Hardware Acceleration Market Report: Trends, Forecast and Competitive Analysis to 2031
상품코드:1806034
리서치사:Lucintel
발행일:2025년 09월
페이지 정보:영문 150 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
세계의 하드웨어 가속 시장 전망은 딥러닝 훈련, 퍼블릭 클라우드 추론 및 엔터프라이즈 클라우드 추론 시장에서 기회를 맞이하며 유망해 보입니다. 세계의 하드웨어 가속 시장은 2025-2031년 연평균 성장률(CAGR)은 49.1%를 나타낼 전망입니다. 이 시장의 주요 촉진요인은 고성능 컴퓨팅에 대한 수요 증가와 클라우드 컴퓨팅 및 데이터 센터의 발전입니다.
Lucintel의 예측에 따르면, 유형별로는 그래픽 처리 장치(GPU)가 예측 기간 동안 가장 높은 성장을 보일 것으로 전망합니다. 게임, 시뮬레이션, 데이터 센터에서 고성능 컴퓨팅 수요 증가로 GPU 활용도가 높아지고 있기 때문입니다.
용도별로는 딥러닝 훈련이 가장 높은 성장을 보일 것으로 예상됩니다. AI 애플리케이션에서 더 빠르고 효율적인 모델 훈련에 대한 수요가 증가하면서 딥러닝에 하드웨어 가속기 사용이 가속되고 있기 때문입니다.
지역별로는 북미가 예측기간 중 가장 높은 성장을 이룰 전망입니다.
하드웨어 가속 시장의 새로운 동향
하드웨어 가속 시장의 새로운 동향은 오늘날 진화하면서 전 세계 다양한 산업의 판도를 바꾸고 있습니다. 이러한 동향 변화는 AI 및 빅데이터 관련 애플리케이션에 대한 의존도가 높아지는 가운데 하드웨어 가속기와 관련된 처리 능력, 효율성 및 적응성이 어떻게 개선되고 있는지를 보여줍니다.
하드웨어 가속에 AI 통합 : AI 워크로드는 종종 막대한 처리 능력을 요구하며, GPU 및 맞춤형 ASIC과 같은 하드웨어 가속기는 범용 프로세서보다 이러한 작업을 더 효율적으로 처리하도록 설계되었습니다. AI 기반 하드웨어 가속기는 머신 러닝, 딥 러닝, 데이터 분석과 같은 애플리케이션에서 핵심적인 역할을 하고 있습니다. 이러한 통합은 의료, 자동차, 금융과 같은 산업에서 성능을 향상시켜 더 빠른 의사 결정과 실시간 인사이트를 가능하게 합니다.
FPGA 활용 : 높은 적응성을 지닌 FPGA는 하드웨어 가속 시장에서 활용됩니다. FPGA는 특정 애플리케이션에 따라 재프로그래밍이 가능합니다. FPGA는 높은 커스터마이징이 가능하며, 통신, 데이터 센터, 자동차 산업에서 저지연 및 고처리량 달성에 적합합니다. 이미지 처리나 비디오 인코딩과 같은 특정 작업을 위한 전용 하드웨어 가속이 필요한 산업에 FPGA는 매우 중요합니다. 이러한 유연성과 작업 최적화 능력은 고성능 컴퓨팅 환경에서 FPGA 사용 증가를 주도하고 있습니다.
엣지 컴퓨팅과 하드웨어 가속의 부상 : 엣지 컴퓨팅은 네트워크 가장자리에서 하드웨어 가속에 대한 강력한 수요를 창출했습니다. 엣지 디바이스는 지연 시간을 피하기 위해 데이터를 로컬에서 실시간으로 처리해야 하는 경우가 많으므로 GPU 및 AI 칩과 같은 하드웨어 가속기가 필수적입니다. 자율 주행, 스마트 시티, IoT와 같이 데이터의 실시간 처리가 중요한 산업에서 엣지 컴퓨팅의 도입이 진행 중입니다. 이러한 추세의 성장은 에지에서 AI 및 머신러닝 모델을 지원하기 위한 하드웨어 가속 필요성에 의해 주도되고 있습니다.
