세계의 LEO 위성 시장 : 위성 질량별, 서브시스템별, 용도별, 최종 용도별, 주파수별, 지역별 - 예측(-2030년)
LEO Satellite Market by Subsystem [Satellite Bus (Command & Data Handling, Electric Power System), Payload (Optical, Infrared, Radar), Solar Panel, Satellite Antenna], Satellite Mass, Application, End Use, Frequency, and Region - Global Forecast to 2030
상품코드:1747196
리서치사:MarketsandMarkets
발행일:2025년 06월
페이지 정보:영문 351 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
LEO 위성 시장 규모는 2025년 118억 1,000만 달러에서 2030년에는 206억 9,000만 달러에 이를 것으로 예측됩니다.
상업, 정부, 국방용 LEO 위성 발사가 증가함에 따라 시장 성장이 촉진될 것으로 예측됩니다. 이 시장은 데이터 서비스 제공업체, 위성 서비스 제공업체, 원격 감지 서비스 제공업체, 기술 서비스 제공업체, 투자자에게 큰 기회가 될 것입니다. 다목적성, 저비용, 첨단 메커니즘, 조립 및 발사의 용이성, 대량 생산 능력, 짧은 수명주기 등의 요인이 LEO 위성에 대한 투자 증가에 기여하고 있습니다. 새로운 기술이 등장하고 더 많은 위성이 운영됨에 따라 위성 데이터의 양과 그 응용 범위는 계속 확대될 것으로 예측됩니다.
조사 범위
조사 대상 연도
2020-2030년
기준연도
2024년
예측 기간
2025-2030년
검토 단위
금액(10억 달러)
부문별
위성 질량별, 서브시스템별, 용도별, 최종 용도별, 주파수별, 지역별
대상 지역
북미, 유럽, 아시아태평양, 기타 지역
LEO 위성 시장은 위성 버스, 페이로드, 태양전지판, 위성 안테나, 기타 하위 시스템 등 하위 시스템을 기반으로 다양한 유형으로 분류됩니다. 이 중 페이로드는 예측 기간 동안 가장 빠르게 성장할 것으로 예측됩니다. 페이로드는 기후 모니터링에서 안전한 통신에 이르기까지 다양한 용도를 지원하는 미션 전용 장비에 대한 수요가 증가함에 따라 다른 서브시스템보다 더 복잡합니다. 또한, 페이로드는 위성의 사용 목적과 직접적으로 연관된 고도의 사용자 정의가 가능합니다. 농업용 하이퍼스펙트럼 카메라, 국방용 합성개구레이더(SAR), 고속 데이터 전송을 위한 레이저 통신 시스템 등이 있습니다. 고성능 페이로드에 대한 수요는 데이터 기반 서비스의 부상으로 인해 증가하고 있습니다. 예를 들어, 소형 기상 관측 위성은 센서를 사용하여 대기 상태를 추적하고, 지구관측 임무는 첨단 광학 및 적외선 이미저를 사용하여 도시 계획 및 재난 대응과 같은 분야를 지원합니다. 우주 관측 임무는 과학적 목표를 달성하기 위해 MEMS 기반 센서와 방사선 감지기를 활용하고 있으며, 상업용 플랫폼은 탑재된 데이터를 처리하기 위해 AI 지원 페이로드를 통합하고 있습니다. 이러한 용도에 특화된 기능 증가와 더불어 페이로드 소형화 비용의 감소, 민간 및 정부 위성 별자리에서 수요 증가가 이 부문의 성장에 기여하고 있습니다.
LEO 위성 시장은 최종 용도별로 상업용, 정부 및 군용, 이중 용도 등 세 가지로 분류됩니다. 이 중 상업용 부문이 2025년 주도권을 확보할 것으로 추정됩니다. 소형 위성 발사 및 구축의 비용 효율성과 용이성이 극적으로 개선되어 원격지에 대한 인터넷 액세스를 확대할 수 있게 되었으며, SPACX(미국)와 아마존(미국)과 같은 유명 기업들은 전 세계 인터넷 커버리지를 강화하기 위해 많은 투자를 하고 있습니다. 또한, 농업, 물류, 스마트시티 등의 분야는 위성의 실시간 정보에 의존하고 있으며, 이는 상업용 위성 산업의 급격한 성장을 가속하고 있습니다. 또한, 기술의 발전으로 위성의 소형화 및 저가화가 진행되어 발사 비용과 시간을 절약할 수 있게 되었습니다. 정부는 필요한 인허가를 제공하고, 사업이 보다 효율적으로 운영될 수 있도록 규제를 마련하는 등 지원적인 역할을 하고 있습니다. 이러한 요인들은 LEO 위성 산업의 상업적 부문이 앞으로도 계속 성장하고 최대 규모를 유지할 것임을 보여줍니다.
