¼¼°èÀÇ GPUaaS(GPU As A Service) ½ÃÀå ¿¹Ãø(-2030³â) : ¼­ºñ½º ¸ðµ¨º°, GPU À¯Çüº°, ¹èÆ÷º°, ±â¾÷ À¯Çüº°, ¿ëµµº°, Áö¿ªº°
»óǰÄÚµå : 1696196
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : ¹ßÇ࿹Á¤
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 282 Pages

¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

GPUaaS(GPU As A Service) ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 82¾ï 1,000¸¸ ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025-2030³â¿¡ 26.5%ÀÇ CAGR·Î È®´ëÇϸç, 2030³â¿¡´Â 266¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

GPUaaS ½ÃÀåÀÇ ¼ºÀåÀº ºñµð¿À ·»´õ¸µ, 3D ÄÁÅÙÃ÷ Á¦ÀÛ, ½Ç½Ã°£ ¿ëµµ¿¡¼­ °í¼º´É GPU¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. °ÔÀÓ, ¿µÈ­ Á¦ÀÛ, °ÇÃà µîÀÇ »ê¾÷Àº º¹ÀâÇÑ ½Ã°¢È¿°ú(VFX) ¹× ½Ã¹Ä·¹À̼ÇÀ» À§ÇØ È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ GPU ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, GPUaaS´Â °í°¡ÀÇ ¿ÂÇÁ·¹¹Ì½º GPU Ŭ·¯½ºÅ͸¦ ¾ø¾Ö°í Ŭ¶ó¿ìµå ¸®¼Ò½º¿¡ ´ëÇÑ ¿Âµð¸Çµå ¾×¼¼½º¸¦ Á¦°øÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ¸®¼Ò½º¿¡ ´ëÇÑ ¿Âµð¸Çµå ¾×¼¼½º¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ¾ð¸®¾ó ¿£Áø 5¿Í °°Àº ½Ç½Ã°£ ·»´õ¸µ ¿£Áø°ú AI ±â¹Ý ÄÁÅÙÃ÷ »ý¼ºÀÇ ºÎ»óÀ¸·Î ½ÃÀå ¼ºÀåÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ¸ôÀÔ°¨ ÀÖ´Â °¡»ó °æÇèÀ» Á¦°øÇÏ°í ½ºÆ©µð¿À, °³¹ßÀÚ ¹× ÄÁÅÙÃ÷ Á¦ÀÛÀÚÀÇ Á¦ÀÛ ÀÏÁ¤À» ´ÜÃàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó¿¬µµ 2020-2030³â
±âÁØ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
°ËÅä ´ÜÀ§ ±Ý¾×(10¾ï ´Þ·¯)
ºÎ¹®º° ¼­ºñ½º ¸ðµ¨º°, GPU À¯Çüº°, ¹èÆ÷º°, ±â¾÷ À¯Çüº°, ¿ëµµº°, Áö¿ªº°
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ±âŸ Áö¿ª

ÇÏÀÌ¿£µå GPU ºÎ¹®Àº AI, ML, º¹ÀâÇÑ ½Ã¹Ä·¹À̼ÇÀÇ °è»ê °¡¼ÓÈ­ ¿ä±¸»çÇ× Áõ°¡·Î ÀÎÇØ GPUaaS ½ÃÀå¿¡¼­ ±Þ¼ºÀåÇϰí ÀÖÀ¸¸ç, NVIDIAÀÇ H100 Tensor Core GPU³ª AMDÀÇ Instinct MI300X¿Í °°Àº ÇÏÀÌ¿£µå GPU´Â ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ¹× »ý¼ºÇü AI ¿ëµµÀÇ ÇнÀ¿¡ ÀûÇÕÇÑ ¹æ´ëÇÑ ¿¬»ê ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î Amazon Web Services(AWS)´Â EC2 UltraClusters¿¡ NVIDIA H100 GPU¸¦ žÀçÇÏ¿© 1Á¶ °³ÀÇ ¸Å°³º¯¼ö ±Ô¸ðÀÇ AI ¸ðµ¨À» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î Microsoft Azure¿Í Google Cloud´Â ÇÏÀÌ¿£µå GPU¸¦ ÅëÇÕÇÏ¿© ±â¾÷À» À§ÇÑ È®Àå °¡´ÉÇÑ AI ÀÎÇÁ¶ó¸¦ Á¦°øÇÕ´Ï´Ù. ¿µÈ­ ¹× °ÔÀÓ »ê¾÷µµ ÀÌ·¯ÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ½Ç½Ã°£ ·»´õ¸µ, Ư¼öÈ¿°ú(VFX), ¸ôÀÔÇü °¡»ó °æÇè¿¡ ÇÏÀÌ¿£µå GPU¸¦ »ç¿ëÇϰí, ¿¡ÇȰÔÀÓÁîÀÇ ¾ð¸®¾ó ¿£Áø 5¿Í °°Àº Ç÷§ÆûÀº GPUaaS¸¦ Ȱ¿ëÇÏ¿© Æ÷Å丮¾óÇÑ °¡»ó Á¦ÀÛ¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.¿¡ GPUaaS¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄÉ¾î ¹× °úÇÐ ¿¬±¸ ºÐ¾ß¿¡¼­µµ GPUaaS´Â ½Å¾à °³¹ß ¹× ÀÇ·á ¿µ»ó ºÐ¼®¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ AI µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó ±â¾÷Àº Áõ°¡ÇÏ´Â ÄÄÇ»ÆÃ ¼ö¿ä¸¦ ÃæÁ·Çϱâ À§ÇØ ÇÏÀÌ¿£µå GPU¸¦ ¼±ÅÃÇϰí ÀÖ½À´Ï´Ù. À¯¿¬ÇÑ Á¾·®Á¦ Ŭ¶ó¿ìµå ¸ðµ¨Àº ÀÌ·¯ÇÑ °­·ÂÇÑ Àڻ꿡 ´ëÇÑ Á¢±Ù¼ºÀ» È®´ëÇÏ¿© ÇÏÀÌ¿£µå GPU ºÎ¹®ÀÇ ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­ÇÒ °ÍÀÔ´Ï´Ù.