양자 컴퓨팅과 하드웨어 가속 : 새로운 패러다임은 양자 컴퓨팅의 부상입니다. 양자 컴퓨팅은 하드웨어 가속 분야에서 등장한 새로운 트렌드 중 하나임이 분명합니다. 초기 단계에 있는 양자 컴퓨팅은 데이터 처리의 지형을 바꿀 것을 약속합니다 및 전통적인 이진 비트(bit) 대 양자 비트(qubit)의 대결입니다. 최상의 하드웨어 가속기는 양자 컴퓨팅의 향상된 계산 속도를 활용하기 위한 최적화를 목표로 합니다. 이 기술은 암호학, 재료 과학, 복잡한 시뮬레이션 등의 분야에 적용될 가능성이 높습니다. 양자 컴퓨팅이 발전함에 따라 하드웨어 가속기는 이 기술을 실용화 단계로 한 걸음 더 가까이 이끌 중요한 촉진제가 될 것입니다.
블록체인 기술에서 하드웨어 가속기 적용 : 블록체인 기술은 거래 처리 및 검증 가속를 위해 하드웨어 가속기를 활용하기 시작했습니다. 암호화폐 및 탈중앙화 금융(DeFi) 트렌드가 부상함에 따라 효율적인 블록체인 솔루션에 대한 수요가 크게 증가하고 있습니다. ASIC 및 FPGA는 블록체인 네트워크 성능 향상, 처리량 증가, 지연 시간 감소 목적으로 하드웨어 가속기에 적용됩니다. 이를 통해 채굴자가 초당 더 많은 거래를 처리할 수 있게 되어 블록체인 애플리케이션의 효율성과 확장성이 향상될 것입니다. 이러한 추세는 특히 금융 및 공급망 관리 산업에서 중요합니다.
AI 통합, 엣지 컴퓨팅, FPGA 도입, 양자 컴퓨팅, 블록체인 애플리케이션 등 하드웨어 가속 시장의 신흥 트렌드는 산업의 모습을 변화시키고 있으며, 더 빠르고 효율적인 처리 솔루션에 대한 수요에 영향을 미치고 있습니다. 이러한 새로운 애플리케이션이 계속 발전함에 따라 하드웨어 가속기는 여전히 핵심 역할을 수행할 것입니다.
하드웨어 가속 시장의 최근 동향
하드웨어 가속 시장은 고성능 환경에서 데이터 처리 방식을 변화시키는 여러 주요 발전을 목격해 왔습니다. 이러한 발전은 하드웨어 아키텍처의 진보, 신기술과의 통합, 그리고 다양한 분야에서 맞춤형 솔루션에 대한 수요 증가를 반영합니다.
GPU 기술 발전 : GPU는 하드웨어 가속의 최첨단에 있으며, 최근 발전으로 이러한 프로세서의 성능과 효율성이 획기적으로 향상되었습니다. NVIDIA와 AMD와 같은 기업들은 더 빠른 처리 속도, 향상된 메모리, 그리고 더 높은 에너지 효율성을 갖춘 차세대 GPU를 생산해 왔습니다. 이는 실시간으로 데이터를 처리하고 분석하기 위해 높은 연산 능력이 요구되는 게임, AI, 빅데이터 분석 분야의 애플리케이션에 매우 중요합니다.
AI 전용 하드웨어 가속기 : 머신러닝 및 딥러닝 알고리즘 사용이 증가함에 따라 이들은 비약적으로 성장해 왔습니다. 구글의 TPU와 인텔의 Nervana 칩과 같은 기업들은 AI 워크로드를 기반으로 한 전용 하드웨어를 구축합니다. 이러한 가속기는 자연어 처리, 이미지 인식, 자율 주행과 같은 작업의 성능을 최적화하도록 설계되었습니다. 이들은 계산 속도를 향상시키고 에너지 소비를 줄입니다.
데이터 센터에서 FPGA 기술 : FPGA는 전용 작업을 위해 데이터 센터에 점점 더 많이 포함되고 있습니다. FPGA는 유연성과 낮은 지연 시간을 제공하여 암호화, 실시간 분석, 고빈도 거래 등 맞춤형 처리가 필요한 애플리케이션에 적합합니다. 다양한 워크로드에 맞게 재프로그래밍이 가능해 효율성과 확장성이 최우선인 데이터 센터에서 선호되는 선택지입니다. 기업들은 데이터 센터 성능 향상과 운영 비용 절감을 위해 FPGA 솔루션에 대규모 투자를 진행 중입니다.