LEO 위성 시장은 중동 및 아프리카 특유의 몇 가지 이점을 배경으로 중동 및 아프리카에서 급성장하고 있습니다. 인터넷 접속, 특히 브로드밴드는 현재 진행 중인 디지털 전환 노력에 힘입어 도시 지역에서는 필수적인 요소로 자리 잡고 있습니다. 한편, 중동 및 아프리카의 일부 지역에서는 지질학적 조건으로 인해 기존의 지상 통신 방식을 사용할 수 없기 때문에 연결 격차를 해소하기 위해 위성 기술이 필요합니다. 이 지역의 정부는 효과적인 정책을 시행하고, 규제 프레임워크를 만들고, 민간 부문의 참여를 촉진하는 투자 인센티브를 제공함으로써 우주 기술 발전을 지원하고 디지털 격차를 해소하기 위해 노력하고 있습니다. 위성 기술에 대한 수요는 원격 지역 사회 교육, 전자 정부 서비스, 스마트 시티 개발에 대한 관심 증가와 같은 이니셔티브에 의해 주도되고 있습니다. 이러한 요인들로 인해 중동 및 아프리카는 대륙 무역 및 통신의 전략적 허브로 자리매김하고 있으며, LEO 위성 별자리 개발을 촉진하고 있습니다. 지역 통신 사업자와 세계 위성 벤더의 파트너십, 위성 산업의 발전으로 인한 발사 비용의 감소로 인해 위성 서비스는 더욱 저렴하고 쉽게 이용할 수 있게 되었습니다.
세계의 LEO 위성 시장에 대해 조사했으며, 위성 질량별/서브시스템별/용도별/최종 용도별/주파수별/지역별 동향, 시장 진출기업 프로파일 등의 정보를 정리하여 전해드립니다.
목차
제1장 서론
제2장 조사 방법
제3장 주요 요약
제4장 프리미엄 인사이트
제5장 시장 개요와 업계 동향
서론
시장 역학
고객의 비즈니스에 영향을 미치는 동향과 혼란
밸류체인 분석
가격 분석
운영 데이터
볼륨 데이터
생태계 분석
관세 및 규제 상황
무역 데이터
2025-2026년 주요 컨퍼런스 및 이벤트
주요 이해관계자와 구입 기준
사례 연구 분석
비즈니스 모델
부품표
총소유 비용
투자 및 자금조달 시나리오
기술 로드맵
기술 분석
거시경제 전망
미국 2025년 관세의 영향
기술 동향
메가트렌드의 영향
AI의 영향
특허 분석
제6장 LEO 위성 시장, 위성 질량별
서론
대형 위성
중형 위성
소형 위성
큐브샛
제7장 LEO 위성 시장, 서브시스템별
서론
위성 버스
페이로드
태양전지판
위성 안테나
기타
제8장 LEO 위성 시장, 용도별
서론
통신
지구관측 및 원격탐사
과학 연구
테크놀러지
기타
제9장 LEO 위성 시장, 최종 용도별
서론
상업
정부 및 군
이중 사용
제10장 LEO 위성 시장, 주파수별
서론
L-band
S-band
C-band
X-band
KU-band
KA-band
Q/V-band
HF/VHF/UHF band
레이저/광학
제11장 LEO 위성 시장, 지역별
서론
북미
PESTLE 분석
미국
캐나다
유럽
PESTLE 분석
영국
독일
러시아
프랑스
이탈리아
기타
아시아태평양
PESTLE 분석
중국
인도
일본
한국
호주
기타
중동 및 아프리카
PESTLE 분석
GCC
이스라엘
기타
라틴아메리카
PESTLE 분석
멕시코
아르헨티나
기타
제12장 경쟁 구도
서론
주요 시장 진출기업의 전략/강점, 2021년-2024년
매출 분석, 2021년-2024년
시장 점유율 분석, 2024년
기업 평가 매트릭스 : 주요 시장 진출기업, 2024년
기업 평가 매트릭스 : 스타트업/중소기업, 2024년
기업 평가와 재무 지표
브랜드/제품 비교
경쟁 시나리오
제13장 기업 개요
주요 시장 진출기업
SPACEX
LOCKHEED MARTIN CORPORATION
AIRBUS DEFENCE AND SPACE
NORTHROP GRUMMAN
L3HARRIS TECHNOLOGIES, INC.
THALES ALENIA SPACE
ONEWEB
SURREY SATELLITE TECHNOLOGY LTD.
PLANET LABS PBC
SIERRA NEVADA CORPORATION
MAXAR TECHNOLOGIES
GOMSPACE
MITSUBISHI ELECTRIC CORPORATION
EXOLAUNCH GMBH
CHINA AEROSPACE SCIENCE AND TECHNOLOGY CORPORATION
BAE SYSTEMS
RTX
OHB SE
THE AEROSPACE CORPORATION
MILLENNIUM SPACE SYSTEMS, INC.
KUIPER SYSTEMS LLC
기타 기업
MDA
AAC CLYDE SPACE
ASELSAN A.S.
PUMPKIN INC.
ALBA ORBITAL LIMITED
ENDUROSAT
EARTH-I LTD.