´ë±â¾÷ ºÎ¹®Àº ³ôÀº ÄÄÇ»ÆÃ ¿ä±¸»çÇ×°ú ±¤¹üÀ§ÇÑ AI µµÀÔÀ¸·Î ÀÎÇØ GPUaaS ½ÃÀå¿¡¼­ °¡Àå ³ôÀº ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷, ¹Ìµð¾î ºÐ¾ßÀÇ ´Ù±¹Àû ´ë±â¾÷, Æ÷ÃáÁö ¼±Á¤ 500´ë ±â¾÷ ¹× ¾÷°è ¼±µÎÁÖÀÚµéÀº ÀÇ·á ¿µ»ó, ½Å¾à °³¹ß, ºÎÁ¤ÇàÀ§ °¨Áö, ½Ç½Ã°£ ºÐ¼® µîÀÇ AI ¿ëµµ¿¡ GPUaaS¸¦ Àû±Ø Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ÇнÀ ¹× ¾Ë°í¸®Áò Æ®·¹À̵ù¿Í °°Àº º¹ÀâÇÑ ¿öÅ©·Îµå¸¦ °ü¸®Çϱâ À§ÇÑ È®Àå °¡´ÉÇÑ GPU ¸®¼Ò½º¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÌ·¯ÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õµéÀº ´ë±â¾÷ÀÇ Ä¿½ºÅ͸¶ÀÌ¡ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Àü¿ë GPU Ŭ·¯½ºÅÍ, ±¤´ë¿ª ³×Æ®¿öÅ©, ±â¾÷±Þ º¸¾ÈÀ» °®Ãá ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ¸ÖƼ Ŭ¶ó¿ìµå ¹× ÇÏÀ̺긮µå Ŭ¶ó¿ìµåÀÇ È®À强À» ÅëÇØ ±â¾÷Àº ÀúÁö¿¬ ¹× °í°¡¿ë¼ºÀ» º¸ÀåÇϸ鼭 ºñ¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº Àå±â °è¾à, ¿¹Ãø °¡´ÉÇÑ GPU »ç¿ë ºñ¿ë ±¸Ãà, ÃֽŠGPU ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼º µîÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ëµµ¸¦ »ç¿ëÇÏ´Â °³¹ß ¾÷°è¿¡¼­´Â ÀÚÀ²ÁÖÇàÂ÷ °³¹ßÀ̳ª À繫 ¸ðµ¨¸µ°ú °°Àº Ȱµ¿¿¡ Àü¿ë GPU ¸®¼Ò½º¸¦ ÇÒ´çÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, AIÀÇ µµÀÔÀÌ Áõ°¡ÇÏ°í µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ´ë±â¾÷Àº GPUaaS ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃÀ» À§ÇÑ À¯¿¬¼º°ú ºñ¿ë È¿À²¼ºÀ» Ȱ¿ëÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ¼ºÀå °¡¼ÓÈ­, AI µµÀÔ Áõ°¡, µ¥ÀÌÅͼ¾ÅÍ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ GPUaaS ½ÃÀå¿¡¼­ Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº Á¤ºÎ ±¸»ó, ¹Î°£ ÅõÀÚ, ±â¼ú Çõ½ÅÀ» ÅëÇØ Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÌ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2023³â 5¿ù Áß±¹ Á¤ºÎ´Â AI »ê¾÷ ±âÁö °Ç¼³ °èȹÀ» ¼¼¿ì°í AI ¿¬±¸¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Éõ AI ±ÔÁ¦ µîÀÇ Á¤Ã¥ÀÌ °ø°ø µ¥ÀÌÅÍ °øÀ¯¿Í ±â¾÷ÀÇ Çõ½ÅÀ» ÃËÁøÇÏ¿© AI µµÀÔÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀϺ»¿¡¼­´Â AI ÀÎÇÁ¶ó¿¡ ¸·´ëÇÑ ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®´Â 2024³â 4¿ù ÀϺ»ÀÇ Å¬¶ó¿ìµå¿Í AI ÀÎÇÁ¶ó¿¡ 29¾ï ´Þ·¯¸¦ ÅõÀÚÇß°í, OracleÀº Ŭ¶ó¿ìµå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³¿¡ 80¾ï ´Þ·¯¸¦ ¾à¼ÓÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·ÎÁ§Æ®¸¦ ÅëÇØ ±â¾÷Àº AI ¿ëµµ¸¦ À§ÇÑ È®Àå °¡´ÉÇÑ GPU ¿ë·®À» ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. Àεµµµ IndiaAI ±¸»óÀ» ÅëÇØ GPUaaS¸¦ µµÀÔÇϰí ÀÖÀ¸¸ç, 2024³â 3¿ù Àεµ Á¤ºÎ´Â AI ¿¬±¸¿Í ½ºÅ¸Æ®¾÷À» À§ÇØ 1¸¸°³ ÀÌ»óÀÇ GPU¸¦ µµÀÔÇϱâ À§ÇØ 1,240¾ï ´Þ·¯ÀÇ ÅõÀÚ¸¦ ½ÂÀÎÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû ÅõÀÚ¿Í ³ë·ÂÀ¸·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀº GPUaaS ½ÃÀå¿¡¼­ °í¼ºÀå Áö¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ GPUaaS(GPU As A Service) ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ¼­ºñ½º ¸ðµ¨º°, GPU À¯Çüº°, ¹èÆ÷º°, ±â¾÷ À¯Çüº°, ¿ëµµº°, Áö¿ªº° µ¿Çâ ¹× ½ÃÀå¿¡ Âü¿©ÇÏ´Â ±â¾÷ÀÇ °³¿ä µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ÁÖ¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå GPUaaSÀÇ °¡°Ý ¸ðµ¨

