High Speed Steel Market Report: Trends, Forecast and Competitive Analysis to 2030
°í¼Óµµ° µ¿Çâ ¹× Àü¸Á
¼¼°è °í¼Óµµ° ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö 6.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î 2030³â±îÁö ¾à 31¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº Á¦Á¶ ¹× °Ç¼³ »ê¾÷¿¡¼ °í¼Ó°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ¼¼°è ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ® Áõ°¡ÀÔ´Ï´Ù. ¼¼°è °í¼Óµµ° ½ÃÀåÀÇ ¹Ì·¡´Â ÀÚµ¿Â÷, Á¦Á¶, Ç×°ø¿ìÁÖ, ±â°è°øÇÐ, °Ç¼³ ½ÃÀå¿¡¼ÀÇ ±âȸ·Î ÀÎÇØ À¯¸ÁÇÕ´Ï´Ù.
LucintelÀÇ ¿¹Ãø¿¡ µû¸£¸é ¸ô¸®ºêµ§Àº ³»¸¶¸ð¼º, °í¿Â °µµ ¹× °æµµ°¡ ¿ì¼öÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÌ ½ÃÀå Áß ÀÚµ¿Â÷´Â ÀÚµ¿Â÷ ºÎǰ Á¦Á¶¿ë °í¼Óµµ°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì´Â °æÁ¦ ¼ºÀå, °í¼Óµµ°¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ Áõ°¡, ÁÖ¿ä ±â¾÷ÀÇ ÁøÃâ·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°í¼Óµµ° ½ÃÀåÀÇ »õ·Î¿î µ¿Çâ
°í¼Óµµ° »ê¾÷Àº ÇöÀç ¿©·¯ °¡Áö Çõ½ÅÀûÀÎ º¯È¸¦ °æÇèÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀº ±â¼ú ¹ßÀü°ú ¼ÒºñÀÚ ¼±È£µµ º¯È¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖÀ¸¸ç, ¼º´É, Áö¼Ó°¡´É¼º ¹× ºñ¿ë È¿À²¼º Çâ»óÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
- °í±Þ ÇÕ±Ý ±¸¼º: HSS Á¦Á¶¿¡ »ç¿ëµÇ´Â ÇÕ±Ý ¿ø¼ÒÀÇ Çõ½ÅÀ¸·Î ÅÖ½ºÅÙ, ¸ô¸®ºêµ§ ¹× ÄÚ¹ßÆ®ÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ´õ ³ôÀº ¼öÁØÀÇ °æµµ, Çâ»óµÈ ³»¸¶¸ð¼º, Çâ»óµÈ ¿ ¾ÈÁ¤¼ºÀ» Á¦°øÇÏ¿© ¼³°èµÈ °ø±¸ÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í °í¼Ó °¡°ø¿¡¼ ´õ È¿À²ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
- ºÐ¸» ¾ß±Ý: ºÐ¸» ¾ß±Ý °øÁ¤ÀÇ Ã¤Å÷üÀÌ ³ô¾ÆÁ® °í¹Ðµµ Ãʹ̸³ÀÚ HSS¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±ÕÀϼº°ú °°Àº ¿ì¼öÇÑ ±â°èÀû Ư¼ºÀ» ¾òÀ» ¼ö ÀÖ¾î ¼ö¸íÀÌ ±ä °íǰÁú Àý»è °ø±¸¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù.
- ģȯ°æ »ý»ê: Àü ¼¼°è HSSE Á¦Á¶ ȸ»çµéÀº Áö¼Ó °¡´ÉÇÑ °³¹ß¿¡ °ü½ÉÀ» ±â¿ïÀ̰í ÀÖÀ¸¸ç, HSSE ½ºÅ©·¦ÀÇ ÀçȰ¿ëÀÌ ¼ö½Ã·Î È®´ëµÇ´Â ÇÑÆí, ¹èÃâ °¨¼Ò¿Í °°Àº ¿¡³ÊÁö Àý¾à Ȱµ¿ÀÌ ½ÃµµµÇ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Á¦Ç° »ý»ê°ú °ü·ÃµÈ »ýÅ ¹ßÀÚ±¹À» ÁÙÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÇ ¼¼°è ¿øÄ¢¿¡ ºÎÇÕÇϵµ·Ï ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
- °í±Þ ÄÚÆÃ ±â¼ú : HSS °ø±¸ÀÇ ¼º´ÉÀº ¹°¸®Àû ÁõÂø(PVD) ¹× ÈÇÐÀû ÁõÂø(CVD)°ú °°Àº °í±Þ ÄÚÆÃ ±â¼úÀ» ÅëÇØ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ³»¿¼º, ³»¸¶¸ð¼º ¹× ³»½Ä¼ºÀ» Çâ»ó½ÃÄÑ °ø±¸ ¼ö¸íÀ» ¿¬ÀåÇϰí Àý»è È¿À²À» Çâ»ó½Ãŵ´Ï´Ù.