NANOAVIONICS
ALEN SPACE
NEARSPACE LAUNCH, INC.
제14장 부록
LSH
영문 목차
영문목차
The LEO satellite market is projected to reach USD 20.69 billion by 2030, from USD 11.81 billion in 2025. The increase in launches of LEO satellites for commercial, government, and defense applications is expected to drive market growth. This market presents significant opportunities for data service providers, satellite service providers, remote sensing service providers, technical service providers, and investors. Factors such as versatility, low costs, advanced mechanics, ease of assembly and launch, mass production capabilities, and short lifecycles have contributed to increased investment in LEO satellites. As new technologies emerge and more satellites become operational, the volume of satellite data and the range of applications for this data are expected to continue growing.
Scope of the Report
Years Considered for the Study
2020-2030
Base Year
2024
Forecast Period
2025-2030
Units Considered
Value (USD Billion)
Segments
By Satellite Mass, Application, End Use, Frequency, Subsystem, and Region
Regions covered
North America, Europe, APAC, RoW
"The payloads segment is expected to exhibit the fastest growth during the forecast period."
The LEO satellite market has been categorized into different types based on subsystem, including satellite buses, payloads, solar panels, satellite antennas, and other subsystems. Among these, payloads are expected to witness the fastest growth during the forecast period. They are more complex than other subsystems due to the increasing demand for mission-specific instruments that support a wide range of applications, from climate monitoring to secure communications. Additionally, payloads are highly customizable and directly linked to the satellite's intended use. They may include hyperspectral cameras for agriculture, synthetic aperture radar (SAR) for defense, or laser communication systems for high-speed data transfer. The demand for high-performance payloads is driven by the rise of data-driven services. For instance, small weather-monitoring satellites use sensors to track atmospheric conditions, while Earth observation missions employ advanced optical and thermal imagers to assist sectors such as urban planning and disaster response. Space observation missions utilize MEMS-based sensors and radiation detectors to achieve scientific objectives, and commercial platforms are increasingly integrating AI-enabled payloads to process data onboard. This increase in application-specific functionality, as well as decreasing costs for payload miniaturization and growing demand from both commercial and government satellite constellations, is contributing to the growth of this segment.
"The commercial segment is estimated to acquire the highest share in 2025."
The LEO satellite market is divided into three categories based on end use: commercial, government & military, and dual use. Among these, the commercial segment is estimated to secure the leading position in 2025. The cost-effectiveness and ease of launching and building small satellites have dramatically improved, making it feasible to extend internet access to remote areas. Prominent companies like SPACX (US) and Amazon (US) are investing significantly in enhancing global internet coverage. Additionally, sectors such as agriculture, logistics, and smart cities rely on real-time information from satellites, which is propelling rapid growth in the commercial satellite industry. Advances in technology are also leading to smaller and more affordable satellites, thereby saving both money and time for launches. Governments play a supportive role by providing necessary permits and establishing regulations that help businesses operate more efficiently. These factors indicate that the commercial segment of the LEO satellite industry will continue to grow and remain the largest in the future.
"The Middle East & Africa is expected to be the fastest-growing region during the forecast period."
The LEO satellite market is poised for rapid growth in the Middle East & Africa, subject to several advantages unique to the region. Internet access, particularly broadband, is becoming essential in urban areas, driven by ongoing digital transformation efforts. Meanwhile, geological conditions in parts of the Middle East & Africa make traditional terrestrial communication methods unfeasible, necessitating satellite technology to bridge the connectivity gap. Governments in this region support the advancement of space technology and address digital divides by implementing effective policies, creating regulatory frameworks, and offering investment incentives to encourage private sector participation. The demand for satellite technology has also been driven by initiatives such as remote community education, e-government services, and the increasing focus on smart city development. These factors position the Middle East & Africa as a strategic hub for continental trade and communications, facilitating the deployment of LEO satellite constellations. Partnerships between regional telecom operators and global satellite vendors, along with reduced launch costs from advancements in the satellite industry, are further making satellite services more affordable and accessible.
The breakdown of the profiles of primary participants in the LEO satellite market is as follows:
By Company Type: Tier 1 - 35%; Tier 2 - 35%; and Tier 3 - 20%
By Designation: C Level Executives - 35%; Directors - 25%; and Others - 40%
By Region: North America - 40%; Europe - 25%; Asia Pacific - 15%; Latin America - 10%; and Middle East & Africa - 10%
Major players in the LEO satellite market are L3Harris Technologies (US), Lockheed Martin Corporation (US), Northrop Grumman Corporation (US), Airbus Defence and Space (Netherlands), and SPACEX (US).
Research Coverage
The study examines the LEO satellite market across various segments and subsegments. Its objective is to estimate the size and growth potential of this market by analyzing different factors such as satellite mass, subsystems, applications, end users, frequency bands, and regions. Additionally, the study includes a comprehensive competitive analysis of the key players in the market. It provides insights into their company profiles, notable observations regarding their solutions and business offerings, recent developments, and key market strategies they have adopted.