특수 목적 ASIC 칩의 부상 : 애플리케이션 전용 집적 회로(ASIC)는 하드웨어 가속 분야에서, 특히 블록체인 및 암호화폐 채굴과 같은 영역에서 더욱 두드러지게 부상하고 있습니다. ASIC은 범용 프로세서보다 단일 작업을 더 효율적으로 수행하도록 제작된 맞춤형 칩입니다. 이러한 맞춤형 칩은 암호화폐 채굴이나 비디오 인코딩과 같이 반복적인 계산이 필요한 애플리케이션에 탁월합니다. 전력 소비와 처리 속도 측면에서 효율성은 금융 및 통신과 같은 더 많은 산업 분야에서 활용을 촉진할 것입니다.
자동차 시스템 내 하드웨어 가속기 성장 : 자동차 기업들은 자율주행 차량 시스템에 더 많은 하드웨어 가속기를 도입하고 있습니다. GPU 및 AI 칩을 포함한 하드웨어 가속기는 자율주행 차량 내 실시간 물체 감지, 내비게이션, 의사결정에 필요한 복잡한 알고리즘을 구동합니다. 자동차 산업의 자율주행 및 운전자 보조 시스템에 대한 관심이 증가함에 따라, 센서와 카메라에서 발생하는 대량의 데이터를 처리하기 위한 하드웨어 가속기는 필수 요소가 되고 있습니다. 이러한 추세는 향후 몇 년간 하드웨어 가속 시장의 상당한 성장을 이끌 것으로 예상됩니다.
GPU, AI 전용 하드웨어, FPGA, ASIC 및 자동차 시스템의 발전과 함께 하드웨어 가속의 새로운 트렌드는 다양한 분야에서 혁신 잠재력을 가질 것입니다. 이는 데이터 처리 속도를 높이고 성능 및 운영 효율성을 향상시켜 다양한 애플리케이션에서 더 새롭고, 진보적이며, 효율적인 시스템으로의 문을 열어주고 있습니다.
목차
제1장 주요 요약
제2장 시장 개요
배경과 분류
공급망
제3장 시장 동향과 예측 분석
거시경제 동향과 예측
업계의 촉진요인과 과제
PESTLE 분석
특허 분석
규제 환경
제4장 세계의 하드웨어 가속 시장 : 유형별
개요
매력 분석 : 유형별
그래픽 처리 장치(GPU) : 동향과 예측(2019-2031년)
비디오 처리 장치(VPU) : 동향과 예측(2019-2031년)
AI 가속기 : 동향과 예측(2019-2031년)
정규 표현 가속기 : 동향과 예측(2019-2031년)
암호화 가속기 : 동향과 예측(2019-2031년)
기타 : 동향과 예측(2019-2031년)
제5장 세계의 하드웨어 가속 시장 : 용도별
개요
매력 분석 : 용도별
딥러닝 훈련 : 동향과 예측(2019-2031년)
퍼블릭 클라우드 추론 : 동향과 예측(2019-2031년)
엔터프라이즈 클라우드 추론 : 동향과 예측(2019-2031년)
기타 : 동향과 예측(2019-2031년)
제6장 지역 분석
개요
세계의 하드웨어 가속 시장 : 지역별
제7장 북미의 하드웨어 가속 시장
개요
북미의 하드웨어 가속 시장 : 유형별
북미의 하드웨어 가속 시장 : 용도별
미국의 하드웨어 가속 시장
멕시코의 하드웨어 가속 시장
캐나다의 하드웨어 가속 시장
제8장 유럽의 하드웨어 가속 시장
개요
유럽의 하드웨어 가속 시장 : 유형별
유럽의 하드웨어 가속 시장 : 용도별
독일의 하드웨어 가속 시장
프랑스의 하드웨어 가속 시장
스페인의 하드웨어 가속 시장
이탈리아의 하드웨어 가속 시장
영국의 하드웨어 가속 시장
제9장 아시아태평양의 하드웨어 가속 시장
개요
아시아태평양의 하드웨어 가속 시장 : 유형별
아시아태평양의 하드웨어 가속 시장 : 용도별
일본의 하드웨어 가속 시장
인도의 하드웨어 가속 시장
중국의 하드웨어 가속 시장
한국의 하드웨어 가속 시장
인도네시아의 하드웨어 가속 시장
제10장 기타 지역(ROW)의 하드웨어 가속 시장
개요
기타 지역(ROW)의 하드웨어 가속 시장 : 유형별
기타 지역(ROW)의 하드웨어 가속 시장 : 용도별
중동의 하드웨어 가속 시장
남미의 하드웨어 가속 시장
아프리카의 하드웨어 가속 시장
제11장 경쟁 분석
제품 포트폴리오 분석
운영 통합
Porter's Five Forces 분석
경쟁 기업간 경쟁 관계
바이어의 협상력
공급자의 협상력
대체품의 위협
신규 참가업체의 위협
시장 점유율 분석
제12장 기회와 전략 분석
밸류체인 분석
성장 기회 분석
성장 기회 : 유형별
성장 기회 : 용도별
세계의 하드웨어 가속 시장의 새로운 동향
전략 분석
신제품 개발
인증 및 라이센싱
기업 합병 및 인수(M&A), 계약, 제휴, 합작 사업
제13장 밸류체인의 주요 기업 프로파일
Competitive Analysis
Advanced Micro Devices
Intel Corporation
Lenovo Group
Nvidia Corporation
IBM Corporation
Xilinx
Oracle Corporation
제14장 부록
그림 일람
표 일람
분석 방법
면책사항
저작권
약어와 기술 단위
Lucintel 소개
문의
HBR
영문 목차
영문목차
The future of the global hardware acceleration market looks promising with opportunities in the deep learning training, public cloud inference, and enterprise cloud inference markets. The global hardware acceleration market is expected to grow with a CAGR of 49.1% from 2025 to 2031. The major drivers for this market are the growing demand for high-performance computing and the advancements in cloud computing & data centers.
Lucintel forecasts that, within the type category, graphics processing units are expected to witness the highest growth over the forecast period due to increasing demand for high-performance computing in gaming, simulations, and data centers, which is boosting GPU utilization.