- µðÁöÅÐ ÅëÇÕ: HSS ¼³°è ¹× Á¦Á¶´Â ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×À» Æ÷ÇÔÇÑ µðÁöÅÐ ÅëÇÕÀ» ÅëÇØ Çõ½ÅµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ Áö¿øÇÏ´Â Á¦Á¶ °øÁ¤ÀÇ Á¤¹ÐÇÑ Á¦¾î´Â ÀϰüµÈ ǰÁúÀ» º¸ÀåÇϴ Ư¼ºÀ» ÃÖÀûÈÇÏ°í ¼º´ÉÀ» Çâ»ó½ÃÄÑ ºñ¿ë Àý°¨À¸·Î À̾îÁý´Ï´Ù.
¼º´É Çâ»ó, ȯ°æ ºÎÇÏ °¨¼Ò, È¿À²¼º Çâ»óÀ» ¸ñÇ¥·Î ÇÏ´Â HSS ¾÷°è¿¡¼ ÀϾ°í ÀÖ´Â Å« º¯ÈÀÔ´Ï´Ù. ÷´Ü ±â¼ú¿¡ ´ëÇÑ °ü½É°ú »ýÅ °æÁ¦Àû Á¢±Ù ¹æ½ÄÀº °í¼Óµµ° »ç¿ëÀÇ »õ·Î¿î ¼öÁØÀ» °áÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÃÖ±Ù °í¼Óµµ° ½ÃÀå µ¿Çâ
°í¼Ó°Àº ÃÖ±Ù Àç·á °úÇÐÀÇ Çõ½Å, ƯÁ¤ ¿ä±¸ »çÇ× ¹× Á¦Á¶¿¡ »ç¿ëµÇ´Â ´Ù¾çÇÑ Á¦Á¶ °øÁ¤À¸·Î ÀÎÇØ Å« ÁøÀüÀ» ÀÌ·ç¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¿¡´Â º¹ÇÕÀç·áÀÇ °³¼±, »ý»ê ±â¼úÀÇ ¹ßÀü, Áö¼Ó°¡´É¼ºÀ» ÇâÇÑ È¯°æ Ä£ÈÀû ÀÎ Æ®·»µå µîÀÌ Æ÷ÇԵǸç, ÀÌ´Â ¸ðµÎ ´Ù¾çÇÑ »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼ °í¼Ó °Ã¶ÀÇ ´É·Â, ¼º´É ¹× ȯ°æ Ä£ÈÀû ÀÎ ¹ßÀÚ±¹À» °ÈÇϱâÀ§ÇÑ ¸íÈ®ÇÑ Àǵµ¸¦ °¡Áö°í ÀÖ½À´Ï´Ù.
- °ÈµÈ ÇÕ±Ý ±¸¼º: »õ·Î¿î HSS °Á¾Àº ÅÖ½ºÅÙ°ú ¸ô¸®ºêµ§ÀÇ ÇÔ·®À» ³ôÀÌ´Â µî º¸´Ù º¹ÀâÇÑ ÇÕ±Ý ±¸¼ºÀ¸·Î °æµµ¿Í ³»¸¶¸ð¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â °ø±¸ÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í ´õ ³ôÀº ¿Âµµ¿¡¼ ´õ ³ôÀº °ø±¸ ¼Óµµ¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â µ¿½Ã¿¡ Àý»è È¿À²À» Çâ»ó½Ãŵ´Ï´Ù.
