Organ Physiological Microsystem Market Report: Trends, Forecast and Competitive Analysis to 2031
상품코드:1881892
리서치사:Lucintel
발행일:2025년 12월
페이지 정보:영문 150 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
세계 장기 생리학적 마이크로시스템 시장은 제약·바이오 기업 및 학계·연구기관 시장에서의 기회를 배경으로 미래가 기대되는 시장입니다. 이 시장은 2025년부터 2031년까지 15%의 연평균 성장률을 보일 것으로 예상됩니다. 주요 성장 요인으로는 첨단 의약품 시험 모델에 대한 수요 증가, 맞춤형 의료 연구에 대한 투자 확대, 의료 분야에서의 장기 온칩 기술 보급 확대 등을 꼽을 수 있습니다.
Lucintel의 예측에 따르면, 유형별로는 다장기 시스템이 예측 기간 동안 더 높은 성장률을 보일 것으로 예상됩니다.
용도별로는 제약 및 바이오 기업용이 더 높은 성장률을 보일 것으로 예상됩니다.
지역별로는 아시아태평양(APAC)이 예측 기간 동안 가장 높은 성장률을 보일 것으로 예상됩니다.
장기 생리학 마이크로시스템(장기 모방 시스템) 시장의 새로운 동향
장기 생리학 마이크로시스템 시장에서는 이 분야를 근본적으로 재구성하는 몇 가지 주요 신흥 트렌드가 진행 중입니다. 이러한 추세에 따라 기술은 단순한 장기 모델에서 신약 개발에서 맞춤형 의료에 이르기까지 광범위한 응용 분야에서 보다 정확하고 예측 가능한 데이터를 제공하는 보다 복잡하고 통합된 자동화 시스템으로 진화하고 있습니다.
다장기 시스템 개발 : 단일 장기 시스템 칩 모델에서 통합형 다장기 시스템, 이른바 '휴먼 칩' 시스템으로의 전환이 두드러진 추세입니다. 이 플랫폼은 간, 폐, 심장 등 서로 다른 장기 모델을 연결하여 장기 간의 상호작용을 시뮬레이션합니다. 이를 통해 전신 약물 대사, 효능, 잠재적 독성에 대한 종합적인 이해가 가능해져 보다 종합적이고 예측 가능한 전임상시험 플랫폼을 제공합니다.
첨단 센서 통합 : 새로운 트렌드로 바이오 센서와 실시간 모니터링 툴을 칩에 직접 통합하는 움직임이 있습니다. 이 센서들은 산소 농도, pH 값, 세포 전기 활동 등 다양한 생리적 파라미터를 실시간으로 측정할 수 있습니다. 이를 통해 연구자들은 지속적이고 정확한 데이터를 얻을 수 있으며, 칩 외 분석의 필요성을 없애고 실험 결과의 처리량과 신뢰성을 향상시킬 수 있습니다.
환자 유래 iPS 세포 활용 : 장기 모델 제작에 있어 환자 유래 유도만능줄기세포(iPS 세포)의 활용이 중요한 추세입니다. 환자 자신의 세포를 이용하여 개인의 고유한 유전자 구성과 생리적 반응을 정확하게 반영하는 맞춤형 질병 모델을 구축할 수 있습니다. 이는 맞춤형 의료의 획기적인 발전이며, 맞춤형 치료법 개발 및 약물 스크리닝을 가능하게 합니다.
자동화 및 하이스루풋 스크리닝 : 시장에서는 자동화 및 하이스루풋을 지원하는 OOC 플랫폼이 추진되고 있습니다. 기업들은 칩 로딩, 배지 교환, 데이터 수집을 처리하는 로봇 시스템과 소프트웨어를 개발 중입니다. 이러한 자동화를 통해 수작업을 줄이고, 인적 오류를 최소화하며, 다수의 화합물을 동시에 스크리닝할 수 있어 OOC 기술의 제약 산업에서의 확장성과 실용성을 향상시킬 수 있습니다.
