2025년, 양자 컴퓨팅 시장은 가속화된 기술 혁신, 막대한 투자 유입, 다산업에 걸친 실용적인 양자 응용의 출현으로 전례 없는 변곡점을 맞이했으며, 2024년 세계 양자 투자가 처음으로 10억 달러를 돌파한 이후, 이 분야는 기록적인 자금 조달을 계속하고 있으며 상업적 실용화를 향한 구체적인 진전을 보이고 있습니다. 양자 컴퓨팅 생태계는 하드웨어 플랫폼, 소프트웨어 개발 도구, 클라우드 서비스, 특정 산업 응용을 포함한 정교한 다중 구조의 시장으로 발전하고 있습니다. 초전도 양자비트, 이온 트랩 시스템, 광 양자 컴퓨터, 실리콘 스핀 양자비트 등 여러 양자 기술이 서로 경쟁하고 보완하고 있습니다. 이러한 기술적 다양성은 단일 접근 방식에 베팅하는 위험을 줄이는 동시에 여러 경로에 걸쳐 혁신을 가속화합니다.
2025년은 투자 모멘텀이 매우 강했습니다. 1분기 자금 조달은 다음과 같습니다.
SandboxAQ는 2025년 4월에 1억 5,000만 달러의 추가 자금 조달을 확보하여 2024년 12월에 진행한 3억 달러의 대규모 자금 조달에 이어 또 한 번 대규모 자금 조달에 성공하였습니다.
Quantum Machines는 1억 7,000만 달러의 자금을 조달했으며, 이는 양자 제어 시스템과 인프라에 대한 투자자들의 강한 신뢰를 반영합니다.
2025년 2분기에는 이온큐(IonQ)가 10억 8,000만 달러에 옥스포드 이오닉스(Oxford Ionics)를 인수하면서 양자 컴퓨팅 역사상 가장 큰 규모의 거래가 이루어졌습니다. 이 메가딜은 양자 부문의 통합과 전략적 기술 통합으로의 근본적인 전환을 보여주었으며, 양자 확장성에서 첨단 제어 기술의 중요성을 부각시켰으며, 2025년 자금 조달 활동을 통해 여러 가지 중요한 추세가 나타나고 있습니다. 평균 라운드 규모가 크게 증가했으며, 주요 거래는 보통 5,000만 달러를 초과하여 양자 컴퓨팅의 상업적 실현 가능성에 대한 투자자들의 신뢰가 높아지고 있음을 보여줍니다. 기업의 전략적 투자자, 특히 Google, Nvidia, Intel, Microsoft와 같은 대형 기술 기업들은 양자 컴퓨팅이 장기적인 경쟁 우위를 위해 전략적으로 중요하다는 것을 인식하고 점점 더 많은 투자를 하고 있습니다. 이러한 투자 급증은 구글의 Willow 칩의 실증 실험과 양자 오류 수정의 큰 진전 등 2024년 중요한 기술적 돌파구를 맞이한 데 따른 것입니다. 특히 양자 컴퓨팅 하드웨어가 내결함성(내결함성)에 가까워지고 실용적인 응용이 점점 더 가능해짐에 따라 이 분야의 상업적 미래에 대한 투자자들의 신뢰가 가속화되고 있습니다.
양자 컴퓨팅 시장은 기술 발전, 막대한 투자 자금, 금융 서비스, 제약, 재료 과학, AI 등의 산업에서 새로운 실용적인 응용 분야가 집중되면서 폭발적인 성장세를 이어갈 것으로 예상됩니다. 2025년 초의 활발한 투자 활동은 지속적인 기술 발전과 산업계의 채택 확대와 함께 양자컴퓨팅이 순수 연구 중심 분야에서 향후 10년간 주류로 자리 잡기 위해 상업적으로 실현 가능한 기술 분야로 전환하고 있음을 보여줍니다.
이 보고서는 빠르게 발전하고 있는 양자 컴퓨팅 생태계를 종합적으로 분석하여 시장 역학, 기술 개발, 투자 동향, 미래 성장 기회에 대한 중요한 인사이트를 제공합니다.
목차
제1장 주요 요약
제1차 및 제2차 양자 혁명
현재 양자 컴퓨팅 시장 상황
투자 상황
세계의 정부 이니셔티브
시장 상황
양자 컴퓨팅 산업 최신 동향(2023-2025년)
양자 컴퓨팅의 최종 용도 시장과 이점
비즈니스 모델
로드맵
양자 기술 채용 과제
SWOT 분석
양자 컴퓨팅 밸류체인
양자 컴퓨팅과 AI
세계 시장 예측(2025-2046년)
제2장 소개
양자 컴퓨팅이란?
