¼¼°èÀÇ LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå ¿¹Ãø(-2032³â) : ÀÚÀ²¼º ·¹º§º°, ¹æ¹ýº°, ·¹ÀÌÀú ÆÄÀ庰, LiDAR À¯Çüº°, Â÷Á¾º°, ¿ëµµº°, Áö¿ªº°
LiDAR Simulation Market by LiDAR Type, Method, Laser Wavelength, Vehicle Type, Level of Autonomy, Application, and Region - Global Forecast to 2032
»óǰÄÚµå : 1801768
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 230 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,967,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,359,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,471,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,075,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå ±Ô¸ð´Â 2025³â 9¾ï 3,000¸¸ ´Þ·¯¿¡¼­ 2032³â¿¡´Â 40¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 23.1%¿¡ ´ÞÇÒ °ÍÀ¸·Î º¸À̰í ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó¿¬µµ 2021-2032³â
±âÁØ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2032³â
°ËÅä ´ÜÀ§ ±Ý¾×(100¸¸ ´Þ·¯)
ºÎ¹® ÀÚÀ²¼º ·¹º§º° ¹æ¹ýº°, ·¹ÀÌÀú ÆÄÀ庰, LiDAR À¯Çüº°, Â÷Á¾º°, ¿ëµµº°, Áö¿ªº°
´ë»ó Áö¿ª ¾Æ½Ã¾ÆÅÂÆò¾ç, À¯·´, ºÏ¹Ì

LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀåÀº ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇàÂ÷¿¡ LiDAR ¼¾¼­ÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¸é¼­ ¾ÈÀü¼º°ú ÀÎÁö ´É·ÂÀÌ Çâ»óµÇ°í ÀÖ´Â °ÍÀ» ¹è°æÀ¸·Î ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº Àü ¼¼°è¿¡¼­ ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î EUÀÇ ÀÏ¹Ý ¾ÈÀü ±ÔÁ¤ 2(GSR2)´Â LiDAR Áö¿ø ÀÚµ¿ ±ä±Þ Á¦µ¿(AEB)°ú °°Àº ±â´ÉÀ» Àǹ«È­Çϰí ÀÖÀ¸¸ç, OEMÀº LiDAR ½Ã½ºÅÛÀÇ ´ë±Ô¸ð ½Ã¹Ä·¹ÀÌ¼Ç ¹× °ËÁõÀ» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

LiDAR Simulation Market-IMG1

¶ÇÇÑ LiDARÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ °í±Þ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨ÀÌ ±¤¹üÀ§ÇÏ°Ô Ã¤Åõǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±âÀÚµ¿Â÷ Áõ°¡·Î ÀÎÇØ º¹ÀâÇÑ ¼¾¼­ À¶ÇÕ ¹× ÀÚÀ² ³»ºñ°ÔÀ̼ÇÀ» Áö¿øÇϱâ À§ÇÑ Çö½ÇÀûÀ̰í È®Àå °¡´ÉÇÑ LiDAR ½Ã¹Ä·¹À̼ǿ¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼Ö¸®µå ½ºÅ×ÀÌÆ® LiDARÀÇ ³ôÀº »ý»ê ´É·Â°ú °æÀï·Â ÀÖ´Â °¡°ÝÀ¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹Àº ½Å±Ô ÁøÃâ±â¾÷¿¡°Ô ½ÃÀå ÁøÀÔ °¡´É¼ºÀ» È®´ëÇÏ°í ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

