세계의 헬스케어 양자 컴퓨팅 시장 : 컴포넌트별, 전개 형태별, 기술별, 용도별, 최종사용자별, 지역별 - 예측(-2030년)
Quantum Computing in Healthcare Market by Component (Hardware, Software), Deployment (On-premises, Cloud-based), Technology (Superconducting Qubits, Trapped Ions), Application (Drug Discovery, Genomics), End User, and Region - Global Forecast to 2030
상품코드:1771315
리서치사:MarketsandMarkets
발행일:2025년 07월
페이지 정보:영문 294 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
세계의 헬스케어 양자 컴퓨팅 시장 규모는 예측 기간 중에 37.9%의 높은 CAGR로 확대되어 2025년 2억 6,590만 달러에서 2030년에는 13억 2,420만 달러에 이를 것으로 예측됩니다.
헬스케어 분야의 양자컴퓨팅 시장은 신약 개발 개선, 임상 의사결정 강화, 진단 정확도 향상 등의 시급한 요구로 인해 꾸준히 성장하고 있습니다. 헬스케어 데이터가 복잡하고 방대해짐에 따라 양자 컴퓨팅은 기존 시스템을 능가하는 시뮬레이션, 모델링 및 고급 데이터 처리를 위한 강력한 도구를 제공합니다. 이러한 솔루션은 연구 기간과 비용을 크게 단축하는 동시에, 보다 타겟팅된 맞춤형 치료법 개발을 촉진할 것으로 기대됩니다.
조사 범위
조사 대상 연도
2023-2030년
기준 연도
2024년
예측 기간
2025-2030년
검토 단위
금액(10억 달러)
부문
컴포넌트별, 전개 형태별, 기술별, 용도별, 최종사용자별, 지역별
대상 지역
북미, 유럽, 아시아태평양, 라틴아메리카, 중동 및 아프리카
이 시장의 성장은 양자 스타트업 기업에 대한 자금 지원 증가, 정부 지원 연구 이니셔티브, 학계와 산업계의 공동 노력에 의해 더욱 뒷받침되고 있습니다. 그러나 이 분야는 특히 양자 시스템의 정확성과 구현에 따른 높은 비용 등의 문제로 인해 보급에 걸림돌이 되고 있습니다.
2024년 초전도 양자 비트는 헬스케어 분야 양자 컴퓨팅 시장에서 가장 큰 부문으로 부상했으며, 향후 몇 년 동안 이 지위를 유지할 것으로 예측됩니다. 이러한 우위는 성숙도, 확장성 가능성, 복잡한 계산 작업을 수행하는 강력한 성능에 기인합니다.
초전도 양자비트 시스템은 고속 처리 능력을 갖추고 있어 분자 시뮬레이션, 유전체 분석, 신약 개발 등 헬스케어 분야에 적합합니다. 또한, 이 시스템은 클라우드 기반 양자 플랫폼과 호환되기 때문에 연구자와 임상의가 대규모 On-Premise 인프라 없이도 보다 광범위한 접근이 가능합니다.
생체 의료 데이터를 처리하고 생체 시스템을 정확하게 모델링하기 위한 보다 효율적인 도구에 대한 수요가 증가함에 따라 초전도 양자비트 기술은 헬스케어에 특화된 양자 이니셔티브에 점점 더 많이 채택되고 있습니다. 일관성 시간, 오류 수정, 하이브리드 컴퓨팅 프레임워크와의 통합의 지속적인 발전은 헬스케어 분야의 혁신을 가속화하는 기반 기술로서의 역할을 더욱 강화할 것입니다.
헬스케어 분야 양자 컴퓨팅 시장에서 의료 지불자가 가장 빠르게 성장하는 최종 사용자 그룹으로 부상하고 있습니다. 이러한 추세의 배경에는 의료 비용 관리, 환자 위험 평가, 맞춤형 보험 플랜 지원 등 고급 데이터 처리 도구에 대한 요구가 증가하고 있기 때문입니다. 양자컴퓨팅은 복잡한 데이터 세트를 신속하게 분석할 수 있게 해주며, 지불자는 위험 예측을 강화하고, 이상 징후를 감지하고, 가치에 기반한 상환 모델을 개발할 수 있게 해줍니다. 헬스케어 산업이 데이터 기반 의사결정으로 전환함에 따라, 지불자들은 양자 기술을 도입하여 업무 효율성을 개선하고, 부정행위를 줄이며, 치료 결과와 집단 건강 상태에 대한 더 깊은 통찰력을 얻기 위해 양자 기술을 도입하고 있습니다.