동작 원리
고전적 컴퓨팅과 양자 컴퓨팅
양자 컴퓨팅 기술
기타 기술과의 경쟁
시장 개요
제3장 양자 알고리즘
양자 소프트웨어 스택
제4장 양자 컴퓨팅 하드웨어
양자 비트 기술
아키텍처 접근법
제5장 양자 컴퓨팅 인프라
인프라 요건
하드웨어에 의존하지 않는 플랫폼
크라이오스탯
양자 비트 판독
제6장 양자 컴퓨팅 소프트웨어
기술 설명
클라우드 기반 서비스 - QCaaS(Quantum Computing as a Service)
시장 진입 기업
제7장 시장과 용도
의약품
화학제품
운송
금융 서비스
자동차
제8장 기타 크로스오버 기술
양자 화학과 AI
양자 통신
양자 센서
제9장 양자 컴퓨팅과 AI
소개
용도
AI와 양자 컴퓨팅 인터페이스
고전적 컴퓨팅의 AI
시장 기업과 전략
양자 컴퓨팅과 AI의 관계
제10장 양자 컴퓨팅용 재료
초전도체
포토닉스, 실리콘 포토닉스, 광학 컴포넌트
나노재료
제11장 시장 분석
업계의 주요 기업
투자 자금 조달
제12장 기업 개요(기업 217개사 프로파일)
제13장 조사 방법
제14장 용어와 정의
제15장 참고문헌
ksm
영문 목차
영문목차
The quantum computing market has reached an unprecedented inflection point in 2025, characterized by accelerating technological breakthroughs, massive investment inflows, and the emergence of practical quantum applications across multiple industries. Building on the remarkable momentum from 2024, when global quantum investments surpassed $1 billion for the first time, the sector continues to attract record-breaking funding while demonstrating tangible progress toward commercial viability. The quantum computing ecosystem has evolved into a sophisticated, multi-layered market encompassing hardware platforms, software development tools, cloud services, and industry-specific applications. Multiple quantum technologies compete and complement each other, including superconducting qubits, trapped ion systems, photonic quantum computers, and emerging silicon spin qubits. This technological diversity reduces the risk of betting on a single approach while accelerating innovation across multiple pathways.
2025 has witnessed extraordinary investment momentum. Q1 funding included:
SandboxAQ secured a $150 million add-on funding round in April 2025, building on their massive $300 million raise in December 2024.
Quantum Machines raised $170 million, reflecting strong investor confidence in quantum control systems and infrastructure.
IQM Quantum Computers secured $73 million (Euro-68 million).
The second quarter of 2025 witnessed further significant market activity, culminating in IonQ's groundbreaking $1.08 billion acquisition of Oxford Ionics, representing the largest transaction in quantum computing history. This mega-deal signals a fundamental shift toward consolidation and strategic technology integration within the quantum sector, while highlighting the critical importance of advanced control technologies for quantum scalability. Several key trends have emerged throughout 2025's funding activity. Average round sizes have increased substantially, with major transactions regularly exceeding $50 million, indicating growing investor confidence in quantum computing's commercial viability. Corporate strategic investors, particularly major technology companies like Google, Nvidia, Intel, and Microsoft, are making increasingly significant investments, recognizing quantum computing's strategic importance for long-term competitive positioning..The investment surge follows significant technical breakthroughs in 2024, including Google's Willow chip demonstration and major advances in quantum error correction. These achievements have accelerated investor confidence in the sector's commercial potential, particularly as quantum computing hardware approaches fault tolerance and practical applications become increasingly achievable.
The quantum computing market is positioned for continued explosive growth, driven by the convergence of technological advancement, substantial investment capital, and emerging practical applications across industries including financial services, pharmaceuticals, materials science, and artificial intelligence. The strong investment activity in early 2025, combined with continued technological progress and expanding industry adoption, suggests that quantum computing is transitioning from a purely research-focused field to a commercially viable technology sector poised for mainstream deployment over the next decade.
"The Global Quantum Computing Market 2026-2046" represents the most comprehensive analysis of the rapidly evolving quantum computing ecosystem, providing critical insights into market dynamics, technological developments, investment trends, and future growth opportunities. This authoritative report delivers essential intelligence for stakeholders, investors, technology leaders, and policy makers navigating the quantum revolution.
