¼¼°èÀÇ PFAS ¿©°ú ½ÃÀå : ¿À¿°¹°Áú À¯Çüº°, ÃÖÁ¾ »ç¿ë »ê¾÷º°, ȯ°æ ¸Åüº°, Á¤È­ ±â¼úº°, ¼­ºñ½º À¯Çüº°, ±â¼ú À¯Çüº°, Áö¿ªº° ¿¹Ãø(-2029³â)
PFAS Filtration Market by Technology (Water Treatment Systems, Water Treatment Chemicals), Place of Treatment (In-Situ, Ex-Situ), Remediation Technology, Environmental Medium, Contaminant Type, and Region - Global Forecast to 2029
»óǰÄÚµå : 1488303
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2024³â 05¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 216 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 7,162,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,621,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,792,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,469,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

PFAS ¿©°ú ½ÃÀå ±Ô¸ð´Â 2024³â 20¾ï ´Þ·¯¿¡¼­ 7.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2029³â 28¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹¿¡¼­´Â Á¦Á¶, ¹ÝµµÃ¼, È­ÇРó¸® µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ »ê¾÷ÀÌ È®ÀåµÇ¸é¼­ PFAS ÇÔÀ¯ ¹°ÁúÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¦Á¶ ºÎ¹®¿¡¼­´Â PFAS È­ÇÕ¹°ÀÌ ³í½ºÆ½ ÄÚÆÃ, ½Äǰ Æ÷Àå, ¼Ò¹æ¿ë Æû µîÀÇ Á¦Ç°¿¡¼­ ÈçÈ÷ ¹ß°ßµË´Ï´Ù. ¹Ì±¹ ȯ°æº¸È£Ã»(EPA)¿¡ µû¸£¸é, Á¦Á¶¾÷Àº PFAS ¿À¿°ÀÇ ÁÖ¿ä ¿øÃµ Áß ÇϳªÀ̸ç, Æó¼ö¸¦ ÅëÇØ ¼öÁú ¿À¿°¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, EPAÀÇ Ãֽе¥ÀÌÅÍ¿¡ µû¸£¸é ¹Ì±¹ Àü¿ªÀÇ 1,500°³ ÀÌ»óÀÇ ½Ã¼³¿¡¼­ PFAS »ç¿ëÀÌ È®ÀεǾú°Å³ª ÀǽɵǴ °ÍÀ¸·Î È®ÀεǾî ȯ°æ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ȯ°æ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó³âµµ 2020-2022³â
±âÁس⵵ 2023³â
¿¹Ãø ±â°£ 2024-2029³â
°ËÅä ´ÜÀ§ ±Ý¾×(10¾ï ´Þ·¯)
ºÎ¹® ¿À¿°¹°Áú À¯Çüº°, ÃÖÁ¾ »ç¿ë »ê¾÷º°, ȯ°æ ¸Åüº°, Á¤È­ ±â¼úº°, ¼­ºñ½º À¯Çüº°, ±â¼ú À¯Çüº°, Áö¿ªº°
´ë»ó Áö¿ª ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, Áßµ¿/¾ÆÇÁ¸®Ä«, ³²¹Ì