질병 모델링 및 치료법 : 신경질환, 암, 감염성 질환 등 특정 인간 질병을 모델링하기 위한 OOC 활용이 확대되는 추세입니다. 연구자들은 이러한 시스템을 활용하여 생리적 연관성이 높은 환경에서 질병 메커니즘을 연구하고 새로운 치료 화합물을 시험하고 있습니다. 이러한 응용은 복잡한 질병에 대한 이해를 높이고 새로운 치료법 개발을 가속화하는 데 매우 중요합니다.
이러한 추세에 따라 OOC는 틈새 연구 도구에서 제약 및 생명공학 산업을 위한 고도로 확장 가능하고 예측 정확도가 높은 플랫폼으로 변모하고 있습니다. 초점은 전임상시험과 임상시험 사이의 간극을 메우고, 보다 현실적이고 통합적인 개인화 모델 개발로 옮겨가고 있습니다.
장기 생리학 마이크로시스템 시장의 최근 동향
장기 생리적 마이크로시스템 시장에서는 기술 발전과 응용 범위 확대로 이어지는 몇 가지 주요 발전이 있습니다. 이러한 발전은 플랫폼의 생리적 관련성, 확장성 및 예측 능력 향상에 초점을 맞추고 있으며, 이는 의약품 개발 및 연구 개발의 광범위한 채택에 매우 중요합니다.
첨단 다장기 시스템 : 최근 주요 발전은 보다 진보된 다장기 시스템 온칩 플랫폼의 개발 및 상용화를 들 수 있습니다. 예를 들어, 한 기업은 '장-간-뇌' 시스템을 발표하여 약물 대사와 그 신경학적 영향을 동시에 연구할 수 있도록 했습니다. 이러한 발전으로 약물의 전신에 미치는 영향을 보다 포괄적으로 파악할 수 있게 되어 독성 시험 분야에서 주목을 받고 있습니다.
새로운 재료 및 제조 기술 : 이러한 칩 제조에 사용되는 재료에서 중요한 발전이 이루어지고 있습니다. 연구진은 생체 조직 환경을 보다 충실하게 모방하고 일차 세포의 장기 배양을 지원하는 새로운 고분자 및 생체 재료를 활용하고 있습니다. 이러한 재료의 혁신은 OOC 모델의 생물학적 충실도와 안정성을 향상시켜 보다 신뢰할 수 있고 재현성 있는 결과를 제공합니다.
데이터 분석을 위한 AI 통합 : OOC 실험에서 생성되는 방대한 데이터를 분석하기 위한 인공지능(AI)과 머신러닝의 통합이 주요 발전으로 꼽힙니다. AI 알고리즘은 실시간 센서 데이터와 이미지 분석을 통해 세포의 미묘한 변화를 식별하고 약물 반응을 보다 정확하게 예측할 수 있습니다. 이를 통해 OOC 플랫폼은 약물 스크리닝에 있어 더욱 강력하고 효율적일 수 있습니다.
표준화 및 검증 노력 : 업계 컨소시엄과 규제 기관은 OOC 플랫폼의 표준화 및 검증 가이드라인을 수립하기 위해 적극적으로 노력하고 있습니다. 예를 들어, 최근 생명공학 기업과 규제 당국의 공동 연구는 간독성을 예측하는 OOC 모델을 검증하는 것을 목표로 하고 있습니다. 이러한 발전은 신뢰를 구축하고 규제 당국에 OOC 데이터를 정식으로 제출할 수 있도록 하는 데 있어 매우 중요합니다.
임상 적용 확대 : 주로 전임상 연구에서 사용되어 온 OOC 기술이지만, 현재 첫 임상 적용 사례가 나타나고 있습니다. 최근 환자 유래 종양 온칩을 이용해 여러 항암제를 시험해 특정 환자에게 가장 효과적인 약물을 찾아내는 연구가 대표적입니다. 이는 맞춤형 의료에서 본 기술의 잠재적 가능성을 보여줍니다.
이러한 발전은 기술의 성숙도와 신뢰성을 가속화하여 시장에 영향을 미치고 있습니다. OOC 플랫폼을 개념 증명 단계에서 검증되고 표준화된 도구로 전환하여 의약품 개발 및 임상 워크플로우로의 통합을 촉진하는 데 초점을 맞추고 있습니다. 이를 통해 시간과 자원을 절약할 수 있을 것으로 기대됩니다.