Key benefits of buying this report: This report provides valuable insights for market leaders and new entrants regarding the revenue projections for the overall LEO satellite market and its subsegments. It covers the complete ecosystem of the LEO satellite market, helping stakeholders understand the competitive landscape and enabling them to better position their businesses and develop effective go-to-market strategies. Additionally, the report offers insights into the market's dynamics, including key drivers, constraints, challenges, and opportunities.
The report provides insights on the following pointers:
Analysis of key drivers, such as rising demand for satellite internet services, growing need for earth observation imagery and analytics, expanding satellite networks for internet access in underserved areas, and increasing launches of CubeSats
Product Development: In-depth product innovation/development analysis by companies across various regions
Market Development: Comprehensive information about lucrative markets
Market Diversification: Exhaustive information about new solutions, untapped geographies, recent developments, and investments in the LEO satellite market
Competitive Assessment: In-depth assessment of market shares, growth strategies, and product offerings of leading players like L3Harris Technologies, Inc. (US), Lockheed Martin Corporation (US), Northrop Grumman Corporation (US), Airbus Defence and Space (Germany), and SPACEX (US), among others
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 STUDY SCOPE
1.3.1 MARKETS COVERED AND REGIONAL SCOPE
1.3.2 INCLUSIONS AND EXCLUSIONS
1.3.3 YEARS CONSIDERED
1.4 CURRENCY CONSIDERED
1.5 STAKEHOLDERS
1.6 SUMMARY OF CHANGES
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.1.1 Key data from secondary sources
2.1.2 PRIMARY DATA
2.1.2.1 Primary interview participants
2.1.2.2 Key data from primary sources
2.1.2.3 Breakdown of primary interviews
2.1.2.4 Insights from industry experts
2.2 FACTOR ANALYSIS
2.2.1 DEMAND-SIDE INDICATORS
2.2.2 SUPPLY-SIDE INDICATORS
2.3 MARKET SIZE ESTIMATION
2.3.1 BOTTOM-UP APPROACH
2.3.1.1 Market size estimation methodology
2.3.1.2 Regional split of LEO satellite market
2.3.2 TOP-DOWN APPROACH
2.4 DATA TRIANGULATION
2.5 RESEARCH ASSUMPTIONS
2.6 RESEARCH LIMITATIONS
2.7 RISK ASSESSMENT
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN LEO SATELLITE MARKET
4.2 LEO SATELLITE MARKET, BY APPLICATION
4.3 LEO SATELLITE MARKET, BY SATELLITE MASS
4.4 LEO SATELLITE MARKET, BY SUBSYSTEM
4.5 LEO SATELLITE MARKET, BY FREQUENCY
4.6 LEO SATELLITE MARKET, BY END USE
4.7 LEO SATELLITE MARKET, BY COUNTRY
5 MARKET OVERVIEW AND INDUSTRY TRENDS
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Elevated demand for satellite internet services
5.2.1.2 Need for Earth observation imagery and analytics
5.2.1.3 Increasing launches of CubeSats
5.2.2 RESTRAINTS
5.2.2.1 Stringent government policies
5.2.2.2 Limited coverage and complexity of LEO satellites
5.2.3 OPPORTUNITIES
5.2.3.1 Potential applications of laser beam pointing technology
5.2.3.2 Technological advances in electric propulsion systems, antennas, and ground stations
5.2.3.3 High adoption of software-defined technology
5.2.3.4 Booming 3D printing technology
5.2.4 CHALLENGES
5.2.4.1 Concerns over growing space debris
5.2.4.2 Complex supply chain management
5.3 TRENDS AND DISRUPTIONS IMPACTING CUSTOMER BUSINESS
5.4 VALUE CHAIN ANALYSIS
5.4.1 RESEARCH AND DEVELOPMENT
5.4.2 RAW MATERIAL
5.4.3 COMPONENT/PRODUCT MANUFACTURING