- ºÐ¸» ¾ß±ÝÀÇ Çõ½Å : Çâ»óµÈ ±â°èÀû Ư¼ºÀ» °¡Áø °í¹Ðµµ °í¼Ó°À» »ý»êÇϱâ À§ÇØ ºÐ¸» ¾ß±Ý¹ýÀÌ ¹ßÀüÇß½À´Ï´Ù. ÀÌ ÀýÂ÷´Â ±ÕÀÏÇÑ ¹Ì¼¼ ±¸Á¶¿Í ÇÔ²² ¿ì¼öÇÑ ¼º´ÉÀ» Á¦°øÇÏ¿© °íºÎÇÏ¿¡¼ ÀåºñÀÇ ½Å·Ú¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.
- ȯ°æ Ä£ÈÀû ÀÎ »ý»ê ¹æ¹ý : Áö¼Ó °¡´ÉÇÑ °í¼Ó °Ã¶ »ý»ê ¹æ¹ý¿¡ ´ëÇÑ ¿¸ÁÀÌ Á¡Á¡ ´õ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ¿¡³ÊÁö È¿À²ÀûÀÎ Á¦Á¶ ±â¼ú, ¹èÃâ·® °¨¼Ò, °í¼Óµµ° ½ºÅ©·¦ ÀçȰ¿ë È®´ë µîÀÌ Æ÷ÇԵ˴ϴÙ. ±× ¸ñÀûÀº °í¼Óµµ° »ý»êÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÏ´Â °ÍÀÔ´Ï´Ù.
- °í±Þ ÄÚÆÃ ±â¼ú: PVD¿Í CVD´Â °í¼Óµµ°(HSS)ÀÇ ¼º´É Ư¼ºÀ» Çâ»ó½ÃŰ´Â °í±Þ ÄÚÆÃ ¹æ¹ý Áß ÀϺÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ³»¿¼º, ³»¸¶¸ð¼º ¹× ³»½Ä¼ºÀÌ ¶Ù¾î³ª °ø±¸ ¼ö¸íÀ» ¿¬ÀåÇϰí Àý»è ´É·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù.
- µðÁöÅÐ Á¦Á¶ ±â¼ú: ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×°ú °°Àº µðÁöÅÐ ±â¼úÀÇ ÅëÇÕÀº °í¼Óµµ°(HSS)ÀÇ ¼³°è ¹× °øÁ¤ ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ Àç·á Ư¼º»Ó¸¸ ¾Æ´Ï¶ó Á¦Á¶ °øÁ¤À» Á¤¹ÐÇÏ°Ô Á¦¾îÇÏ¿© °í¼Óµµ°À» »ç¿ëÇÑ ¿ì¼öÇÑ Ç°ÁúÀÇ ºñ¿ë È¿À²ÀûÀÎ Á¦Ç°À» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ °³¹ß·Î °í¼Óµµ°Àº È¿À²¼º, ³»±¸¼º, Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃÄÑ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß ¼ö¿ä Áõ°¡¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù.
°í¼Óµµ° ½ÃÀåÀÇ Àü·«Àû ¼ºÀå ±âȸ
°í¼Óµµ° ½ÃÀåÀº ÁÖ¿ä ÀÀ¿ë ºÐ¾ß¿¡¼ ¸î °¡Áö Àü·«Àû ¼ºÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ¿©·¯ »ê¾÷ ºÐ¾ß¿¡¼ °í¼º´É °ø±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÁøÈÇÏ´Â ±â¼ú Ç÷§ÆûÀÌ Æ÷ÇԵ˴ϴÙ.
- Ç×°ø¿ìÁÖ»ê¾÷: Ç×°ø¿ìÁÖ»ê¾÷Àº °¡È¤ÇÑ Á¶°ÇÀ» °ßµô ¼ö ÀÖ´Â °í¼º´É Àý»è°ø±¸¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ HSSÀÇ ¼ºÀåÀÌ Å©°Ô ±â´ëµÇ´Â °¡Àå Áß¿äÇÑ ºÐ¾ß·Î, HSS ÀçÁ¾°ú ÄÚÆÃÀÇ Çõ½ÅÀº Ç×°ø¿ìÁÖ Á¦Á¶ ÀåºñÀÇ Á¤¹Ðµµ¿Í ÀμºÀ» Çâ»ó½ÃÄÑ ÀÌ »ê¾÷ ºÐ¾ß ¼ö¿ä Áõ°¡·Î À̾îÁú °ÍÀÔ´Ï´Ù.