Within the application category, deep learning training is expected to witness the highest growth due to the growing demand for faster and more efficient model training in AI applications, which is accelerating the use of hardware accelerators in deep learning.
In terms of region, North America is expected to witness the highest growth over the forecast period.
Emerging Trends in the Hardware Acceleration Market
Hardware acceleration market emerging trends are changing the game of different industries worldwide as it evolves today. These changes in trends show how processing, efficiency, and adaptability related to hardware accelerators are being improved while heightened reliance on applications related to AI and big data.
The integration of AI into hardware acceleration: AI workloads often require massive processing power, and hardware accelerators like GPUs and custom ASICs are designed to handle these tasks more efficiently than general-purpose processors. AI-driven hardware accelerators are becoming crucial in applications such as machine learning, deep learning, and data analytics. This integration improves performance in industries such as healthcare, automotive, and finance, allowing for faster decision-making and real-time insights.
Utilization of FPGAs: With the usage of FPGAs that are highly adaptable, they are utilized in the hardware acceleration market. FPGAs can be reprogrammed according to specific applications. FPGAs are highly customizable and are suitable for applications like telecommunications, data centers, and automotive with respect to achieving low latency and high throughput. FPGAs are of great importance to those industries that have specific tasks, such as image processing or video encoding, for dedicated hardware acceleration. Their flexibility and ability to optimize tasks are driving their increasing use in high-performance computing environments.
Rise of Edge Computing and Hardware Acceleration: Edge computing has given rise to a strong demand for hardware acceleration at the network's edge. Edge devices often need to process data locally and in real-time to avoid latency, so hardware accelerators such as GPUs and AI chips are essential. The adoption of edge computing is taking place in industries such as autonomous driving, smart cities, and IoT, where real-time processing of data is critical. The growth in this trend is being driven by the need for hardware acceleration to support AI and machine learning models at the edge.
Quantum Computing and Hardware Acceleration: The new paradigm is the rise of quantum computing. No doubt, quantum computing is one of the new trends that emerged in hardware acceleration. In its infancy, quantum computing promises to change the landscape of processing data-traditional binary bits versus the quantum bit, or qubits. The best hardware accelerators aim for optimization to leverage enhanced calculation speeds into quantum computing. This technology is likely to be applied in areas such as cryptography, material science, and complex simulations. As quantum computing advances, hardware accelerators are going to become an important enabler of this technology to bring it closer to being used in practice.