¹ÝµµÃ¼ »ê¾÷Àº ¿¡Äª, ¼¼Á¤Á¦ µî ´Ù¾çÇÑ Á¦Á¶ °øÁ¤¿¡¼­ PFAS ÇÔÀ¯ È­ÇÐ ¹°ÁúÀ» ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, È­ÇРó¸® »ê¾÷Àº À±È°Á¦, °è¸éȰ¼ºÁ¦, ¹æ¿ÀÁ¦ µîÀÇ ¿ëµµ·Î PFAS È­ÇÕ¹°À» »ç¿ëÇÏ¸ç ±× °íÀ¯ÇÑ Æ¯¼º¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, EPAÀÇ ÃÖ±Ù µ¥ÀÌÅÍ¿Í ¾÷°è º¸°í¼­¿¡ µû¸£¸é, ¹Ì±¹ Á¦Á¶¾÷Àº ȯ°æÀ¸·Î ¹èÃâµÇ´Â PFASÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ¹Ì±¹ Àü¿ª¿¡ °ÉÃÄ ¼öõ °³ÀÇ ½Ã¼³¿¡¼­ PFAS ÇÔÀ¯ ¹°ÁúÀ» »ç¿ëÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¶ÇÇÑ ±â¼ú Á¦Á¶¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ¹ÝµµÃ¼ »ê¾÷Àº ´Ù¾çÇÑ °øÁ¤¿¡¼­ PFAS È­Çй°Áú¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. È­ÇÐ °¡°ø »ê¾÷Àº Á¦Á¶ °øÁ¤°ú Á¦Ç° ¹èÇÕ¿¡ ÀÌ·¯ÇÑ ¹°ÁúÀ» »ç¿ëÇÔÀ¸·Î½á PFAS ¿À¿°ÀÇ ÇÑ ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ÀÌ È®´ëµÊ¿¡ µû¶ó PFAS ¿À¿°ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÇØ°áÇØ¾ß ÇÒ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¹Ì±¹ ȯ°æº¸È£Ã»(EPA)°ú ÁÖÁ¤ºÎ ȯ°æ ´ç±¹ÀÇ ±ÔÁ¦ ±âÁØ¿¡ µû¶ó PFAS ¿À¿°À» ÁÙÀ̱â À§ÇÑ ¾ö°ÝÇÑ Á¶Ä¡°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇϰí ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇϱâ À§ÇØ PFAS ¿©°ú ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, PFAS 󸮴 ÀÌ·¯ÇÑ ³­ºÐÇØ¼º À¯ÇØ ¿À¿° ¹°ÁúÀÇ È¯°æ ¹æÃâÀ» ¹æÁöÇÏ°í ¼öÀÚ¿ø°ú °øÁß º¸°ÇÀ» º¸È£ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

PFAS ¿©°ú¸¦ À§ÇÑ ¼öó¸® ½Ã½ºÅÛÀº ¼ö¿ø¿¡¼­ ÀÌ·¯ÇÑ ³­ºÐÇØ¼º È­ÇÐ ¹°ÁúÀ» È¿°úÀûÀ¸·Î Á¦°ÅÇϱâ À§ÇØ ¸î °¡Áö ÷´Ü ±â¼úÀ» »ç¿ëÇÕ´Ï´Ù. ¿ª»ïÅõ¾Ð(RO)Àº ¹ÝÅõ°ú¼º ¸âºê·¹ÀÎÀ» »ç¿ëÇÏ¿© Å©±â¿Í ÀüÇϸ¦ ±âÁØÀ¸·Î PFAS ºÐÀÚ¸¦ ¹°¸®ÀûÀ¸·Î Â÷´ÜÇÏ¿© ³ôÀº Á¦°Å È¿À²À» º¸ÀåÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ³ª³ë ¿©°ú ¹× ÇÑ¿Ü ¿©°ú¿Í °°Àº °í¾Ð ¸· ¿©°ú¹ýÀº ¸·À» ÅëÇØ ¿À¿°¹°ÁúÀ» Á¦°ÅÇÏ´Â ¿ø¸®¸¦ ±â¹ÝÀ¸·Î ÇÏ¿© PFAS¸¦ È¿°úÀûÀ¸·Î Á¦°ÅÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿ÀÁ¸ ¹× °ú»êÈ­¼ö¼Ò ó¸®¿Í °°Àº °íµµ »êÈ­ ó¸®(AOPs)´Â »êÈ­ ¹ÝÀÀÀ» ÅëÇØ PFAS ºÐÀÚ¸¦ ´ú À¯ÇØÇÑ ¼ººÐÀ¸·Î ºÐÇØÇÏÁö¸¸, ÀÌ·¯ÇÑ Ã³¸®´Â º¹ÀâÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. Àü±âÈ­ÇÐÀû »êÈ­/ȯ¿ø ±â¼úÀº ¹°¿¡ Àü·ù¸¦ Èê·Á PFAS ºÐÀÚ¸¦ Àúµ¶¼º ¹°Áú·Î ºÐÇØÇÏ´Â °ÍÀ¸·Î, À¯¸ÁÇÏÁö¸¸ ¾ÆÁ÷ °³¹ß ÁßÀÎ ¹æ¹ýÀ¸·Î¼­ °¡´É¼ºÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úµéÀº ¼öÁú, ó¸® ±Ô¸ð, ±ÔÁ¦ ¿ä°Ç µîÀÇ ¿äÀο¡ µû¶ó °¢±â ´Ù¸¥ ÀÌÁ¡À» Á¦°øÇϸç, PFAS ¿À¿°¿¡ È¿°úÀûÀ¸·Î ´ëÀÀÇϱâ À§ÇÑ ¸ÂÃãÇü ¼Ö·ç¼ÇÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°è PFAS ¿©°ú ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ¿À¿°¹°Áú À¯Çüº°/ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°/ȯ°æ ¸Åüº°/Á¤È­ ±â¼úº°/¼­ºñ½º À¯Çüº°/±â¼ú À¯Çüº°/Áö¿ªº° µ¿Çâ, ½ÃÀå ÁøÃâ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀ» Á¤¸®Çß½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÇÁ¸®¹Ì¾ö ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå PFAS ¿©°ú ½ÃÀå(¿À¿°¹°Áú À¯Çüº°)