목차
제1장 주요 요약
제2장 시장 개요
배경과 분류
공급망
제3장 시장 동향과 예측 분석
업계 성장 촉진요인과 과제
PESTLE 분석
특허 분석
규제 환경
제4장 세계의 장기 생리학적 마이크로시스템 시장 : 종류별
매력 분석 : 종류별
단일 장기계
다장기계
제5장 세계의 장기 생리학적 마이크로시스템 시장 : 용도별
매력 분석 : 용도별
제약·바이오테크놀러지 기업
학술·연구기관
기타
제6장 지역 분석
제7장 북미의 장기 생리학적 마이크로시스템 시장
북미의 장기 생리학적 마이크로시스템 시장 : 종류별
북미의 장기 생리학적 마이크로시스템 시장 : 용도별
미국의 장기 생리학적 마이크로시스템 시장
멕시코의 장기 생리학적 마이크로시스템 시장
캐나다의 장기 생리학적 마이크로시스템 시장
제8장 유럽의 장기 생리학적 마이크로시스템 시장
유럽의 장기 생리학적 마이크로시스템 시장 : 종류별
유럽의 장기 생리학적 마이크로시스템 시장 : 용도별
독일의 장기 생리학적 마이크로시스템 시장
프랑스의 장기 생리학적 마이크로시스템 시장
스페인의 장기 생리학적 마이크로시스템 시장
이탈리아의 장기 생리학적 마이크로시스템 시장
영국의 장기 생리학적 마이크로시스템 시장
제9장 아시아태평양의 장기 생리학적 마이크로시스템 시장
아시아태평양의 장기 생리학적 마이크로시스템 시장 : 종류별
아시아태평양의 장기 생리학적 마이크로시스템 시장 : 용도별
일본의 장기 생리학적 마이크로시스템 시장
인도의 장기 생리학적 마이크로시스템 시장
중국의 장기 생리학적 마이크로시스템 시장
한국의 장기 생리학적 마이크로시스템 시장
인도네시아의 장기 생리학적 마이크로시스템 시장
제10장 기타 지역(ROW)의 장기 생리학적 마이크로시스템 시장
ROW의 장기 생리학적 마이크로시스템 시장 : 종류별
ROW의 장기 생리학적 마이크로시스템 시장 : 용도별
중동의 장기 생리학적 마이크로시스템 시장
남미의 장기 생리학적 마이크로시스템 시장
아프리카의 장기 생리학적 마이크로시스템 시장
제11장 경쟁 분석
제품 포트폴리오 분석
운영 통합
Porter's Five Forces 분석
시장 점유율 분석
제12장 기회와 전략 분석
밸류체인 분석
성장 기회 분석
세계의 장기 생리학적 마이크로시스템 시장 최신 동향
전략 분석
제13장 밸류체인 전반에 걸친 주요 기업 개요
경쟁 분석
Emulate
Draper Laboratory
Mimetas
TissUse
CN Bio
Hesperos
Nortis
Micronit
Kirkstall
Bi/ond
제14장 부록
KSM
영문 목차
영문목차
The future of the global organ physiological microsystem market looks promising with opportunities in the pharmaceutical & biotechnology company and academic & research institute markets. The global organ physiological microsystem market is expected to grow with a CAGR of 15% from 2025 to 2031. The major drivers for this market are the increasing demand for advanced drug testing models, the rising investments in personalized medicine research, and the growing adoption of organ-on-chip technology in healthcare.
Lucintel forecasts that, within the type category, multi-organ system is expected to witness higher growth over the forecast period.
Within the application category, pharmaceutical & biotechnology company is expected to witness higher growth.
In terms of region, APAC is expected to witness the highest growth over the forecast period.
Emerging Trends in the Organ Physiological Microsystem Market
The organ physiological microsystem market is experiencing several key emerging trends that are fundamentally reshaping the field. These trends are moving the technology beyond simple organ models to more complex, integrated, and automated systems that provide more accurate and predictive data for a range of applications, from drug discovery to personalized medicine.