This extensive market intelligence report examines the quantum computing landscape across multiple dimensions, analyzing hardware technologies including superconducting qubits, trapped ion systems, silicon spin qubits, photonic quantum computers, neutral atom platforms, topological qubits, and quantum annealers. The report provides detailed market forecasts extending to 2046, covering revenue projections, installed base growth, pricing trends, and technology adoption patterns across global markets. With quantum computing transitioning from research laboratories to commercial applications, this analysis identifies key inflection points, market opportunities, and strategic positioning requirements for market participants. The report thoroughly examines the quantum software ecosystem, including development platforms, quantum algorithms, machine learning applications, optimization solutions, and cryptography implementations. Critical infrastructure requirements, including cryogenic systems, control electronics, and quantum-classical hybrid architectures, receive comprehensive coverage. Regional market dynamics, government initiatives, and national quantum strategies are analyzed across North America, Europe, Asia-Pacific, and emerging markets, providing global perspective on quantum computing development.
Report contents include:
Comprehensive quantum computing market sizing and forecasts (2026-2046) with detailed revenue projections by technology, application, and geography
Installed base forecasting by quantum technology platform including superconducting, trapped ion, silicon spin, photonic, neutral atom, and topological systems
Pricing analysis and trends across different quantum computing system categories and deployment models
Hardware revenue forecasting by technology platform and system type with detailed market segmentation
Data center deployment analysis comparing quantum computer adoption to global data center infrastructure growth
Technology Landscape and Competitive Intelligence:
Deep-dive analysis of quantum hardware technologies including technical specifications, performance benchmarks, and commercial readiness levels
Comprehensive market player profiles across hardware, software, applications, and infrastructure segments
Quantum software stack analysis covering development platforms, algorithms, applications, and cloud services
Infrastructure requirements assessment including cryogenic systems, control electronics, and specialized components
Materials analysis for quantum computing including superconductors, photonics, and nanomaterials
Industry Applications and Use Cases:
Sector-specific quantum computing applications in pharmaceuticals, chemicals, transportation, financial services, and automotive industries
Market opportunity assessment across drug discovery, molecular simulation, optimization, cryptography, and artificial intelligence
Crossover technologies including quantum communications, quantum sensing, and quantum-AI convergence
Commercial applications analysis with total addressable market (TAM) calculations for key vertical markets
Case studies and implementation roadmaps for enterprise quantum adoption
Investment Landscape and Strategic Analysis:
Detailed funding analysis covering venture capital, corporate investment, government funding, and M&A activity (2024-2025)
Strategic partnership analysis and business model evolution in the quantum ecosystem
Government initiatives and national quantum strategies with funding commitments and policy implications
Investment trends analysis including geographic distribution, sector focus, and funding stage dynamics
Market challenges assessment including technical barriers, commercialization hurdles, and adoption constraints
Future Outlook:
SWOT analysis for quantum computing market development with strategic recommendations
Commercial readiness roadmaps by technology platform with timeline projections to 2046
Quantum computing value chain analysis identifying key stakeholders and value capture opportunities