Application of Hardware Accelerators in Blockchain Technology: Blockchain technology has started using hardware acceleration for accelerating the processing and verification of transactions. As the cryptocurrency and decentralized finance (DeFi) trend rises, there is a great demand for efficient blockchain solutions. ASICs and FPGAs are applied in hardware accelerators to boost the performance of blockchain networks, increase throughput, and decrease latency. With this, the efficiency and scalability of blockchain applications will be increased due to miners' ability to process more transactions per second. This trend is particularly important in the finance and supply chain management industries.
Emerging trends in the hardware acceleration market, like AI integration, edge computing, FPGA adoption, quantum computing, and blockchain applications, are all changing the face of industries and are impacting demand for faster and more efficient processing solutions. As these new applications continue to develop, hardware accelerators will remain at the epicenter of the action.
Recent Developments in the Hardware Acceleration Market
The hardware acceleration market has witnessed several key developments that are transforming the way data is processed in high-performance environments. These developments reflect advances in hardware architecture, integration with emerging technologies, and the growing demand for custom solutions across various sectors.
Advancements in GPU Technology: GPUs are at the cutting edge of hardware acceleration, and the latest developments have dramatically improved the performance and efficiency of these processors. Companies such as NVIDIA and AMD have produced newer generations of GPUs with faster processing, improved memory, and greater energy efficiency. All this is critical for applications in gaming, AI, and big data analytics, where high computational power is required to process and analyze data in real-time.
AI-Specific Hardware Accelerators: They have grown in leaps and bounds since the increasing growth of machine and deep learning algorithm usage. Companies such as Google with its TPU and Intel with its Nervana chips build specialized hardware based on AI workloads. These accelerators are designed to optimize the performance of tasks like natural language processing, image recognition, and autonomous driving. They improve computation speed and decrease energy consumption.
FPGA Technology in Data Centers: FPGAs are being increasingly included in data centers for dedicated tasks. FPGAs provide flexibility and low latency, which are suitable for applications that need customized processing, such as encryption, real-time analytics, and high-frequency trading. They can be reprogrammed for different workloads, making them a popular choice for data centers, where efficiency and scalability are paramount. Companies are investing heavily in FPGA solutions to improve the performance of data centers and reduce their operating costs.
Rise of Specialized ASIC Chips: Application-specific integrated circuits (ASICs) have become more prominent in hardware acceleration, especially in areas such as blockchain and cryptocurrency mining. Custom chips made to perform a single task more efficiently than a general-purpose processor are ASICs. Such custom chips are great for applications requiring repetitive computations, such as cryptocurrency mining or video encoding. Their efficiency in power consumption and processing speed will also encourage their use in more industries, such as finance and telecommunications.
Growth of Hardware Accelerators in Automotive Systems: Automotive companies are adopting more hardware accelerators in autonomous vehicle systems. Hardware accelerators, including GPUs and AI chips, power complex algorithms necessary for the real-time detection of objects, navigation, and decisions inside an autonomous vehicle. With the growing interest of the automotive industry in autonomous driving and driver assistance systems, hardware accelerators are becoming a critical necessity for processing large volumes of data from sensors and cameras. This trend is expected to drive significant growth in the hardware acceleration market in the coming years.
New trends in hardware acceleration with advances in GPUs, AI-specific hardware, FPGA, ASIC, and automotive systems will have an innovation potential across different sectors. This is bringing a faster pace to data processing and better performance as well as operational efficiency, thereby opening the gateways for newer, advanced, and more efficient systems in various applications.
Strategic Growth Opportunities in the Hardware Acceleration Market
The hardware acceleration market holds immense growth opportunities across key applications due to advancements in processing technologies and the need for high-performance computing. All these opportunities are setting up the future for industries like AI, automotive, finance, and telecommunication.
AI and Machine Learning Applications: The growing demand for AI and machine learning applications presents a significant growth opportunity for hardware accelerators. AI algorithms require significant computational power, and hardware accelerators like GPUs, TPUs, and FPGAs are designed to meet these needs. As AI adoption increases across industries like healthcare, automotive, and finance, the need for more efficient and specialized hardware accelerators will continue to rise.
Edge Computing and IoT: Edge computing is increasingly becoming a fundamental component of the hardware acceleration market, especially as the Internet of Things (IoT) continues to grow. Edge devices should process data locally to reduce latency and enhance real-time decision-making. Hardware accelerators, such as AI chips and GPUs, are really important for allowing faster data processing at the edge. These have made low-latency processing essential to applications such as autonomous vehicles, smart cities, and industrial IoT.