Development of Multi-Organ Systems: A significant trend is the move from single-organ-on-a-chip models to integrated multi-organ or "human-on-a-chip" systems. These platforms connect different organ models, such as the liver, lung, and heart, to simulate organ-organ interactions. This enables a more comprehensive understanding of systemic drug metabolism, efficacy, and potential toxicity, providing a more holistic and predictive preclinical testing platform.
Integration of Advanced Sensors: An emerging trend is the integration of biosensors and real-time monitoring tools directly onto the chips. These sensors can measure various physiological parameters, such as oxygen levels, pH, and cellular electrical activity, in real-time. This provides researchers with continuous, high-fidelity data, eliminating the need for off-chip analysis and enhancing the throughput and reliability of experimental results.
Use of Patient-Derived iPSCs: The use of patient-derived induced pluripotent stem cells (iPSCs) to create organ models is a key trend. By using a patient's own cells, researchers can create personalized disease models that accurately reflect an individual's unique genetic makeup and physiological response. This is a game-changer for personalized medicine, enabling the development of tailored therapies and drug screening.
Automation and High-Throughput Screening: The market is seeing a push for automated and high-throughput OOC platforms. Companies are developing robotic systems and software to handle chip loading, media exchange, and data collection. This automation reduces manual labor, minimizes human error, and allows for the screening of a large number of compounds simultaneously, making OOC technology more scalable and practical for the pharmaceutical industry.
Disease Modeling and Therapeutics: A growing trend is the use of OOCs to model specific human diseases, such as neurological disorders, cancer, and infectious diseases. Researchers are using these systems to study disease mechanisms and test new therapeutic compounds in a physiologically relevant environment. This application is crucial for advancing our understanding of complex diseases and accelerating the development of new treatments.
These trends are reshaping the market by transforming OOCs from a niche research tool into a sophisticated, scalable, and highly predictive platform for the pharmaceutical and biotechnology industries. The focus is shifting towards creating more realistic, integrated, and personalized models that can bridge the gap between preclinical and clinical trials.
Recent Developments in the Organ Physiological Microsystem Market
The organ physiological microsystem market has seen several key developments that are advancing the technology and expanding its applications. These developments are focused on improving the physiological relevance, scalability, and predictive power of these platforms, which is crucial for their wider adoption in drug development and research.
Advanced Multi-Organ Systems: A major recent development is the creation and commercialization of more sophisticated multi-organ-on-a-chip platforms. For example, a company might launch a "gut-liver-brain" system that allows for the study of drug metabolism and its neurological effects simultaneously. This advancement provides a more complete picture of a drug's systemic impact and is gaining traction for toxicology testing.
Novel Materials and Fabrication: There have been significant developments in the materials used to create these chips. Researchers are using new polymers and biomaterials that better mimic the native tissue environment and support the long-term culture of primary cells. These material innovations are enhancing the biological fidelity and stability of OOC models, leading to more reliable and reproducible results.
AI Integration for Data Analysis: A key development is the integration of artificial intelligence (AI) and machine learning for analyzing the vast amount of data generated by OOC experiments. AI algorithms can process real-time sensor data and image analysis to identify subtle changes in cellular behavior and predict drug responses more accurately. This makes OOC platforms more powerful and efficient for drug screening.
Standardization and Validation Initiatives: Industry consortia and regulatory bodies are actively working on standardizing OOC platforms and establishing validation guidelines. For example, a recent collaboration between a biotech firm and a regulatory agency might aim to validate an OOC model for predicting liver toxicity. This development is crucial for building trust and enabling the formal acceptance of OOC data in regulatory submissions.
Expansion into Clinical Applications: While primarily used in preclinical research, OOC technology is now seeing its first clinical applications. A recent development could be a study using a patient-derived tumor-on-a-chip to test a panel of cancer drugs to determine which is most effective for that specific patient. This demonstrates the technology's potential for personalized medicine.
These developments are impacting the market by accelerating the technology's maturity and credibility. The focus is on moving OOC platforms from a proof-of-concept stage to a validated, standardized tool that is increasingly integrated into the drug development and clinical workflow, promising to save time and resources.