Á¦7Àå PFAS ¿©°ú ½ÃÀå(ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°)

Á¦8Àå PFAS ¿©°ú ½ÃÀå(ȯ°æ ¸Åüº°)

Á¦9Àå PFAS ¿©°ú ½ÃÀå(Á¤È­ ±â¼úº°)

Á¦10Àå PFAS ¿©°ú ½ÃÀå(¼­ºñ½º À¯Çüº°)

Á¦11Àå PFAS ¿©°ú ½ÃÀå(±â¼ú À¯Çüº°)

Á¦12Àå PFAS ¿©°ú ½ÃÀå(Áö¿ªº°)

Á¦13Àå °æÀï ±¸µµ

Á¦14Àå ±â¾÷ °³¿ä

Á¦15Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The PFAS filtration market is projected to reach USD 2.8 billion by 2029, at a CAGR of 7.1% from USD 2.0 billion in 2024. The industrial expansion across various sectors in the US, including manufacturing, semiconductor, and chemical processing, has led to an increased utilization of PFAS-containing substances. For instance, in the manufacturing sector, PFAS compounds are commonly found in products like non-stick coatings, food packaging, and firefighting foams. According to the U.S. Environmental Protection Agency (EPA), the manufacturing industry is one of the primary sources of PFAS contamination, contributing to water pollution through wastewater discharge. Recent data from the EPA indicates that over 1,500 facilities across the United States are known or suspected of using PFAS in their operations, resulting in significant environmental impact.

Scope of the Report
Years Considered for the Study2020-2022
Base Year2023
Forecast Period2024-2029
Units ConsideredValue (USD Billion)
SegmentsTechnology, Place of Treatment, End-use Industry, Remediation Technology, Environmental Medium, Containment Type, Service Type and Region
Regions coveredAsia Pacific, North America, Europe, Middle East & Africa, South America

The semiconductor industry extensively employs PFAS-containing chemicals in various manufacturing processes, such as etching and cleaning agents. Similarly, the chemical processing industry relies on PFAS compounds for their unique properties, using them in applications like lubricants, surfactants, and stain repellents. According to recent data from the EPA and industry reports, the manufacturing sector in the US accounts for a significant portion of PFAS emissions into the environment, with estimates suggesting that thousands of facilities across the country use PFAS-containing substances in their operations. Moreover, the semiconductor industry, which plays a crucial role in technology manufacturing, relies on PFAS chemicals for various processes. The chemical processing industry contributes to PFAS contamination through its use of these substances in manufacturing processes and product formulations. As these industries expand, there is a growing need to address the environmental impact of PFAS contamination. Regulatory standards set by agencies such as the EPA and state-level environmental authorities necessitate stringent measures to mitigate PFAS pollution. Consequently, there is an increasing demand for PFAS filtration systems within these industries to comply with regulatory requirements and ensure environmental sustainability. PFAS treatment becomes imperative to prevent the release of these persistent and harmful contaminants into the environment, safeguarding water resources and public health.

"Based on Technology type, water treatment systems segment is expected to be the fastest growing market during the forecast period, in terms of value."