아시아태평양은 예측 기간 동안 헬스케어 분야 양자 컴퓨팅 시장에서 가장 빠르게 성장할 것으로 예측됩니다. 이러한 성장의 원동력은 양자 기술에 대한 정부 지원 증가, 연구 협력 증가, 신기술 스타트업에 대한 자금 지원 급증에 기인합니다. 이 지역 국가들은 국가 전략과 투자를 통해 양자 혁신을 우선순위에 두고 있으며, 이러한 기술을 헬스케어에 적용하기 위한 탄탄한 기반을 마련하고 있습니다.
만성질환의 부담이 증가함에 따라 약물 연구, 유전자 분석, 복잡한 데이터 모델링 등의 작업에 양자 컴퓨팅을 활용하는 것에 대한 관심이 높아지고 있습니다. 또한, 디지털 인프라의 향상과 클라우드 기반 양자 플랫폼에 대한 접근성 확대는 양자 컴퓨팅의 빠른 보급을 촉진하고 있습니다. 이러한 요인들로 인해 아시아태평양은 양자 의료 분야에서 중요한 거점이 되고 있습니다.
세계의 헬스케어 분야 양자컴퓨팅(Quantum Computing) 시장에 대해 조사했으며, 컴포넌트별/전개별/기술별/용도별/최종사용자별/지역별 동향, 시장 진출기업 프로파일 등의 정보를 정리하여 전해드립니다.
The global quantum computing in healthcare market is projected to reach USD 1,324.2 million by 2030 from USD 265.9 million in 2025 at a high CAGR of 37.9% during the forecast period. The quantum computing market in healthcare is steadily advancing due to the pressing need to improve drug discovery, enhance clinical decision-making, and increase diagnostic accuracy. As healthcare data becomes more complex and voluminous, quantum computing offers powerful tools for simulation, modeling, and advanced data processing that surpass traditional systems. These solutions are expected to significantly reduce research timelines and costs while also facilitating the development of more targeted and personalized treatments.
Scope of the Report
Years Considered for the Study
2023-2030
Base Year
2024
Forecast Period
2025-2030
Units Considered
Value (USD Billion)
Segments
Component, Technology, Application, End User, Deployment, and Region
Regions covered
North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa
The growth of this market is further supported by increasing funding for quantum startups, government-backed research initiatives, and collaborative efforts between academia and industry. However, the sector faces challenges, particularly regarding the accuracy of quantum systems and the high costs associated with their implementation, which continue to hinder widespread adoption.
"The superconducting qubits segment is expected to be the largest segment during the forecast period."
In 2024, superconducting qubits emerged as the largest segment in the quantum computing market for healthcare and are expected to maintain this position in the coming years. This dominance is driven by their maturity, scalability potential, and strong performance in executing complex computational tasks.
Superconducting qubit systems offer high-speed processing capabilities, making them well-suited for healthcare applications such as molecular simulations, genomic analysis, and drug discovery. These systems are also compatible with cloud-based quantum platforms, allowing researchers and clinicians broader access without the need for extensive on-premises infrastructure.
As the demand for more efficient tools to handle biomedical data and accurately model biological systems grows, superconducting qubit technology is increasingly being adopted in healthcare-focused quantum initiatives. Continued advancements in coherence times, error correction, and integration with hybrid computing frameworks further reinforce their role as a foundational technology for accelerating innovation in healthcare.
"Healthcare payers are expected to be the fastest-growing segment in the quantum computing in healthcare market, by end user, during the forecast period."
Healthcare payers have emerged as the fastest-growing end-user group in the quantum computing in healthcare market. This trend is driven by the increasing need for advanced data processing tools to manage healthcare costs, assess patient risks, and support personalized coverage plans. Quantum computing enables quicker analysis of complex datasets, allowing payers to enhance risk prediction, detect anomalies, and develop value-based reimbursement models. As the healthcare industry shifts toward data-driven decision-making, payers are adopting quantum technologies to improve operational efficiency, reduce fraud, and gain deeper insights into treatment outcomes and population health.