Á¦7Àå GPUaaS ½ÃÀå, ¼­ºñ½º ¸ðµ¨º°

Á¦8Àå GPUaaS ½ÃÀå, GPU À¯Çüº°

Á¦9Àå GPUaaS ½ÃÀå, ¹èÆ÷º°

Á¦10Àå GPUaaS ½ÃÀå, ±â¾÷ À¯Çüº°

Á¦11Àå GPUaaS ½ÃÀå, ¿ëµµº°

Á¦12Àå GPUaaS ½ÃÀå, Áö¿ªº°

Á¦13Àå °æÀï ±¸µµ

Á¦14Àå ±â¾÷ °³¿ä

Á¦15Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The GPU as a Service market is expected to be worth USD 8.21 billion in 2025 and is estimated to reach USD 26.62 billion by 2030, growing at a CAGR of 26.5% between 2025 and 2030. The growth of the GPU as a Service market is driven by increasing demand for high-performance GPUs in video rendering, 3D content creation, and real-time applications. Industries like gaming, film production, and architecture require scalable and cost-effective GPU solutions for complex visual effects (VFX) and simulations. GPUaaS eliminates the need for expensive on-premises GPU clusters, providing on-demand access to cloud resources. Additionally, the rise of real-time rendering engines like Unreal Engine 5 and AI-driven content generation further accelerates market growth, enabling immersive virtual experiences and reducing production timelines for studios, developers, and content creators.

Scope of the Report
Years Considered for the Study2020-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Billion)
SegmentsBy Service model, GPU type, Business model, Deployment, Enterprise type, Application, and Region
Regions coveredNorth America, Europe, APAC, RoW

"High-end GPU segment to have highest CAGR in the forecasted timeline."

The high-end GPU segment will witness a rapid growth in the GPU as a Service market driven by increasing requirement for accelerated computation in AI, ML, and complicated simulations. High-end GPUs like NVIDIA's H100 Tensor Core GPUs and AMD's Instinct MI300X provide immense computing capabilities making them suitable to train large language models (LLMs) and generative AI applications. For example, Amazon Web Services (AWS) provides EC2 UltraClusters with NVIDIA H100 GPUs to support trillion-parameter AI models. Similarly, Microsoft Azure and Google Cloud integrate high-end GPUs to provide scalable AI infrastructure for enterprises.The film and gaming industries are also contributing to this growth, using high-end GPUs for real-time rendering, special effects (VFX), and immersive virtual experiences. Platforms such as Epic Games' Unreal Engine 5 utilize GPUaaS for photorealistic virtual productions. Also, sectors such as healthcare and scientific research utilize GPUaaS for drug discovery and medical imaging analysis. With increased adoption of AI across industries, businesses opt for high-end GPUs to address growing computational needs. The flexible pay-as-you-go cloud model provides greater access to such powerful assets, further increasing the growth of the high-end GPU segment.