5.4.4 ASSEMBLY AND INTEGRATION
5.4.5 POST-SALES SERVICE
5.5 PRICING ANALYSIS
5.5.1 AVERAGE SELLING PRICE, BY KEY PLAYER
5.5.2 INDICATIVE PRICING ANALYSIS, BY SATELLITE MASS
5.6 OPERATIONAL DATA
5.7 VOLUME DATA
5.8 ECOSYSTEM ANALYSIS
5.8.1 PROMINENT COMPANIES
5.8.2 PRIVATE AND SMALL ENTERPRISES
5.8.3 END USERS
5.9 TARIFF AND REGULATORY LANDSCAPE
5.9.1 TARIFF DATA
5.9.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.10 TRADE DATA
5.10.1 IMPORT SCENARIO (HS CODE 880260)
5.10.2 EXPORT SCENARIO (HS CODE 880260)
5.11 KEY CONFERENCES AND EVENTS, 2025-2026
5.12 KEY STAKEHOLDERS AND BUYING CRITERIA
5.12.1 KEY STAKEHOLDERS IN BUYING PROCESS
5.12.2 BUYING CRITERIA
5.13 CASE STUDY ANALYSIS
5.13.1 IOT AND COMMUNICATION SATELLITES
5.13.2 SPACE-BASED WIRELESS MONITORING SYSTEMS
5.13.3 MEASUREMENT OF MAGNETIC AND ELECTRIC FIELDS IN IONOSPHERE
5.13.4 REAL-TIME DATA FOR EMERGENCY SYSTEMS
5.13.5 SATELLITE RADIATION HARDNESS TEST
5.14 BUSINESS MODELS
5.14.1 BUILD TO ORDER
5.14.2 STANDARDIZED PLATFORMS
5.14.3 CONSTELLATION MANUFACTURING
5.15 BILL OF MATERIALS
5.16 TOTAL COST OF OWNERSHIP
5.17 INVESTMENT AND FUNDING SCENARIO
5.18 TECHNOLOGY ROADMAP
5.19 TECHNOLOGY ANALYSIS
5.19.1 KEY TECHNOLOGIES
5.19.1.1 CubeSat constellation
5.19.1.2 Miniaturization
5.19.2 COMPLEMENTARY TECHNOLOGIES
5.19.2.1 Hyperspectral and multispectral imaging
5.20 MACROECONOMIC OUTLOOK
5.20.1 NORTH AMERICA
5.20.2 EUROPE
5.20.3 ASIA PACIFIC
5.20.4 MIDDLE EAST
5.20.5 REST OF THE WORLD
5.21 US 2025 TARIFF IMPACT
5.21.1 INTRODUCTION
5.21.2 KEY TARIFF RATES
5.21.3 PRICE IMPACT ANALYSIS
5.21.4 IMPACT ON COUNTRY/REGION
5.21.4.1 US
5.21.4.2 Europe
5.21.4.3 Asia Pacific
5.21.5 IMPACT ON END-USE INDUSTRIES
5.21.5.1 Commercial
5.21.5.2 Government & military
5.21.5.3 Dual Use
5.22 TECHNOLOGY TRENDS
5.22.1 DEPLOYMENT OF LARGE CONSTELLATIONS OF LEO SATELLITES FOR GLOBAL COMMUNICATION SERVICES
5.22.2 ADOPTION OF SATELLITES IN LEO ORBIT TO PROVIDE ENHANCED SPACE IMAGERY
5.22.3 DEVELOPMENT OF DEDICATED LAUNCH VEHICLES FOR LEO SATELLITES
5.22.4 3D PRINTING OF SATELLITE EQUIPMENT
5.22.5 INNOVATIONS IN ELECTRIC PROPULSION SYSTEMS FOR LEO SATELLITES
5.22.6 DISTRIBUTED ELECTRIC POWER SYSTEM IN SMALL SATELLITE APPLICATIONS
5.22.7 ADVANCEMENTS IN ENERGY STORAGE SYSTEMS
5.22.8 MINIATURIZATION OF SATELLITES
5.23 IMPACT OF MEGATRENDS
5.23.1 HYBRID BEAMFORMING
5.23.2 SPACE EXPLORATION AND COMMERCIALIZATION
5.23.3 COGNITIVE RADIO (SDR-CR) TECHNOLOGY
5.23.4 GLOBAL ECONOMIC POWER SHIFT
5.24 IMPACT OF AI
5.24.1 INTRODUCTION
5.24.2 ADOPTION OF AI IN SPACE BY TOP COUNTRIES
5.24.3 IMPACT OF AI ON SPACE
5.24.4 IMPACT OF AI ON LEO SATELLITE MARKET
5.25 PATENT ANALYSIS
6 LEO SATELLITE MARKET, BY SATELLITE MASS
6.1 INTRODUCTION
6.2 LARGE SATELLITES
6.2.1 SURGE IN DEMAND FROM GOVERNMENT AGENCIES
6.3 MEDIUM SATELLITES
6.3.1 INCREASED SATELLITE LAUNCHES FOR EARTH OBSERVATION
6.4 SMALL SATELLITES
6.4.1 MINI SATELLITES (101-500 KG)
6.4.1.1 Extensive use in Earth observation and broadband internet
6.4.2 MICRO SATELLITES (11-100 KG)
6.4.2.1 Higher adoption for tactical communication in military applications
6.4.3 NANO SATELLITES (1-10 KG)
6.4.3.1 Expanding scope in commercial applications
6.4.4 SMALLSATS (500-1,000 KG)
6.4.4.1 Escalating demand for advanced missions and high-capacity services
6.5 CUBESATS
6.5.1 0.25-1U
6.5.1.1 Deployment in imaging, technology demonstration, and amateur radio communication
6.5.2 2U
6.5.2.1 Growing adoption in high precision applications
6.5.3 3U
6.5.3.1 Increasing use in space weather monitoring