Strategic Growth Opportunities in the Organ Physiological Microsystem Market
The organ physiological microsystem market offers significant strategic growth opportunities by leveraging its unique ability to mimic human physiology. These opportunities are concentrated in high-value applications where OOC technology can provide a superior alternative to traditional models, thereby addressing critical needs in drug development and personalized healthcare.
Drug Discovery and Efficacy Testing: The most significant opportunity lies in replacing or complementing traditional animal models for drug discovery. OOCs can provide more human-relevant data on a drug's efficacy and mechanism of action early in the development process. This can help pharmaceutical companies to screen compounds more effectively, reducing the high rate of drug failure in clinical trials and saving billions in R&D costs.
Toxicology and Safety Assessment: OOC platforms offer a powerful tool for toxicology testing, particularly for organs like the liver, heart, and kidney. Companies can use these models to test for potential organ toxicity of new compounds in a controlled, human-relevant environment, which is a major regulatory requirement. This application is a key growth area, especially with the global push to reduce animal testing.
Personalized and Precision Medicine: A major strategic opportunity is the use of OOCs for personalized medicine. By using patient-derived cells, researchers can create "patient-on-a-chip" models to test which treatments are most effective for an individual. This can revolutionize the treatment of diseases like cancer, enabling doctors to select the best therapy and avoid ineffective or toxic drugs.
Disease Modeling and Pathogenesis Studies: OOC platforms are an excellent tool for modeling human diseases, from genetic disorders to infectious diseases. By recreating the physiological environment of a diseased organ, researchers can study disease progression and test new therapeutic strategies. This application is crucial for advancing our fundamental understanding of human biology and developing targeted treatments.
Cosmetics and Chemical Testing: The cosmetics and consumer goods industries present a significant growth opportunity due to a growing demand for cruelty-free and animal-free testing methods. OOC platforms can be used to test the safety of cosmetic ingredients and chemicals on a human-relevant model, ensuring product safety and meeting evolving consumer and regulatory expectations.
These growth opportunities are impacting the market by highlighting the technology's value proposition across multiple sectors. The focus is on transitioning OOCs from an academic tool to an essential, commercially viable platform that can address major bottlenecks in drug development, improve patient outcomes, and promote ethical testing practices.
Organ Physiological Microsystem Market Driver and Challenges
The organ physiological microsystem market is shaped by a confluence of technological, economic, and regulatory factors. The market's growth is primarily driven by the need for more efficient and ethical methods of drug testing, while its expansion is hindered by significant technical and commercial challenges that must be overcome for widespread adoption.
The factors responsible for driving the organ physiological microsystem market include:
1. Need for Predictive Human Models: The high failure rate of drugs in clinical trials, largely due to poor translation from animal models to humans, is a primary driver. OOC platforms offer a more physiologically relevant and predictive alternative, providing a better understanding of drug efficacy and toxicity in human-like systems before human trials.
2. Growing Focus on Personalized Medicine: The increasing demand for personalized medicine is a key driver. OOCs can be created using a patient's own cells, allowing for the testing of various drug therapies to determine the most effective treatment for that individual. This is a powerful tool for tailoring medicine to specific patients.
3. Reducing Animal Testing: There is a global push, driven by ethical concerns and regulatory changes, to reduce or replace animal testing. OOCs provide a viable alternative that can generate human-relevant data without the use of live animals, making them an attractive option for pharmaceutical, cosmetic, and chemical industries.
4. Technological Advancements: Continuous innovations in microfluidics, biomaterials, and cell culture techniques are driving the market forward. These advancements have enabled the creation of more complex and physiologically realistic OOC models, with integrated sensors and automation capabilities, making the technology more robust and scalable for industrial applications.
5. High Cost of Drug Discovery: The high cost and long timelines of traditional drug discovery are major drivers. By enabling earlier and more accurate screening of drug candidates, OOCs can help companies de-risk their R&D pipelines, reduce late-stage failures, and ultimately lower the overall cost of bringing a new drug to market.
Challenges in the organ physiological microsystem market are:
1. Standardization and Validation: A major challenge is the lack of standardized protocols and validation guidelines for OOC platforms. Variations in chip design, cell sources, and experimental procedures can lead to inconsistent results, making it difficult for regulatory bodies to accept the data and for the industry to adopt the technology on a large scale.