"By Enterprise Type- Large Enterprises segment will hold largest market share of GPU as a Service market in 2030"

The large enterprise segment will hold the highest market share within the GPU as a Service market given their high computing requirements and widespread AI deployment. Multinational conglomerates, Fortune 500 firms and industry titans from sectors such as healthcare, finance, automotive, and media utilize GPUaaS for AI applications such as medical imaging, drug discovery, fraud detection, and real-time analytics to a large extent. The need for scalable GPU resources to manage complex workloads, including large language model (LLM) training and algorithmic trading, drives this growth. Cloud service providers offer tailored solutions with dedicated GPU clusters, high-bandwidth networking, and enterprise-grade security to meet the customization needs of large enterprises. In addition, the scalability of multi-cloud and hybrid cloud deployments allows companies to optimize costs while ensuring low latency and high availability. Enterprises benefit from long-term contracts, constructing predictable GPU usage costs and gaining access to the latest GPU technology. Industries with mission-critical applications often allocate dedicated GPU resources for activities such as autonomous car development and financial modeling. With increasing AI adoption and rising dependence on data-driven decisions, the large corporations will continue to rule the GPUaaS market, leveraging its flexibility and cost-effectiveness for scalable computing.

"Asia Pacific is expected to hold high CAGR in during the forecast period."

Asia Pacific is expected to grow significantly in the GPU as a Service market as a result of accelerating growth in cloud computing, rising adoption of AI, and heavy investments in data center infrastructure. The growth is being led by China, Japan, South Korea, and India through government initiatives, private investment, and technological innovations. For instance, In May 2023, the Chinese government made plans to construct AI industrial bases, driving AI research. Moreover, policies such as the Shenzhen AI Regulation support AI adoption by pushing public data sharing and corporate innovation. Japan is seeing huge investments in AI infrastructure. Microsoft invested USD 2.9 billion in Japan's cloud and AI infrastructure in April 2024, and Oracle pledged USD 8 billion to build cloud data centers. These projects give businesses access to scalable GPU capacity for AI applications. India is also moving ahead with GPUaaS adoption with its IndiaAI initiative. In March 2024, the Indian government sanctioned USD 124 billion in investments to deploy more than 10,000 GPUs, enabling AI research and startups. These strategic investments and efforts make Asia Pacific a high-growth region in the GPUaaS market.

Extensive primary interviews were conducted with key industry experts in the GPU as a Service market space to determine and verify the market size for various segments and subsegments gathered through secondary research. The break-up of primary participants for the report has been shown below: The study contains insights from various industry experts, from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:

The report profiles key players in the GPU as a Service market with their respective market ranking analysis. Prominent players profiled in this report are Amazon web Servies, Inc. (US), Microsoft (US), Google (US), Oracle (US), IBM (US), Coreweave (US), Alibaba Cloud (China), Lambda (US), Tencent Cloud (China), Jarvislabs.ai (India), among others.

Apart from this, Fluidstack (UK), OVH SAS (France), E2E Networks Limited (India), RunPod (US), ScaleMatrix Holdings, Inc. (US), Vast.ai (US), AceCloud (India), Snowcell (Norway), Linode LLC. (US), Yotta Infrastructure (India), VULTR (US), DigitalOcean, LLC. (US), Rackspace Technology (US), Gcore (Luxembourg), and Nebius B.V. (Amsterdam), are among a few emerging companies in the GPU as a Service market.

Research Coverage: This research report categorizes the GPU as a Service market based on service model, GPU type, business model, deployment, enterprise type, application, and region. The report describes the major drivers, restraints, challenges, and opportunities pertaining to the GPU as a Service market and forecasts the same till 2030. Apart from these, the report also consists of leadership mapping and analysis of all the companies included in the GPU as a Service ecosystem.

Key Benefits of Buying the Report The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall GPU as a Service market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 GPU AS A SERVICE PRICING MODELS

7 GPU AS A SERVICE MARKET, BY SERVICE MODEL

8 GPU AS A SERVICE MARKET, BY GPU TYPE

9 GPU AS A SERVICE MARKET, BY DEPLOYMENT

10 GPU AS A SERVICE MARKET, BY ENTERPRISE TYPE

11 GPU AS A SERVICE MARKET, BY APPLICATION

12 GPU AS A SERVICE MARKET, BY REGION

13 COMPETITIVE LANDSCAPE

14 COMPANY PROFILES

15 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â