6.5.4 6U
6.5.4.1 Booming space science missions
6.5.5 12U & 16U
6.5.5.1 Rising use in deep space missions
7 LEO SATELLITE MARKET, BY SUBSYSTEM
7.1 INTRODUCTION
7.2 SATELLITE BUSES
7.2.1 ATTITUDE & ORBITAL CONTROL SYSTEMS
7.2.1.1 Need for stable payloads
7.2.2 COMMAND & DATA HANDLING (C&DH) SYSTEMS
7.2.2.1 Central to ensuring seamless operation of satellite systems
7.2.3 ELECTRICAL POWER SYSTEMS
7.2.3.1 Need for efficient battery power management
7.2.4 PROPULSION
7.2.4.1 Chemical propulsion
7.2.4.1.1 Emphasis on reducing operational costs
7.2.4.2 Electric propulsion
7.2.4.2.1 Improved performance of new-generation systems
7.2.4.3 Hybrid propulsion
7.2.4.3.1 Increased demand for low-cost launch vehicles
7.2.5 TELEMETRY, TRACKING, & COMMAND (TT&C)
7.2.5.1 Need for effective communication between satellites and ground stations
7.2.6 STRUCTURES
7.2.6.1 Focus on proper placement of satellite systems
7.2.7 THERMAL SYSTEMS
7.2.7.1 Surge in demand for miniaturized thermal management systems
7.3 PAYLOADS
7.3.1 TRADITIONAL PAYLOADS
7.3.1.1 Optical and infrared
7.3.1.1.1 Increased demand for remote sensing applications
7.3.1.2 Hyperspectral and multispectral imagers
7.3.1.2.1 Need for improved mapping
7.3.1.3 Radar payloads
7.3.1.3.1 Heightened demand for high-resolution remote sensing
7.3.1.4 Communication payloads/transponders
7.3.1.4.1 Need for continuous performance development
7.3.1.5 Others
7.3.2 SOFTWARE-DEFINED PAYLOADS
7.3.2.1 Adoption of software-defined technology for flexible space missions
7.4 SOLAR PANELS
7.4.1 GROWING USE OF PHOTOVOLTAIC PANELS TO SUPPLY POWER IN SPACE
7.5 SATELLITE ANTENNAS
7.5.1 WIRE ANTENNAS
7.5.1.1 Monopole
7.5.1.1.1 Need for shorter signals with wider coverage area
7.5.1.2 Dipole
7.5.1.2.1 Rising adoption in radio transmitting and receiving applications
7.5.2 HORN ANTENNAS
7.5.2.1 Smooth operations across wide frequency ranges
7.5.3 ARRAY ANTENNAS
7.5.3.1 Higher adoption of active electronically scanned array antennas
7.5.4 REFLECTOR ANTENNAS
7.5.4.1 Parabolic reflectors
7.5.4.1.1 Rising use in point-to-point communication
7.5.4.2 Double reflectors
7.5.4.2.1 Growing utilization in large Earth stations
7.6 OTHERS
8 LEO SATELLITE MARKET, BY APPLICATION
8.1 INTRODUCTION
8.2 COMMUNICATION
8.2.1 TECHNOLOGICAL ADVANCES IN MINIATURE COMMUNICATION SYSTEMS
8.3 EARTH OBSERVATION & REMOTE SENSING
8.3.1 GROWING LEO SATELLITE LAUNCHES TO IMPROVE EARTH OBSERVATION AND REMOTE SENSING CAPABILITIES
8.4 SCIENTIFIC RESEARCH
8.4.1 MINIATURIZATION OF SUBCOMPONENTS AND PAYLOADS
8.5 TECHNOLOGY
8.5.1 INCREASED INVESTMENTS IN BETTER NAVIGATION AND TRACKING TECHNOLOGIES
8.6 OTHERS
9 LEO SATELLITE MARKET, BY END USE
9.1 INTRODUCTION
9.2 COMMERCIAL
9.2.1 SATELLITE OPERATORS/OWNERS
9.2.1.1 Deployment of satellite constellations for faster, secured communication and data transmission
9.2.2 MEDIA & ENTERTAINMENT
9.2.2.1 Demand for on-demand streaming information and entertainment
9.2.3 ENERGY INDUSTRY
9.2.3.1 Rising need for monitoring structural integrity of nuclear power stations
9.2.4 SCIENTIFIC RESEARCH & DEVELOPMENT
9.2.4.1 Expanding space research
9.2.5 OTHERS
9.3 GOVERNMENT & MILITARY
9.3.1 DEPARTMENTS OF DEFENSE & INTELLIGENCE AGENCIES
9.3.1.1 Increasing demand for real-time data and imaging
9.3.2 NATIONAL SPACE AGENCIES
9.3.2.1 Diverse weather monitoring applications
9.3.3 SEARCH & RESCUE ENTITIES
9.3.3.1 Rise of satellite-aided search and rescue operations
9.3.4 ACADEMIC & RESEARCH INSTITUTIONS
9.3.4.1 Government support for LEO satellite development