"Asia Pacific is expected to witness the highest growth rate during the forecast period."
The Asia Pacific region is projected to experience the fastest growth in the quantum computing in healthcare market during the forecast period. This growth is driven by increasing government support for quantum technology, a rise in research collaborations, and a surge in funding for emerging tech startups. Countries in the region are prioritizing quantum innovation through national strategies and investments, establishing a strong foundation for the application of these technologies in healthcare.
As the burden of chronic diseases grows, there is an increased focus on utilizing quantum computing for tasks such as drug research, genetic analysis, and complex data modeling. Additionally, enhanced digital infrastructure and wider access to cloud-based quantum platforms are facilitating faster adoption. Collectively, these factors are positioning Asia Pacific as a key hub for advancements in quantum healthcare.
The breakdown of primary participants is as mentioned below:
By Company Type: Tier 1 (45%), Tier 2 (30%), and Tier 3 (25%)
By Designation: Directors (42%), Managers (31%), and Others (27%)
By Region: North America (32%), Europe (26%), Asia Pacific (32%), the Middle East & Africa (5%), and Latin America (5%)
Key Players in the Quantum Computing in Healthcare Market
The key players operating in the quantum computing in healthcare market include Rigetti & Co, LLC (US), IBM (US), D-Wave Quantum Inc. (Canada), Microsoft (US), IonQ (US), Quantinuum, Ltd. (US & UK), Google, Inc. (US), Atos SE (France), QC Ware (California), Classiq Technologies, Inc. (US), Xanadu Quantum Technologies Inc. (Canada), Hefei Origin Quantum Computing Technology Co., Ltd. (China), Protiviti, Inc. (US), Quandela (France), Deloitte (UK), Accenture (Ireland), Amazon Web Services (AWS) (US), Fujitsu (Japan), Qnami (Switzerland), SEEQC (US), SandboxAQ (US), Pasqal (France), Qubit Pharmaceuticals (France), Polaris Quantum Biotech (US), and QSimulate (US).
Research Coverage
The report analyzes the quantum computing in healthcare market and estimates the market size and future growth potential of various market segments based on component, deployment, application, technology, end user, and region. It also provides a competitive analysis of the key players operating in this market, along with their company profiles, product offerings, recent developments, and key market strategies.
Reasons to Buy the Report
This report will enrich established firms as well as new entrants/smaller firms to gauge the pulse of the market, which, in turn, would help them garner a greater share of the market. Firms purchasing the report could use one or a combination of the below-mentioned strategies to strengthen their positions in the market.
This report provides insights on:
Analysis of key drivers (increasing investments in quantum computing in developed as well as emerging economies, growing inclination of payers toward quantum computing, rising demand for personalized medicine, increasing funding and investments in quantum computing startups, and rising need to reduce time and cost of drug discovery and development), restraints (accuracy issues with quantum computing systems and high implementation costs), opportunities (technological advancements in quantum computing supporting various healthcare applications and potential applications in medical image analysis and oncology), and challenges (lack of technical expertise & data management issues) influencing the growth of the quantum computing in healthcare market.
Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the quantum computing in healthcare market.
Market Development: Comprehensive information on the lucrative emerging markets. The report analyzes the market for various types of quantum computing in healthcare solutions across regions.
Market Diversification: Exhaustive information about the product portfolios, growing geographies, recent developments, and investments in the quantum computing in healthcare market.
Competitive Assessment: In-depth assessment of market shares, growth strategies, product offerings, and capabilities of the leading players in the quantum computing in healthcare market, like Rigetti & Co, LLC (US), IBM (US), D-Wave Quantum Inc. (Canada), Microsoft (US), and IonQ (US).