Risk assessment and mitigation strategies for quantum technology investment and adoption
Emerging trends analysis including quantum-AI convergence, hybrid computing architectures, and next-generation applications
This comprehensive report features detailed profiles of 217 companies shaping the quantum computing ecosystem, providing essential intelligence on market leaders, emerging players, and innovative startups across the quantum value chain. The profiled companies include A* Quantum, AbaQus, Aegiq, Agnostiq, Algorithmiq Oy, Airbus, Alpine Quantum Technologies GmbH (AQT), Alice&Bob, Aliro Quantum, Anyon Systems Inc., Archer Materials, Arclight Quantum, Arctic Instruments, ARQUE Systems GmbH, Atlantic Quantum, Atom Computing, Atom Quantum Labs, Atos Quantum, Baidu Inc., BEIT, Bifrost Electronics, Bleximo, BlueFors, BlueQubit, Bohr Quantum Technology, BosonQ Ps, C12 Quantum Electronics, Cambridge Quantum Computing (CQC), CAS Cold Atom, CEW Systems Canada Inc., ColibriTD, Classiq Technologies, Commutator Studios GmbH, Crystal Quantum Computing, D-Wave Systems, Diatope GmbH, Dirac, Diraq, Delft Circuits, Duality Quantum Photonics, EeroQ, eleQtron, Elyah, Entropica Labs, Ephos, Equal1, EvolutionQ, First Quantum Inc., Fujitsu, Good Chemistry, Google Quantum AI, Groove Quantum, g2-Zero, Haiqu, Hefei Wanzheng Quantum Technology Co. Ltd., High Q Technologies Inc., Horizon Quantum Computing, HQS Quantum Simulations, HRL, Huayi Quantum, IBM, Iceberg Quantum, Icosa Computing, ID Quantique, InfinityQ, Infineon Technologies AG, Infleqtion, Intel, IonQ, IQM Quantum Computers, JiJ, JoS QUANTUM GmbH, KETS Quantum Security, Kipu Quantum, Kiutra GmbH, Kuano Limited, Kvantify, Ligentec, LQUOM, Lux Quanta, Maybell Quantum Industries, Menlo Systems GmbH, Menten AI, Microsoft, Miraex, Molecular Quantum Solutions, Montana Instruments, Multiverse Computing, Nanofiber Quantum Technologies, NEC Corporation, Next Generation Quantum, neQxt GmbH, Nomad Atomics, Nord Quantique, Nordic Quantum Computing Group AS, Norma, NTT, Nu Quantum, 1Qbit, ORCA Computing, Orange Quantum Systems, Origin Quantum Computing Technology, Oxford Ionics, Oxford Quantum Circuits (OQC), ParityQC, Pasqal, Peptone, Phasecraft, Photonic Inc., Pixel Photonics, Planqc GmbH, Polaris Quantum Biotech (POLARISqb), Post Quantum, PQShield, ProteinQure, PsiQuantum, Q* Bird, QBoson, Qblox, qBraid, Q-CTRL, QC Design, QC Ware, QC82, QEDMA, Qilimanjaro Quantum Tech, Qindom, QMware, QMill, Qnami, QNu Labs, Qolab, QPerfect and more......
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
1.1. First and Second quantum revolutions
1.2. Current quantum computing market landscape
1.2.1. Technical Progress and Persistent Challenges
1.2.2. Key developments
1.3. Investment Landscape
1.3.1. Quantum Technologies Investments 2024-2025
1.4. Global Government Initiatives
1.5. Market Landscape
1.6. Recent Quantum Computing Industry Developments 2023-2025
1.7. End Use Markets and Benefits of Quantum Computing
1.8. Business Models
1.9. Roadmap
1.10. Challenges for Quantum Technologies Adoption
1.11. SWOT analysis
1.12. Quantum Computing Value Chain
1.13. Quantum Computing and Artificial Intelligence
1.14. Global market forecast 2025-2046
1.14.1. Revenues
1.14.2. Installed Base Forecast
1.14.2.1. By system
1.14.2.2. By technology
1.14.3. Pricing
1.14.4. Hardware
1.14.4.1. By system
1.14.4.2. By technology
1.14.5. Quantum Computing in Data centres
2. INTRODUCTION
2.1. What is quantum computing?
2.2. Operating principle
2.3. Classical vs quantum computing
2.4. Quantum computing technology
2.4.1. Quantum emulators
2.4.2. Quantum inspired computing
2.4.3. Quantum annealing computers
2.4.4. Quantum simulators
2.4.5. Digital quantum computers
2.4.6. Continuous variables quantum computers
2.4.7. Measurement Based Quantum Computing (MBQC)
2.4.8. Topological quantum computing
2.4.9. Quantum Accelerator
2.5. Competition from other technologies
2.6. Market Overview
2.6.1. Investment in Quantum Computing
2.6.2. Business Models
2.6.2.1. Quantum as a Service (QaaS)
2.6.2.2. Strategic partnerships