Blockchain and Cryptocurrency: Blockchain technology is a major market driver for the hardware acceleration business, especially mining cryptocurrencies. It requires specialized hardware, such as ASICs and FPGAs, to process transactions and mine cryptocurrencies efficiently. As blockchain technology expands into other sectors in finance and supply chain management, the demand for these hardware accelerators will grow. This opportunity will allow firms to develop solutions that optimize blockchain performance for marketing.
High-Performance Computing (HPC): Rising applications of HPC are also a key growth opportunity. As industries such as research, simulation, and analytics of complex data require HPC, hardware accelerators like GPUs, TPUs, and FPGAs can have a huge impact in speeding up computations. The increasing necessity for faster, more efficient computational capability is driving hardware accelerators in the data centers of research institutions and academic environments.
Automotive and Autonomous Vehicles: The automotive sector, especially autonomous driving, presents tremendous growth potential for hardware accelerators. Processing real-time sensor and camera data in self-driving cars requires high-performance hardware accelerators to fuel algorithms for object detection, navigation, and decision-making. As the automotive industry continues to innovate in autonomous driving and ADAS (Advanced Driver Assistance Systems), so will the demand for hardware accelerators.
Future opportunities in AI, edge computing, blockchain, HPC, and automotive systems are driving strategic growth in the hardware acceleration market. These areas present a picture where hardware accelerators play an indispensable role in applications involving performance improvement, scalability, and efficiency.
Hardware Acceleration Market Driver and Challenges
Technological advancement, economic pressure, and regulatory considerations are factors that influence the hardware acceleration market. These drivers and challenges affect the adoption and growth of hardware accelerators across industries, thereby determining the direction of market trends and innovation.
The factors responsible for driving the hardware acceleration market include:
1. Technological advancements: Hardware acceleration is driven by the growth of processing technologies, such as GPUs, FPGAs, and ASICs. In fact, these innovations allow complex workloads to be processed much faster and more efficiently. Therefore, hardware accelerators play a role in applications relating to AI, machine learning, and high-performance computing.
2. Rising demand for AI and big data: The increased use of AI, machine learning, and big data analytics is one of the biggest drivers for hardware accelerators. These technologies require a huge amount of computational power, and hardware accelerators provide the necessary speed and efficiency to handle large datasets and complex algorithms.
3. Cloud computing and data center boom: As the boom of cloud computing and data centers continues, so does the rise in demand for hardware accelerators. Data centers are using high-performance hardware for AI, big data, and virtualization technologies, further increasing the requirements with the boom in cloud.
4. Edge computing and IoT growth: Edge computing and the Internet of Things, in general, are creating increased demand for hardware accelerators located at the network's edge. Low-latency processing and real-time decision-making require specialist hardware to undertake local computations that will be creating new growth opportunities in hardware acceleration technology.
5. Advances in automotive technologies: The use of autonomous vehicles and other automotive-related technologies is advancing the use of hardware accelerators because these systems must operate with real-time processing to ensure both safety and efficiency.
Challenges in the hardware acceleration market are:
1. High cost of specialized hardware: Among the main challenges in the hardware acceleration market is the high cost associated with specialized hardware. These include high-performance chips such as GPUs, FPGAs, and ASICs, which are very expensive to design and deploy. Access is thereby limited to small businesses and startups.
2. Complex integration with existing systems: Integrating hardware accelerators into existing infrastructures can be complex and costly. Many companies face challenges in ensuring compatibility between new hardware and legacy systems, which can slow down adoption and reduce overall efficiency.
3. Privacy and data security concerns: As hardware accelerators handle large volumes of sensitive data, privacy and data security concerns are significant challenges. Companies must ensure that their systems comply with data protection regulations and securely handle user data to avoid security breaches.
The growing demand for AI and big data, technological advancement, and the growth of cloud computing, edge computing, and automotive technologies drive the hardware acceleration market. But high costs, integration complexities, and data security issues need to be overcome to maintain growth and acceptance of hardware accelerators.
List of Hardware Acceleration Companies
Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leveraging integration opportunities across the value chain. With these strategies, hardware acceleration companies cater to increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the hardware acceleration companies profiled in this report include:
Advanced Micro Devices
Intel Corporation
Lenovo Group
Nvidia Corporation
IBM Corporation
Xilinx
Oracle Corporation
Hardware Acceleration Market by Segment
The study includes a forecast for the global hardware acceleration market by type, application, and region.