- ÀÚµ¿Â÷ Á¦Á¶: ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Ã·´Ü ¼ÒÀç¿Í Á¦Á¶ ¹æ½ÄÀ» äÅÃÇÏ·Á´Â ¿òÁ÷ÀÓÀº HSS »ç¿ë ±âȸ¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. º¹ÀâÇÑ ºÎǰÀ» »ç¿ëÇÏ´Â Á¦Á¶¿¡´Â °íǰÁú Àý»è °ø±¸°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀÌ ºÐ¾ß´Â Á¦Á¶¾÷ü°¡ ÀÌ·¯ÇÑ Àåºñ¸¦ °ø±ÞÇÔÀ¸·Î½á »ç¾÷À» ¼ºÀå½Ãų ¼ö ÀÖ´Â ÁÖ¿ä ¿øµ¿·Â Áß ÇϳªÀÔ´Ï´Ù.
- ¿¡³ÊÁö ºÎ¹®: ¿¡³ÊÁö »ê¾÷¿¡¼ ¼®À¯ ¹× °¡½º, Àç»ý ¿¡³ÊÁö ä±¼¿¡´Â ´Ü´ÜÇÑ Àç·á¸¦ °¡°øÇϱâ À§ÇÑ °·ÂÇÑ HSS µå¸±°ú °ø±¸°¡ ÇÊ¿äÇÕ´Ï´Ù. °í¼Óµµ°(HSS)ÀÇ Çö´ëÈ´Â °¡È¤ÇÑ »ç¿ë Á¶°Ç¿¡¼ °ø±¸ ¼ö¸í°ú ¼º´ÉÀ» Çâ»ó½ÃÅ´À¸·Î½á ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ½À´Ï´Ù.
- ÀÇ·á±â±â Á¦Á¶: ÀÇ·á±â±â ºÐ¾ß´Â º¹ÀâÇÑ ºÎǰ Á¦Á¶¿¡ »ç¿ëµÇ´Â Á¤¹Ð Àý»è °ø±¸°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ HSS°¡ ¼ºÀåÇÒ ¼ö ÀÖ´Â ºÐ¾ßÀÔ´Ï´Ù. Çâ»óµÈ Ư¼º°ú ÄÚÆÃÀ» °¡Áø HSS¸¦ »ç¿ëÇÏ´Â ÀÌ »ý»ê °øÁ¤Àº ÀÇ·á±â±âÀÇ Ç°Áú, ½Å·Ú¼º ¹× ¼º´É Çâ»óÀ» º¸ÀåÇÕ´Ï´Ù.
- ÀûÃþ °¡°ø¿ë °ø±¸: 3D ÇÁ¸°ÆÃÀ¸·Îµµ ¾Ë·ÁÁø ÀûÃþ °¡°ø(AM)ÀÇ ±Þ¼ÓÇÑ º¸±ÞÀ¸·Î ÀÎÇØ ´Ù¸éÀû ±Ý¼Ó ºÎǰ Á¦Á¶¸¦ À§ÇÑ HSS °¡°ø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÷´Ü °í¼Óµµ°(HSS) °Á¾ÀÇ »õ·Î¿î °³¹ßÀº ÀÌ ±â¼úÀ» äÅÃÇÒ ¼ö ÀÖ´Â ±æÀ» ¿¾îÁÖ¾ú½À´Ï´Ù.
ÀÌ·¯ÇÑ ¼ºÀå ±âȸ´Â ±â¼ú ¹ßÀü°ú °í¼º´É °ø±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ °í¼Óµµ°ÀÌ È®´ë Àû¿ëµÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.
°í¼Óµµ° ½ÃÀå Ȱ¼ºÈ ¿äÀÎ ¹× °úÁ¦
°í¼Óµµ°(HSS) »ê¾÷Àº ±â¼ú Çõ½Å, °æÁ¦Àû ¿äÀÎ, ±ÔÁ¦Àû °í·Á»çÇ× µî ´Ù¾çÇÑ ÃËÁø¿äÀΰú µµÀü¿¡ ¿µÇâÀ» ¹Þ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ» ÀÌÇØÇÏ´Â °ÍÀº ½ÃÀåÀ» Ž»öÇÏ°í ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
°í¼Óµµ° ½ÃÀåÀ» ÁÖµµÇÏ´Â ¿äÀÎÀº ´ÙÀ½°ú °°½À´Ï´Ù.