2.6.2.3. Vertically integrated and modular
2.6.2.4. Mixed quantum stacks
2.6.3. Semiconductor Manufacturers
3. QUANTUM ALGORITHMS
3.1. Quantum Software Stack
3.1.1. Quantum Machine Learning
3.1.2. Quantum Simulation
3.1.3. Quantum Optimization
3.1.4. Quantum Cryptography
3.1.4.1. Quantum Key Distribution (QKD)
3.1.4.2. Post-Quantum Cryptography
4. QUANTUM COMPUTING HARDWARE
4.1. Qubit Technologies
4.1.1. Overview
4.1.2. Noise effects
4.1.3. Logical qubits
4.1.4. Quantum Volume
4.1.5. Algorithmic Qubits
4.1.6. Superconducting Qubits
4.1.6.1. Technology description
4.1.6.2. Initialization, Manipulation, and Readout
4.1.6.3. Materials
4.1.6.4. Market players
4.1.6.5. Roadmap
4.1.6.6. Swot analysis
4.1.7. Trapped Ion Qubits
4.1.7.1. Technology description
4.1.7.2. Initialization, Manipulation, and Readout
4.1.7.3. Hardware
4.1.7.4. Materials
4.1.7.4.1. Integrating optical components
4.1.7.4.2. Incorporating high-quality mirrors and optical cavities
4.1.7.4.3. Engineering the vacuum packaging and encapsulation
4.1.7.4.4. Removal of waste heat
4.1.7.5. Roadmap
4.1.7.6. Market players
4.1.7.7. Swot analysis
4.1.8. Silicon Spin Qubits
4.1.8.1. Technology description
4.1.8.2. Initialization, Manipulation, and Readout
4.1.8.3. Integration with CMOS Electronics
4.1.8.4. Quantum dots
4.1.8.5. Market players
4.1.8.6. SWOT analysis
4.1.9. Topological Qubits
4.1.9.1. Technology description
4.1.9.1.1. Cryogenic cooling
4.1.9.2. Initialization, Manipulation, and Readout of Topological Qubits
4.1.9.3. Scaling topological qubit arrays
4.1.9.4. Roadmap
4.1.9.5. Market players
4.1.9.6. SWOT analysis
4.1.10. Photonic Qubits
4.1.10.1. Photonics for Quantum Computing
4.1.10.2. Technology description
4.1.10.3. Initialization, Manipulation, and Readout
4.1.10.4. Hardware Architecture
4.1.10.5. Roadmap
4.1.10.6. Market players
4.1.10.7. Swot analysis
4.1.11. Neutral atom (cold atom) qubits
4.1.11.1. Technology description
4.1.11.2. Market players
4.1.11.3. Swot analysis
4.1.12. Diamond-defect qubits
4.1.12.1. Technology description
4.1.12.2. SWOT analysis
4.1.12.3. Market players
4.1.13. Quantum annealers
4.1.13.1. Technology description
4.1.13.2. Initialization and Readout of Quantum Annealers
4.1.13.3. Solving combinatorial optimization
4.1.13.4. Applications
4.1.13.5. Roadmap
4.1.13.6. SWOT analysis
4.1.13.7. Market players
4.2. Architectural Approaches
5. QUANTUM COMPUTING INFRASTRUCTURE
5.1. Infrastructure Requirements
5.2. Hardware agnostic platforms
5.3. Cryostats
5.4. Qubit readout
6. QUANTUM COMPUTING SOFTWARE
6.1. Technology description
6.2. Cloud-based services- QCaaS (Quantum Computing as a Service)
6.3. Market players
7. MARKETS AND APPLICATIONS
7.1. Pharmaceuticals
7.1.1. Market overview
7.1.1.1. Drug discovery
7.1.1.2. Diagnostics
7.1.1.3. Molecular simulations
7.1.1.4. Genomics
7.1.1.5. Proteins and RNA folding
7.1.2. Market players
7.2. Chemicals
7.2.1. Market overview
7.2.2. Market players
7.3. Transportation
7.3.1. Market overview
7.3.2. Market players
7.4. Financial services
7.4.1. Market overview
7.4.2. Market players
7.5. Automotive
7.5.1. Market overview
7.5.2. Market players
8. OTHER CROSSOVER TECHNOLOGIES
8.1. Quantum chemistry and AI
8.1.1. Technology description
8.1.2. Applications
8.1.3. Market players
8.2. Quantum Communications
8.2.1. Technology description
8.2.2. Types
8.2.3. Applications
8.2.4. Market players
8.3. Quantum Sensors
8.3.1. Technology description
8.3.2. Applications
8.3.3. Companies
9. QUANTUM COMPUTING AND AI
9.1. Introduction
9.2. Applications
9.3. AI Interfacing with Quantum Computing
9.4. AI in Classical Computing
9.5. Market Players and Strategies
9.6. Relationship between quantum computing and artificial intelligence
10. MATERIALS FOR QUANTUM COMPUTING
10.1. Superconductors
10.1.1. Overview
10.1.2. Types and Properties
10.1.3. Temperature (Tc) of superconducting materials
10.1.4. Superconducting Nanowire Single Photon Detectors (SNSPD)
10.1.5. Kinetic Inductance Detectors (KIDs)
10.1.6. Transition Edge Sensors (TES)
10.1.7. Opportunities
10.2. Photonics, Silicon Photonics and Optical Components