Water treatment systems for PFAS filtration utilize several advanced technologies to effectively remove these persistent chemicals from water sources. Reverse Osmosis (RO) employs semipermeable membranes to physically block PFAS molecules based on their size and charge, ensuring high removal efficiency. Similarly, High-Pressure Membrane Filtration methods like nanofiltration and ultrafiltration operate on the principle of excluding contaminants through membranes, targeting PFAS effectively. Advanced Oxidation Processes (AOPs), such as ozone or hydrogen peroxide treatments, degrade PFAS molecules into less harmful components through oxidation reactions, though these processes can be complex and costly. Electrochemical Oxidation/Reduction techniques apply electric currents to water, breaking down PFAS molecules into less toxic substances, showcasing potential as a promising yet evolving method. Each of these technologies offers distinct advantages depending on factors like water quality, scale of treatment, and regulatory requirements, highlighting the need for tailored solutions in combating PFAS contamination effectively.

.

"Based on remediation technology, activated carbon has the largest market share during the forecast period, in terms of value."

Activated carbon is pivotal in PFAS filtration due to its exceptional ability to adsorb these persistent chemicals from water. PFAS molecules, known for their hydrophobic nature, are attracted to the porous surface of activated carbon, where they adhere through physical forces such as Van der Waals interactions. This adsorption process effectively traps PFAS contaminants within the carbon structure, removing them from the water stream. Activated carbon filtration systems are widely used across various scales, from municipal treatment plants to household filters, offering reliable removal of PFAS like PFOA and PFOS. Moreover, the regenerative nature of activated carbon allows for prolonged use and cost-effectiveness, making it a preferred choice in combating PFAS contamination in drinking water and industrial processes alike.

.

"Based on region, Asia Pacific is the fastest growing market for PFAS filtration in 2023, in terms of value."

The Asia-Pacific region is experiencing rapid growth in PFAS filtration primarily due to several factors. Firstly, industrialization and urbanization across countries in this region have led to increased chemical usage and manufacturing activities, which in turn contribute to higher levels of PFAS contamination in water sources. As awareness of environmental and health risks associated with PFAS grows, there is a greater demand for effective water treatment solutions. Additionally, regulatory frameworks in countries like China, India, and Australia are becoming more stringent regarding water quality standards, necessitating the adoption of advanced filtration technologies like activated carbon and membrane processes for PFAS removal. The region's economic growth has also enabled investment in water infrastructure, including modern filtration technologies, to meet these regulatory requirements and address public health concerns.

In the process of determining and verifying the market size for several segments and subsegments identified through secondary research, extensive primary interviews were conducted. A breakdown of the profiles of the primary interviewees are as follows:

The key players in this market are Veolia (France), AECOM (US), WSP (Canada), Clean Earth (US), Wood (UK), Xylem (US), Jacobs (US), TRC Companies, Inc. (US), Battelle Memorial Institute (US), Cyclopure, Inc. (US).

Research Coverage

This report segments the PFAS filtration market based on technology, remediation technology, place of treatment, service type, environmental medium, contaminant type, end-use industry, and region, and provides estimations for the overall value of the market across various regions. A detailed analysis of key industry players has been conducted to provide insights into their business overviews, products and services, key strategies, new product launches, expansions, and mergers and acquisitions associated with the PFAS filtration market.

Key benefits of buying this report

This research report focuses on various levels of analysis, including industry analysis (industry trends), market ranking analysis of top players, and company profiles, which together provide an overall view of the competitive landscape, emerging and high-growth segments of the PFAS filtration market, high-growth regions, and market drivers, restraints, opportunities, and challenges.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 PFAS FILTRATION MARKET, BY CONTAMINANT TYPE

7 PFAS FILTRATION MARKET, BY END-USE INDUSTRY

8 PFAS FILTRATION MARKET, BY ENVIRONMENTAL MEDIUM

9 PFAS FILTRATION MARKET, BY REMEDIATION TECHNOLOGY

10 PFAS FILTRATION MARKET, BY SERVICE TYPE

11 PFAS FILTRATION MARKET, BY TECHNOLOGY TYPE

12 PFAS FILTRATION MARKET, BY REGION

13 COMPETITIVE LANDSCAPE

14 COMPANY PROFILES

15 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â