9.3.5 NATIONAL MAPPING & TOPOGRAPHIC AGENCIES
9.3.5.1 Substantial investments in LEO satellites to improve GPS-based navigation
9.4 DUAL USE
9.4.1 IMPROVED CONNECTIVITY AND PROVISION OF HIGH-SPEED DATA
10 LEO SATELLITE MARKET, BY FREQUENCY
10.1 INTRODUCTION
10.2 L-BAND
10.2.1 INCREASING USE OF LEO SATELLITES FOR DATA COMMUNICATION AND TRAFFIC MANAGEMENT
10.3 S-BAND
10.3.1 GROWING INTEGRATION IN LEO SATELLITES DUE TO COMPACT DESIGN
10.4 C-BAND
10.4.1 EXTENSIVE USE FOR NAVIGATION PURPOSES
10.5 X-BAND
10.5.1 ABILITY TO PROVIDE HIGH-THROUGHPUT COMMUNICATION FROM SPACECRAFT TO GROUND STATIONS
10.6 KU-BAND
10.6.1 NEED FOR WIDER RANGE OF DATA COMMUNICATION
10.7 KA-BAND
10.7.1 INCREASING USE FOR HIGH-BANDWIDTH COMMUNICATION
10.8 Q/V-BAND
10.8.1 RISING ADOPTION TO REDUCE SIGNAL FADING AT HIGH-FREQUENCY BANDS
10.9 HF/VHF/UHF-BAND
10.9.1 GROWING USE IN DIGITAL AUDIO AND TELEVISION BROADCASTING
10.10 LASER/OPTICAL
10.10.1 HIGH DATA TRANSFER CAPABILITY
11 LEO SATELLITE MARKET, BY REGION
11.1 INTRODUCTION
11.2 NORTH AMERICA
11.2.1 PESTLE ANALYSIS
11.2.2 US
11.2.2.1 Increasing use of LEO satellites in agriculture to drive market
11.2.3 CANADA
11.2.3.1 Rising investments in satellite manufacturing facilities to drive market
11.3 EUROPE
11.3.1 PESTLE ANALYSIS
11.3.2 UK
11.3.2.1 Rising innovations in satellite technologies to drive market
11.3.3 GERMANY
11.3.3.1 Increasing demand for CubeSats to drive market
11.3.4 RUSSIA
11.3.4.1 Growing reliance on self-developed space systems to drive market
11.3.5 FRANCE
11.3.5.1 Focus on strengthening domestic capabilities and public-private space partnerships to drive market
11.3.6 ITALY
11.3.6.1 Growing demand for cost-effective space operations drive market
11.3.7 REST OF EUROPE
11.4 ASIA PACIFIC
11.4.1 PESTLE ANALYSIS
11.4.2 CHINA
11.4.2.1 Increasing focus on self-made space technology to drive market
11.4.3 INDIA
11.4.3.1 Upcoming space programs to drive market
11.4.4 JAPAN
11.4.4.1 Growing involvement of private space companies in government space programs to drive market
11.4.5 SOUTH KOREA
11.4.5.1 Surge in government funding to drive market
11.4.6 AUSTRALIA
11.4.6.1 Growing encouragement to satellite manufacturers to drive market
11.4.7 REST OF ASIA PACIFIC
11.5 MIDDLE EAST & AFRICA
11.5.1 PESTLE ANALYSIS
11.5.2 GCC
11.5.2.1 Booming government initiatives and economic diversification to drive market
11.5.2.2 Saudi Arabia
11.5.2.2.1 Growing collaborations with universities for technological advancements in space systems to drive market
11.5.2.3 UAE
11.5.2.3.1 Need for advanced satellite systems for border control to drive market
11.5.3 ISRAEL
11.5.3.1 Increased private investments in space technology to drive market
11.5.4 REST OF MIDDLE EAST & AFRICA
11.6 LATIN AMERICA
11.6.1 PESTLE ANALYSIS
11.6.2 MEXICO
11.6.2.1 Increasing CubeSat launch initiatives by universities to drive market
11.6.3 ARGENTINA
11.6.3.1 Rising need for enhanced space situational awareness to drive market
11.6.4 REST OF LATIN AMERICA
12 COMPETITIVE LANDSCAPE
12.1 INTRODUCTION
12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2021-2024
12.3 REVENUE ANALYSIS, 2021-2024
12.4 MARKET SHARE ANALYSIS, 2024
12.5 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
12.5.1 STARS
12.5.2 EMERGING LEADERS
12.5.3 PERVASIVE PLAYERS
12.5.4 PARTICIPANTS
12.5.5 COMPANY FOOTPRINT
12.5.5.1 Company footprint
12.5.5.2 Region footprint
12.5.5.3 Satellite mass footprint
12.5.5.4 Application footprint
12.6 COMPANY EVALUATION MATRIX: START-UPS/SMES, 2024