2. High Cost of Platforms: The high initial cost of OOC platforms, including the specialized instrumentation, consumables, and skilled personnel required to operate them, is a significant barrier to widespread adoption. This high cost can be prohibitive for smaller research labs and biotech startups.
3. Replicating Complex Human Physiology: Despite advancements, OOCs still struggle to fully replicate the complexity of the human body, including the immune system, endocrine signaling, and the intricate interaction of multiple organ systems. This limitation means they cannot completely replace animal models for all applications, posing a key challenge for their future growth.
The organ physiological microsystem market is driven by the urgent need for more predictive, cost-effective, and ethical drug development tools. However, its growth is constrained by the challenges of standardization, high costs, and the inherent difficulty of fully replicating human biological complexity. The market's future success depends on addressing these challenges to build trust and achieve widespread adoption.
List of Organ Physiological Microsystem Companies
Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies organ physiological microsystem companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the organ physiological microsystem companies profiled in this report include-
Emulate
Draper Laboratory
Mimetas
TissUse
CN Bio
Hesperos
Nortis
Micronit
Kirkstall
Bi/ond
Organ Physiological Microsystem Market by Segment
The study includes a forecast for the global organ physiological microsystem market by type, application, and region.
Organ Physiological Microsystem Market by Type [Value from 2019 to 2031]:
Single-organ System
Multi-organ System
Organ Physiological Microsystem Market by Application [Value from 2019 to 2031]:
Pharmaceutical & Biotechnology Companies
Academic & Research Institutes
Others
Country Wise Outlook for the Organ Physiological Microsystem Market
The organ physiological microsystem market, encompassing technologies like Organ-on-a-Chip (OOC), is experiencing rapid growth as it revolutionizes drug discovery, toxicology, and personalized medicine. This market is driven by the urgent need for more predictive, human-relevant models that can reduce the reliance on animal testing and lower the high cost of drug development. These platforms offer a more accurate way to model human physiology and disease.
United States: The U.S. is a dominant player, with significant R&D investment from government agencies like the NIH and FDA, and major private sector funding. This has led to the development of advanced multi-organ chips and human-on-a-chip platforms. The focus is on integrating these systems into the drug development pipeline to improve the predictability of clinical trial outcomes and expedite the approval process for new therapies.
China: China is rapidly expanding its presence in the market, driven by substantial government investment in biotechnology and a growing life sciences sector. Researchers and companies are focused on developing their own OOC technologies, particularly for applications in disease modeling and toxicology testing. The country aims to reduce its reliance on international technologies and establish a strong domestic market.
Germany: Germany is a key hub for OOC technology in Europe, leveraging its strong expertise in biomedical engineering and microfluidics. The market is supported by a robust research ecosystem with collaborations between universities and biotech companies. The focus is on creating highly realistic organ models, with recent research efforts aimed at integrating vascular systems to improve the physiological relevance of these platforms.
India: India is emerging as a growth market, with increasing investment in biotechnology and a focus on cost-effective drug discovery and development. The market for OOCs is being driven by the need for alternatives to animal testing and a push for more efficient preclinical research. Academic institutions and startups are leading the development of indigenous OOC technologies.
Japan: Japan's market is characterized by a strong emphasis on regenerative medicine and advanced cell culture techniques. Researchers and companies are developing OOC models using human-induced pluripotent stem cells (iPSCs) to create patient-specific disease models. This focus on personalized medicine and regenerative therapies is a key driver for the adoption of sophisticated physiological microsystems.
Features of the Global Organ Physiological Microsystem Market
Market Size Estimates: Organ physiological microsystem market size estimation in terms of value ($B).
Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.
Segmentation Analysis: Organ physiological microsystem market size by type, application, and region in terms of value ($B).
Regional Analysis: Organ physiological microsystem market breakdown by North America, Europe, Asia Pacific, and Rest of the World.
Growth Opportunities: Analysis of growth opportunities in different types, applications, and regions for the organ physiological microsystem market.
Strategic Analysis: This includes M&A, new product development, and competitive landscape of the organ physiological microsystem market.
Analysis of competitive intensity of the industry based on Porter's Five Forces model.