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 STUDY SCOPE
1.3.1 MARKET SEGMENTATION & REGIONAL SCOPE
1.3.2 YEARS CONSIDERED
1.4 CURRENCY CONSIDERED
1.5 STAKEHOLDERS
1.6 LIMITATIONS
2 RESEARCH METHODOLOGY
2.1 RESEARCH APPROACH
2.1.1 SECONDARY RESEARCH
2.1.1.1 Key data from secondary sources
2.1.2 PRIMARY RESEARCH
2.1.2.1 Primary sources
2.1.2.2 Key data from primary sources
2.1.2.3 Breakdown of primaries
2.1.2.4 Insights from primary experts
2.2 RESEARCH METHODOLOGY DESIGN
2.3 MARKET SIZE ESTIMATION
2.4 MARKET BREAKDOWN & DATA TRIANGULATION
2.5 MARKET SHARE ESTIMATION
2.6 STUDY ASSUMPTIONS
2.7 RESEARCH LIMITATIONS
2.7.1 METHODOLOGY-RELATED LIMITATIONS
2.8 RISK ASSESSMENT
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 OVERVIEW OF QUANTUM COMPUTING IN HEALTHCARE MARKET
4.2 ASIA PACIFIC: QUANTUM COMPUTING IN HEALTHCARE MARKET, BY COMPONENT
4.3 GEOGRAPHIC SNAPSHOT OF QUANTUM COMPUTING IN HEALTHCARE MARKET
4.4 REGIONAL MIX: QUANTUM COMPUTING IN HEALTHCARE MARKET
4.5 QUANTUM COMPUTING IN HEALTHCARE MARKET: DEVELOPED VS. EMERGING ECONOMIES
5 MARKET OVERVIEW
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 MARKET DRIVERS
5.2.1.1 Increasing investments in quantum computing in developed as well as emerging economies
5.2.1.2 Growing inclination of payers toward quantum computing
5.2.1.3 Rising demand for personalized medicine
5.2.1.4 Increasing funding and investments in quantum computing startups
5.2.1.5 Rising need to reduce time and cost of drug discovery and development
5.2.2 MARKET RESTRAINTS
5.2.2.1 Accuracy issues with quantum computing systems and high implementation costs
5.2.3 MARKET OPPORTUNITIES
5.2.3.1 Technological advancements in quantum computing for various healthcare applications
5.2.3.2 Potential applications in medical image analysis and oncology
5.2.4 MARKET CHALLENGES
5.2.4.1 Lack of technical expertise and data management issues
5.3 INDUSTRY TRENDS
5.3.1 HYBRID QUANTUM-CLASSICAL COMPUTING
5.3.2 QUANTUM MACHINE LEARNING
5.3.3 GROWING NUMBER OF APPLICATIONS IN HEALTHCARE INDUSTRY
5.4 TECHNOLOGY ANALYSIS
5.4.1 KEY TECHNOLOGIES
5.4.1.1 Artificial intelligence and machine learning integration
5.4.1.2 Quantum communication technology
5.4.2 COMPLEMENTARY TECHNOLOGIES
5.4.2.1 Blockchain
5.4.2.2 Digital twins
5.4.3 ADJACENT TECHNOLOGIES
5.4.3.1 Precision medicine
5.5 PORTER'S FIVE FORCES ANALYSIS
5.5.1 INTENSITY OF COMPETITIVE RIVALRY
5.5.2 BARGAINING POWER OF SUPPLIERS
5.5.3 BARGAINING POWER OF BUYERS
5.5.4 THREAT OF NEW ENTRANTS
5.5.5 THREAT OF SUBSTITUTES
5.6 REGULATORY ANALYSIS
5.6.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.6.2 REGULATORY STANDARDS
5.6.2.1 P1913 - Software-defined quantum communication
5.6.2.2 P7130 - Standard for quantum technologies definitions
5.6.2.3 P7131 - Standard for quantum computing performance metrics and benchmarking
5.7 VALUE CHAIN ANALYSIS
5.7.1 RESEARCH, DESIGN, AND DEVELOPMENT
5.7.2 MANUFACTURERS & SERVICE PROVIDERS
5.7.3 MARKETING & SALES EXECUTIVES
5.7.4 END USERS
5.8 ECOSYSTEM ANALYSIS
5.9 PATENT ANALYSIS
5.9.1 PATENT PUBLICATION TRENDS QUANTUM COMPUTING IN HEALTHCARE MARKET