12.6.1 PROGRESSIVE COMPANIES
12.6.2 RESPONSIVE COMPANIES
12.6.3 DYNAMIC COMPANIES
12.6.4 STARTING BLOCKS
12.6.5 COMPETITIVE BENCHMARKING
12.6.5.1 List of start-ups/SMEs
12.6.5.2 Competitive benchmarking of start-ups/SMEs
12.7 COMPANY VALUATION AND FINANCIAL METRICS
12.8 BRAND/PRODUCT COMPARISON
12.9 COMPETITIVE SCENARIO
12.9.1 PRODUCT LAUNCHES
12.9.2 DEALS
12.9.3 OTHER DEVELOPMENTS
13 COMPANY PROFILES
13.1 KEY PLAYERS
13.1.1 SPACEX
13.1.1.1 Business overview
13.1.1.2 Products/Solutions/Services offered
13.1.1.3 Recent developments
13.1.1.3.1 Deals
13.1.1.3.2 Other developments
13.1.1.4 MnM View
13.1.1.4.1 Right to win
13.1.1.4.2 Strategic choices
13.1.1.4.3 Weaknesses and competitive threats
13.1.2 LOCKHEED MARTIN CORPORATION
13.1.2.1 Business overview
13.1.2.2 Products/Solutions/Services offered
13.1.2.3 Recent developments
13.1.2.3.1 Other developments
13.1.2.4 MnM View
13.1.2.4.1 Right to win
13.1.2.4.2 Strategic choices
13.1.2.4.3 Weaknesses and competitive threats
13.1.3 AIRBUS DEFENCE AND SPACE
13.1.3.1 Business overview
13.1.3.2 Products/Solutions/Services offered
13.1.3.3 Recent developments
13.1.3.3.1 Deals
13.1.3.3.2 Other developments
13.1.3.4 MnM View
13.1.3.4.1 Right to win
13.1.3.4.2 Strategic choices
13.1.3.4.3 Weaknesses and competitive threats
13.1.4 NORTHROP GRUMMAN
13.1.4.1 Business overview
13.1.4.2 Products/Solutions/Services offered
13.1.4.3 Recent developments
13.1.4.3.1 Deals
13.1.4.3.2 Other developments
13.1.4.4 MnM View
13.1.4.4.1 Right to win
13.1.4.4.2 Strategic choices
13.1.4.4.3 Weaknesses and competitive threats
13.1.5 L3HARRIS TECHNOLOGIES, INC.
13.1.5.1 Business overview
13.1.5.2 Products/Solutions/Services offered
13.1.5.3 Recent developments
13.1.5.3.1 Deals
13.1.5.3.2 Other developments
13.1.5.4 MnM View
13.1.5.4.1 Right to win
13.1.5.4.2 Strategic choices
13.1.5.4.3 Weaknesses and competitive threats
13.1.6 THALES ALENIA SPACE
13.1.6.1 Business overview
13.1.6.2 Products/Solutions/Services offered
13.1.6.3 Recent developments
13.1.6.3.1 Deals
13.1.6.3.2 Expansions
13.1.6.3.3 Other developments
13.1.7 ONEWEB
13.1.7.1 Business overview
13.1.7.2 Products/Solutions/Services offered
13.1.7.3 Recent developments
13.1.7.3.1 Deals
13.1.8 SURREY SATELLITE TECHNOLOGY LTD.
13.1.8.1 Business overview
13.1.8.2 Products/Solutions/Services offered
13.1.8.3 Recent developments
13.1.8.3.1 Deals
13.1.8.3.2 Other developments
13.1.9 PLANET LABS PBC
13.1.9.1 Business overview
13.1.9.2 Products/Solutions/Services offered
13.1.9.3 Recent developments
13.1.9.3.1 Product launches
13.1.9.3.2 Deals
13.1.9.3.3 Other developments
13.1.10 SIERRA NEVADA CORPORATION
13.1.10.1 Business overview
13.1.10.2 Products/Solutions/Services offered
13.1.10.3 Recent developments
13.1.10.3.1 Other developments
13.1.11 MAXAR TECHNOLOGIES
13.1.11.1 Business overview
13.1.11.2 Products/Solutions/Services offered
13.1.11.3 Recent developments
13.1.11.3.1 Other developments
13.1.12 GOMSPACE
13.1.12.1 Business overview
13.1.12.2 Products/Solutions/Services offered
13.1.12.3 Recent developments
13.1.12.3.1 Deals
13.1.12.3.2 Other developments
13.1.13 MITSUBISHI ELECTRIC CORPORATION
13.1.13.1 Business overview
13.1.13.2 Products/Solutions/Services offered
13.1.13.3 Recent developments
13.1.13.3.1 Other developments
13.1.14 EXOLAUNCH GMBH
13.1.14.1 Business overview
13.1.14.2 Products/Solutions/Services offered
13.1.14.3 Recent developments
13.1.14.3.1 Product launches
13.1.14.3.2 Deals
13.1.14.3.3 Other developments
13.1.15 CHINA AEROSPACE SCIENCE AND TECHNOLOGY CORPORATION