ÀÚÀ²¼º ¼öÁغ°·Î´Â Àü ¼¼°è¿¡¼­ ÀÚµ¿Â÷¿¡ ÀÌ ±â¼úÀÌ Å¾ÀçµÇ´Â »ç·Ê°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ Áß ·¹º§ 2/2.5 ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹, À¯·´, Áß±¹, Áß±¹, Àεµ, ÀϺ» ¹× ±âŸ ¾Æ½Ã¾Æ ½ÃÀåÀ» Æ÷ÇÔÇÑ °¢ Áö¿ªÀÇ ¹ýÀû ½ÂÀο¡ ÈûÀÔ¾î ·¹º§ 2 ½Â¿ëÂ÷ÀÇ ºÎºÐ ÀÚµ¿È­°¡ Á¡Á¡ ´õ ¸¹ÀÌ ¹Þ¾Æµé¿©Áö°í ÀÖ½À´Ï´Ù. LiDAR ±â¼ú°ú ÅëÇÕµÈ ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶ µîÀÇ ±â´ÉÀ» °®Ãá ÀÌ Â÷·®µéÀº ¸¹Àº ¸ðµ¨¿¡¼­ Ç¥ÁØÀ¸·Î ÀåÂøµÇ°í ÀÖ½À´Ï´Ù. 2025³â±îÁö Àü ¼¼°è¿¡¼­ 2,800¸¸ ´ë¿¡¼­ 3,000¸¸ ´ëÀÇ Â÷·®ÀÌ µµÀ﵃ °ÍÀ¸·Î ¿¹»óµÇ´Â °¡¿îµ¥, ¾ÈÀü°ú ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϱâ À§Çؼ­´Â ±¤¹üÀ§ÇÑ Å×½ºÆ®°¡ ÇʼöÀûÀ̸ç, ƯÈ÷ Euro NCAP 2025¿Í °°Àº Ç¥ÁØ¿¡¼­´Â ´ëÁß Â÷·®¿ë ¼¾¼­ÀÇ ½Å·Ú¼ºÀ» Áß¿ä½ÃÇϰí ÀÖ½À´Ï´Ù. ·¹º§ 2/2.5 ½Ã½ºÅÛÀº ¼º¼÷µµ°¡ ³ô°í º¹Àâµµ°¡ ³·±â ¶§¹®¿¡ º¹Àâµµ°¡ ³ô°í ´ú °ËÅäµÈ ·¹º§ 3, 4¿¡ ºñÇØ °³¹ß ¸®½ºÅ©°¡ ³·°í, ½ÃÇè ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ·¹º§ 2.5°¡ ³Î¸® äÅõǸ鼭 ½ÃÀå¿¡¼­ÀÇ ÀÔÁö´Â °­È­µÇ¾úÁö¸¸, ÀÚÀ²¼º ¼öÁØÀÌ »ó´ëÀûÀ¸·Î Á¦ÇÑÀûÀ̱⠶§¹®¿¡ ȹ±âÀûÀÎ Çõ½ÅÀÇ ±âȸ´Â Á¦ÇѵǾî ÀÖ½À´Ï´Ù.

¼¼°èÀÇ LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ÀÚÀ²¼º ·¹º§º°, ¹æ¹ýº°, ·¹ÀÌÀú ÆÄÀ庰, LiDAR À¯Çüº°, Â÷Á¾º°, ¿ëµµº° Áö¿ªº° µ¿Çâ ¹× ½ÃÀå¿¡ Âü¿©ÇÏ´Â ±â¾÷ÀÇ °³¿ä µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ÁÖ¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(ÀÚÀ²¼º ·¹º§º°)

Á¦7Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(¹æ¹ýº°)

Á¦8Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(·¹ÀÌÀú ÆÄÀ庰)

Á¦9Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(LiDAR À¯Çüº°)

Á¦10Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(Â÷Á¾º°)

Á¦11Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(¿ëµµº°)

Á¦12Àå LiDAR ½Ã¹Ä·¹ÀÌ¼Ç ½ÃÀå(Áö¿ªº°)

Á¦13Àå °æÀï ±¸µµ

Á¦14Àå Á¦¾È

Á¦15Àå ±â¾÷ °³¿ä

Á¦16Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global LiDAR simulation market is projected to reach USD 4.01 billion by 2032, growing from USD 0.93 billion in 2025 at a CAGR of 23.1% during the forecast period.

Scope of the Report
Years Considered for the Study2021-2032
Base Year2024
Forecast Period2025-2032
Units ConsideredValue (USD Million)
SegmentsLiDAR Type, Vehicle Type, Level of Autonomy, Method, Laser Wavelength, Application, and Region
Regions coveredAsia Pacific, Europe, and North America

The LiDAR simulation market is rapidly growing, driven by the increasing integration of LiDAR sensors in advanced driver-assistance systems (ADASs) and autonomous vehicles to enhance safety and perception capabilities. This growth is propelled by stringent global safety regulations. An example is the EU's General Safety Regulation 2 (GSR2), which mandates features like LiDAR-enabled automatic emergency braking (AEB), pushing OEMs toward extensive simulation and validation of LiDAR systems.

LiDAR Simulation Market - IMG1

Additionally, technological advancements in LiDAR have enabled a wider adoption of sophisticated simulation models. Also, the rise in electric vehicles further boosts the demand for realistic and scalable LiDAR simulations to support complex sensor fusion and autonomous navigation. With its higher production capacity and competitive pricing for solid-state LiDARs, Asia Pacific, specifically China, is expanding market accessibility for new players and creating opportunities.

"The level 2/2.5 segment is projected to account for the largest share during the forecast period."

By level of autonomy, the level 2/2.5 segment is projected to account for the largest share of the market during the forecast period due to the increase in the installation of this technology in vehicles worldwide. Partial automation in passenger vehicles at level 2 is increasingly embraced, supported by legal approvals across regions, including the US, Europe, China, India, Japan, and other Asian markets. Equipped with features such as adaptive cruise control and lane-keeping assist integrated with LiDAR technology, these vehicles are becoming standard on many models. With an anticipated global fleet of 28 to 30 million units by 2025, extensive testing is critical to ensure safety and regulatory compliance, particularly with standards like Euro NCAP 2025 emphasizing sensor reliability for mass-market vehicles. The established maturity and low complexity of level 2/2.5 systems, compared to the more complex and less explored levels 3 and 4, have lowered development risks and attracted substantial investment in testing infrastructure. While the widespread adoption of level 2.5 strengthens its market position, its relatively limited autonomy level constrains opportunities for groundbreaking innovation.

