated at US$2.8 Billion in the year 2023, is expected to reach US$8.9 Billion by 2030, growing at a CAGR of 18.3% over the analysis period 2023-2030. Aircraft End-Use, one of the segments analyzed in the report, is expected to record a 19.1% CAGR and reach US$5.5 Billion by the end of the analysis period. Growth in the Unmanned Aerial Vehicles (UAVs) End-Use segment is estimated at 17.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.1 Billion While China is Forecast to Grow at 20.0% CAGR

The Aerospace 3D Printing market in the U.S. is estimated at US$1.1 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 20.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.0% and 17.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.0% CAGR.

Global Aerospace 3D Printing Market - Key Trends & Drivers Summarized

Why Is 3D Printing Revolutionizing The Aerospace Industry?

3D printing, also known as additive manufacturing, is transforming the aerospace industry by introducing unprecedented flexibility and efficiency in the production of components and systems. The ability to create complex geometries with reduced material waste is a game-changer for an industry focused on weight reduction and cost management. Lightweight components manufactured through 3D printing significantly enhance fuel efficiency, making them critical for both commercial and military aerospace applications. This technology enables rapid prototyping, allowing designers to iterate and test new concepts in record time, thus accelerating innovation cycles. Moreover, aerospace companies are leveraging 3D printing to produce parts with improved performance characteristics, such as increased strength-to-weight ratios and enhanced heat resistance. These qualities are especially critical in applications involving engines, turbines, and other high-stress components.

Aerospace 3D printing is also redefining supply chain dynamics by enabling localized and on-demand production. This approach reduces lead times and inventory costs while improving overall supply chain resilience. From satellite components to aircraft interiors, the range of applications for 3D printing continues to expand, driving its adoption across both established players and emerging space exploration startups. As the aerospace sector grapples with increasing demands for sustainability, 3D printing aligns perfectly with this goal by minimizing material waste and enabling the use of eco-friendly materials. These benefits collectively highlight why 3D printing is emerging as a cornerstone of the aerospace industry's future.

What Role Do Material Innovations Play In 3D Printing’s Aerospace Growth?

Material innovations are at the heart of 3D printing’s transformative impact on the aerospace industry. High-performance materials such as titanium alloys, high-temperature polymers, and composites are now routinely used in additive manufacturing to create components that meet the rigorous demands of aerospace applications. Titanium’s exceptional strength-to-weight ratio and corrosion resistance make it ideal for structural components, while high-temperature polymers such as PEEK are increasingly used in non-metallic applications requiring thermal stability and chemical resistance. Composite materials, on the other hand, enable the creation of lightweight yet durable parts that can withstand significant stress, making them indispensable in aircraft and spacecraft construction.

The development of new metal powders and filament technologies has expanded the range of printable materials, opening up possibilities for producing components previously deemed unfeasible through traditional manufacturing. The integration of gradient materials within a single component is another breakthrough facilitated by 3D printing, enabling engineers to design parts with optimized properties tailored to specific functional requirements. Additionally, sustainability is driving material innovations, with a focus on recyclable and bio-based materials to reduce the environmental footprint of production processes. Advanced material certifications are now ensuring that 3D-printed aerospace components meet stringent safety and performance standards, further encouraging adoption. These advancements in materials are a pivotal factor behind the growing reliance on 3D printing for aerospace applications.

How Are Market Dynamics Shaped By Advancements In 3D Printing Technologies?

The rapid evolution of 3D printing technologies is significantly shaping market dynamics in the aerospace industry. Technologies such as Selective Laser Sintering (SLS), Electron Beam Melting (EBM), and Direct Metal Laser Sintering (DMLS) are enabling the production of highly precise and robust components. These methods provide manufacturers with unparalleled control over the production process, ensuring consistency and quality. Hybrid manufacturing, which combines traditional subtractive processes with additive techniques, is also gaining traction for its ability to leverage the strengths of both approaches in producing complex aerospace components.

Another major development is the rise of large-format 3D printers, capable of manufacturing entire aircraft sections in a single build. This innovation drastically reduces assembly times and eliminates the need for multiple joints, enhancing structural integrity. The integration of artificial intelligence and machine learning into 3D printing workflows has further streamlined the design and production process. AI-driven optimization tools can now automatically adjust printing parameters to improve component performance and minimize defects.

The space exploration sector has emerged as a particularly dynamic area for aerospace 3D printing. With companies like SpaceX and Blue Origin utilizing 3D-printed parts for engines, spacecraft, and even habitats, the market is seeing a surge in demand for innovative printing solutions. Additionally, the ability to manufacture parts in microgravity environments is opening up new frontiers, enabling on-demand production of components aboard space stations and future lunar bases. These technological advancements are reshaping how the aerospace industry approaches design, manufacturing, and sustainability.

What Drives The Growth Of The Aerospace 3D Printing Market?

The growth in the aerospace 3D printing market is driven by several factors, each reflecting the industry’s evolving priorities and challenges. One of the primary drivers is the increasing demand for lightweight components, which directly contribute to fuel efficiency and lower carbon emissions in both commercial and military aircraft. The ability of 3D printing to create highly customized parts is another key factor, addressing the growing need for bespoke solutions in satellite systems, UAVs, and spacecraft. As the aerospace sector shifts towards electrification, 3D printing plays a critical role in developing lightweight battery casings and advanced cooling systems to enhance energy efficiency.

End-use trends also play a significant role, with airlines and defense organizations seeking cost-effective maintenance, repair, and overhaul (MRO) solutions. The ability to produce replacement parts on-demand reduces downtime and eliminates the need for extensive inventories, revolutionizing MRO practices. Consumer behavior, particularly the increasing preference for greener and more sustainable travel options, is pushing aerospace companies to adopt 3D printing for its eco-friendly production processes and material usage.

Technological advancements in additive manufacturing systems have further fueled market growth. Improved speed, precision, and scalability of modern 3D printers enable manufacturers to meet the high production standards of aerospace applications. Collaborative efforts between aerospace firms and 3D printing companies are fostering innovation, leading to faster adoption of new technologies. Additionally, government investments and initiatives, such as NASA’s use of 3D printing in its Artemis program, highlight the strategic importance of this technology for space exploration and national defense. These factors collectively underscore the robust growth trajectory of the aerospace 3D printing market, driven by innovation, sustainability, and the industry’s ever-expanding horizons.

SCOPE OF STUDY:

The report analyzes the Aerospace 3D Printing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Aerospace 3D Printers, Aerospace 3D Printing Materials, Aerospace 3D Printing Services, Aerospace 3D Printing Software); End-Use (Aircraft End-Use, Unmanned Aerial Vehicles (UAVs) End-Use, Spacecraft End-Use)

Geographic Regions/Countries:

World; USA; Canada; Japan; China; Europe; France; Germany; Italy; UK; Rest of Europe; Asia-Pacific; Rest of World.

Select Competitors (Total 50 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â