Hardware Acceleration Market by Type [Value from 2019 to 2031]:
Graphics Processing Unit
Video Processing Unit
AI Accelerator
Regular Expression Accelerator
Cryptographic Accelerator
Others
Hardware Acceleration Market by Application [Value from 2019 to 2031]:
Deep Learning Training
Public Cloud Inference
Enterprise Cloud Inference
Others
Hardware Acceleration Market by Region [Value from 2019 to 2031]:
North America
Europe
Asia Pacific
The Rest of the World
Country Wise Outlook for the Hardware Acceleration Market
The hardware acceleration market is growing rapidly as industries around the world embrace innovations that enhance processing speeds and reduce computational workloads. Hardware acceleration is the use of specialized hardware components to perform certain functions more efficiently than software alone. In markets such as the United States, China, Germany, India, and Japan, the adoption of hardware acceleration solutions is being driven by advancements in AI, machine learning, and high-performance computing. This technology is particularly critical in applications such as data centers, gaming, automotive, and cloud computing, where performance and scalability are critical.
United States: The hardware acceleration market in the United States is growing rapidly due to advancements in AI and data center technologies. Major players like NVIDIA and Intel are leading the market with GPU and FPGA solutions that improve processing efficiency and speed. The growing use of cloud computing and the rise in the demand for AI-based applications have dramatically increased the demand for hardware acceleration. Another reason is that U.S. companies are highly investing in research and development in hardware accelerators to increase their performance to efficiently support big data analytics and real-time decision-making systems.
China: The hardware acceleration market in China is booming with the pace of technological advancements and increasing focus on artificial intelligence (AI) and 5G networks. Among those companies engaged in the development of customized hardware accelerators, such as AI chips designed for deep learning applications, Baidu and Huawei are at the forefront in China. The Chinese government has also been prompting advancements in high-performance computing (HPC) and AI-driven technologies; thus, growing the demand for hardware acceleration solutions in industries such as autonomous vehicles, healthcare, and manufacturing. This country is likely to expand this market since it aims to be a world leader in AI.
Germany: The hardware acceleration market in Germany is expanding because of the growing demand for high-performance computing (HPC) and data analytics solutions. The automotive, healthcare, and manufacturing sectors have been the highest adopters of hardware acceleration technology. Companies such as SAP are developing AI-driven hardware solutions to enable data processing capabilities to speed up and enhance overall operations. There is also growing support from Germany toward Industry 4.0 and further digital transformation processes in manufacturing industries. The use of hardware accelerators, such as GPUs and FPGAs, is increasing efficiency for complex simulations and real-time processing in these industries.
India: The use of hardware acceleration technology in the country is on an uptrend, with the country's IT and telecommunications markets growing multifold. Improvements in AI, big data, and cloud computing infrastructure being pursued by the Indian government have increased the demand for specialized hardware. Companies in India are integrating AI, machine learning, and high-performance computing solutions into their operations, and the use of hardware accelerators is becoming critical for optimizing these applications. In the semiconductor industry, startups are also contributing to the development of custom hardware accelerators, which enhance performance for domestic and international clients.
Japan: Hardware acceleration is being adopted across several sectors, including automotive, robotics, and electronics, in Japan. Japanese companies like Sony and Toyota are integrating hardware acceleration solutions into their research and development of AI-powered robotics and autonomous vehicles. The growing demand for real-time data processing in industries like healthcare and manufacturing is driving the expansion of hardware acceleration technologies, including GPUs and FPGAs. Japan's focus on technological innovation, particularly in AI and robotics, is propelling the demand for hardware accelerators to improve processing efficiency and enable more advanced machine learning algorithms.
Features of the Global Hardware Acceleration Market
Market Size Estimates: Hardware acceleration market size estimation in terms of value ($B).
Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.
Segmentation Analysis: Hardware acceleration market size by type, application, and region in terms of value ($B).
Regional Analysis: Hardware acceleration market breakdown by North America, Europe, Asia Pacific, and Rest of the World.
Growth Opportunities: Analysis of growth opportunities in different types, applications, and regions for the hardware acceleration market.
Strategic Analysis: This includes M&A, new product development, and the competitive landscape of the hardware acceleration market.
Analysis of the competitive intensity of the industry based on Porter's Five Forces model.