This report answers following 11 key questions:
Q.1. What are some of the most promising, high-growth opportunities for the organ physiological microsystem market by type (single-organ system and multi-organ system), application (pharmaceutical & biotechnology companies, academic & research institutes, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
Q.2. Which segments will grow at a faster pace and why?
Q.3. Which region will grow at a faster pace and why?
Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
Q.5. What are the business risks and competitive threats in this market?
Q.6. What are the emerging trends in this market and the reasons behind them?
Q.7. What are some of the changing demands of customers in the market?
Q.8. What are the new developments in the market? Which companies are leading these developments?
Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?
Table of Contents
1. Executive Summary
2. Market Overview
2.1 Background and Classifications
2.2 Supply Chain
3. Market Trends & Forecast Analysis
3.2 Industry Drivers and Challenges
3.3 PESTLE Analysis
3.4 Patent Analysis
3.5 Regulatory Environment
4. Global Organ Physiological Microsystem Market by Type
4.1 Overview
4.2 Attractiveness Analysis by Type
4.3 Single-organ System: Trends and Forecast (2019-2031)
4.4 Multi-organ System: Trends and Forecast (2019-2031)
5. Global Organ Physiological Microsystem Market by Application
5.1 Overview
5.2 Attractiveness Analysis by Application
5.3 Pharmaceutical & Biotechnology Companies: Trends and Forecast (2019-2031)
5.4 Academic & Research Institutes: Trends and Forecast (2019-2031)
5.5 Others: Trends and Forecast (2019-2031)
6. Regional Analysis
6.1 Overview
6.2 Global Organ Physiological Microsystem Market by Region
7. North American Organ Physiological Microsystem Market
7.1 Overview
7.2 North American Organ Physiological Microsystem Market by Type
7.3 North American Organ Physiological Microsystem Market by Application
7.4 United States Organ Physiological Microsystem Market
7.5 Mexican Organ Physiological Microsystem Market
7.6 Canadian Organ Physiological Microsystem Market
8. European Organ Physiological Microsystem Market
8.1 Overview
8.2 European Organ Physiological Microsystem Market by Type
8.3 European Organ Physiological Microsystem Market by Application
8.4 German Organ Physiological Microsystem Market
8.5 French Organ Physiological Microsystem Market
8.6 Spanish Organ Physiological Microsystem Market
8.7 Italian Organ Physiological Microsystem Market
8.8 United Kingdom Organ Physiological Microsystem Market
9. APAC Organ Physiological Microsystem Market
9.1 Overview
9.2 APAC Organ Physiological Microsystem Market by Type
9.3 APAC Organ Physiological Microsystem Market by Application
9.4 Japanese Organ Physiological Microsystem Market
9.5 Indian Organ Physiological Microsystem Market
9.6 Chinese Organ Physiological Microsystem Market
9.7 South Korean Organ Physiological Microsystem Market
9.8 Indonesian Organ Physiological Microsystem Market
10. ROW Organ Physiological Microsystem Market
10.1 Overview
10.2 ROW Organ Physiological Microsystem Market by Type
10.3 ROW Organ Physiological Microsystem Market by Application
10.4 Middle Eastern Organ Physiological Microsystem Market
10.5 South American Organ Physiological Microsystem Market
10.6 African Organ Physiological Microsystem Market
11. Competitor Analysis
11.1 Product Portfolio Analysis
11.2 Operational Integration
11.3 Porter's Five Forces Analysis
Competitive Rivalry
Bargaining Power of Buyers
Bargaining Power of Suppliers
Threat of Substitutes
Threat of New Entrants
11.4 Market Share Analysis
12. Opportunities & Strategic Analysis
12.1 Value Chain Analysis
12.2 Growth Opportunity Analysis
12.2.1 Growth Opportunities by Type
12.2.2 Growth Opportunities by Application
12.3 Emerging Trends in the Global Organ Physiological Microsystem Market
12.4 Strategic Analysis
12.4.1 New Product Development
12.4.2 Certification and Licensing
12.4.3 Mergers, Acquisitions, Agreements, Collaborations, and Joint Ventures
13. Company Profiles of the Leading Players Across the Value Chain