Source: Secondary Research, SAE, and MarketsandMarkets Analysis

"The commercial vehicles segment is projected to be the fastest-growing market during the forecast period."

The demand for LiDAR simulation in commercial vehicles (CVs) is growing faster due to the increasing adoption of autonomous technologies in logistics and freight transport. LiDAR enhances safety and efficiency by enabling precise object detection and mapping over long distances. The commercial vehicles sector is witnessing rapid advancements in autonomous driving, focusing on LiDAR-enabled level 3 and level 4 technologies. For example, Daimler Trucks (Germany) has planned to launch SAE Level 4 autonomous trucks by 2027, on its fifth-generation Freightliner (US) Cascadia model in partnership with Torc Robotics (US). The truck will have redundant safety systems and integrated computing and sensor kits.

Additionally, the rise in e-commerce and last-mile delivery demands robust LiDAR systems, accelerating investment in testing infrastructure. The push for automation is significant, but high costs (e.g., LiDAR units still above USD 400) and supply chain disruptions could slow deployment in cost-sensitive commercial vehicle markets like India or Africa. The e-commerce boom supports growth, but economic shifts or alternative technologies (e.g., radar fusion) could challenge LiDAR's dominance, suggesting a niche-driven surge rather than a universal trend.

"Asia Pacific is projected to be the fastest-growing market during the forecast period."

Asia Pacific is projected to be the fastest-growing market, owing to the rising prominence of premium vehicles in the region. China is the most significant player in the LiDAR simulation market. Leading players in China include BYD, Zeekr, XPeng, and NIO. These players offer electric vehicle LiDAR combined with camera and radar to increase China's autonomy level. For example, BYD aims to pivot from its current "God's Eye" level 2+ system to level 3 capability via over-the-air updates.

Additionally, hybrid solid-state LiDAR technology in China is being increasingly adopted in vehicles like the Zeekr Qianli Haohan H9. The vehicle features a multi-LiDAR setup (5 units). These hybrid solid-state LiDARs are popular due to their low cost and high performance. South Korea, too, has been rapidly adopting level 3 autonomy supported by government regulations, allowing models like the Genesis G90 to be used since 2022 and aiming for level 4 commercialization by 2027. OEMs like Hyundai and Kia lead this deployment, supported by pilot zones and policies targeting 50% autonomous vehicles by 2035. Japan, an early adopter of models like the Honda Legend Hybrid since 2021, also has a market presence for level 3 autonomy.

In-depth interviews were conducted with CEOs, marketing directors, other innovation and technology directors, and executives from various key organizations operating in this market.

The LiDAR simulation market is dominated by major players, including Dekra (Germany), AVL (Austria), Valeo (France), RoboSense (China), Luminar Technologies (US), Vector Informak GmbH (Germany), Applied Intuition (US), Cognata (Israel), dSpace GmbH (Germany), and IPG Automotive GmbH (Germany). These companies are expanding their portfolios to strengthen their LiDAR simulation market position.

Research Coverage:

The report covers the LiDAR simulation market by LiDAR Type (Mechanical LiDAR and Solid-state LiDAR), Vehicle Type (Passenger Cars and Commercial Vehicles), Level of Autonomy (Level 2/2.5, Level 3, and Level 4/5), Method (Testing Method and Simulation Method), Laser Wavelength (Short Infrared Spectrum and Long Wave Infrared Spectrum), Application (Intelligent Park Assist, Night Vision, Traffic Jam Assist, Road Mapping & Localization, and Others), and Region (North America, Asia Pacific, and Europe). The report also covers the competitive landscape and company profiles of significant LiDAR simulation market players. The study further includes an in-depth competitive analysis of the key market players, their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.

Key Benefits of Buying the Report:

The report provides insight into the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 LIDAR SIMULATION MARKET, BY LEVEL OF AUTONOMY

7 LIDAR SIMULATION MARKET, BY METHOD

8 LIDAR SIMULATION MARKET, BY LASER WAVELENGTH

9 LIDAR SIMULATION MARKET, BY LIDAR TYPE

10 LIDAR SIMULATION MARKET, BY VEHICLE TYPE

11 LIDAR SIMULATION MARKET, BY APPLICATION

12 LIDAR SIMULATION MARKET, BY REGION

13 COMPETITIVE LANDSCAPE

14 RECOMMENDATIONS

15 COMPANY PROFILES

16 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â