This report answers the following 11 key questions:
Q.1. What are some of the most promising, high-growth opportunities for the hardware acceleration market by type (graphics processing unit, video processing unit, AI accelerator, regular expression accelerator, cryptographic accelerator, and others), application (deep learning training, public cloud inference, enterprise cloud inference, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
Q.2. Which segments will grow at a faster pace and why?
Q.3. Which region will grow at a faster pace and why?
Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
Q.5. What are the business risks and competitive threats in this market?
Q.6. What are the emerging trends in this market and the reasons behind them?
Q.7. What are some of the changing demands of customers in the market?
Q.8. What are the new developments in the market? Which companies are leading these developments?
Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?
Table of Contents
1. Executive Summary
2. Market Overview
2.1 Background and Classifications
2.2 Supply Chain
3. Market Trends & Forecast Analysis
3.1 Macroeconomic Trends and Forecasts
3.2 Industry Drivers and Challenges
3.3 PESTLE Analysis
3.4 Patent Analysis
3.5 Regulatory Environment
4. Global Hardware Acceleration Market by Type
4.1 Overview
4.2 Attractiveness Analysis by Type
4.3 Graphics Processing Unit: Trends and Forecast (2019-2031)
4.4 Video Processing Unit: Trends and Forecast (2019-2031)
4.5 AI Accelerator: Trends and Forecast (2019-2031)
4.6 Regular Expression Accelerator: Trends and Forecast (2019-2031)
4.7 Cryptographic Accelerator: Trends and Forecast (2019-2031)
4.8 Others: Trends and Forecast (2019-2031)
5. Global Hardware Acceleration Market by Application
5.1 Overview
5.2 Attractiveness Analysis by Application
5.3 Deep Learning Training: Trends and Forecast (2019-2031)
5.4 Public Cloud Inference: Trends and Forecast (2019-2031)
5.5 Enterprise Cloud Inference: Trends and Forecast (2019-2031)
5.6 Others: Trends and Forecast (2019-2031)
6. Regional Analysis
6.1 Overview
6.2 Global Hardware Acceleration Market by Region
7. North American Hardware Acceleration Market
7.1 Overview
7.2 North American Hardware Acceleration Market by Type
7.3 North American Hardware Acceleration Market by Application
7.4 United States Hardware Acceleration Market
7.5 Mexican Hardware Acceleration Market
7.6 Canadian Hardware Acceleration Market
8. European Hardware Acceleration Market
8.1 Overview
8.2 European Hardware Acceleration Market by Type
8.3 European Hardware Acceleration Market by Application
8.4 German Hardware Acceleration Market
8.5 French Hardware Acceleration Market
8.6 Spanish Hardware Acceleration Market
8.7 Italian Hardware Acceleration Market
8.8 United Kingdom Hardware Acceleration Market
9. APAC Hardware Acceleration Market
9.1 Overview
9.2 APAC Hardware Acceleration Market by Type
9.3 APAC Hardware Acceleration Market by Application
9.4 Japanese Hardware Acceleration Market
9.5 Indian Hardware Acceleration Market
9.6 Chinese Hardware Acceleration Market
9.7 South Korean Hardware Acceleration Market
9.8 Indonesian Hardware Acceleration Market
10. ROW Hardware Acceleration Market
10.1 Overview
10.2 ROW Hardware Acceleration Market by Type
10.3 ROW Hardware Acceleration Market by Application
10.4 Middle Eastern Hardware Acceleration Market
10.5 South American Hardware Acceleration Market
10.6 African Hardware Acceleration Market
11. Competitor Analysis
11.1 Product Portfolio Analysis
11.2 Operational Integration
11.3 Porter's Five Forces Analysis
Competitive Rivalry
Bargaining Power of Buyers
Bargaining Power of Suppliers
Threat of Substitutes
Threat of New Entrants
11.4 Market Share Analysis
12. Opportunities & Strategic Analysis
12.1 Value Chain Analysis
12.2 Growth Opportunity Analysis
12.2.1 Growth Opportunities by Type
12.2.2 Growth Opportunities by Application
12.3 Emerging Trends in the Global Hardware Acceleration Market
12.4 Strategic Analysis
12.4.1 New Product Development
12.4.2 Certification and Licensing
12.4.3 Mergers, Acquisitions, Agreements, Collaborations, and Joint Ventures
13. Company Profiles of the Leading Players Across the Value Chain