1. ±â¼ú ¹ßÀü: ÇÕ±Ý Á¶¼º ¹× Á¦Á¶ °øÁ¤ÀÇ ¹ßÀüÀ¸·Î °ø±¸ ¼ö¸íÁÖ±â È¿À² Çâ»ó µî °í¼Óµµ°ÀÇ °í¼º´ÉȰ¡ ÁøÇàµÇ¾î ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
2.
2. »ê¾÷ ÀÀ¿ë ºÐ¾ß È®´ë: ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ¿¡³ÊÁö »ê¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ °í½Å·Ú¼º °ø±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© HSS ½ÃÀåÀÇ ¼ºÀå·üÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß´Â ³»±¸¼ºÀÌ ¶Ù¾î³ª°í ¼º´ÉÀÌ ¿ì¼öÇÑ °ø±¸°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ »õ·Î¿î À¯ÇüÀÇ °í¼Óµµ°ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
3. Áö¼Ó°¡´É¼º Áß½Ã: Áö¼Ó °¡´ÉÇÑ Á¦Á¶ ¹æ¹ý¿¡´Â Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö »ç¿ë°ú ÀçȰ¿ë µîÀÌ Æ÷ÇԵ˴ϴÙ. µû¶ó¼ °í¼Óµµ° Á¦Ç°ÀÇ À¯¿ë¼ºÀº Á¡Á¡ ´õ Àα⸦ ¾ò°í Àִ ȯ°æ Ä£ÈÀû Á¦Á¶ ¹æ½Ä¿¡ µû¶ó ȯ°æ Ä£ÈÀû ÀÎ °í°´¿¡°Ô ´õ¿í ¸Å·ÂÀûÀ¸·Î ´Ù°¡°¥ ¼ö ÀÖ½À´Ï´Ù.
4. ¿¬±¸°³¹ß ÅõÀÚ Áõ°¡: HSS °Àç ±â¼ú¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß(R&D) ÅõÀÚ´Â »õ·Î¿î °Á¾°ú ¿ëµµ¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â º¯ÈÇÏ´Â »ê¾÷ ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ´Â °æÀï·Â ÀÖ´Â Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
5. Á¤¹Ð °ø±¸ ¼ö¿ä: »ê¾÷ °øÁ¤°ú ºÎǰÀÇ º¹À⼺ Áõ°¡¿¡ µû¶ó °íÁ¤¹Ð °ø±¸ÀÇ »ç¿ëÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, °í¼Óµµ°Àº °ø±¸ ¹× ¼ºÇü µî Á¤¹Ð Á¦Á¶ ºÐ¾ß¿¡¼ ±ÞÁõÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ´«ºÎ½Å ¹ßÀüÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù.
°í¼Óµµ° ½ÃÀåÀÇ °úÁ¦´Â ´ÙÀ½°ú °°½À´Ï´Ù.
1. ³ôÀº Á¦Á¶ ºñ¿ë: °íǰÁú °í¼Ó°À» »ý»êÇϱâ À§Çؼ´Â ¿øÀÚÀç ºñ¿ë°ú °íµµÀÇ Á¦Á¶ ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº °¡°Ý °áÁ¤°ú ½ÃÀå °æÀï·Â¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
2. °ø±Þ¸Á È¥¶õ: ¿øÀÚÀç ºÎÁ· ¹× ¿î¼Û Áö¿¬À» Æ÷ÇÔÇÑ ¼¼°è °ø±Þ¸Á ¹®Á¦´Â HSSÀÇ °¡¿ë¼º°ú ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¥¶õÀº »ý»ê Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
3. ȯ°æ ±ÔÁ¦: ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ¼ö¹ÝÇϴ ȯ°æ ¹ý±Ô´Â ÀÌ·¯ÇÑ Àç·á »ý»êÀÚ¿¡°Ô Å« µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ½ÇÁ¦·Î ÀÌ·¯ÇÑ ¹ý·üÀ» ÁؼöÇϱâ À§Çؼ´Â ´õ ±ú²ýÇÑ ±â¼ú¿¡ ´ëÇÑ ÀÚº» ÅõÀÔÀÌ ÇÊ¿äÇϸç, ƯÈ÷ ÀϺΠ½Ã¼³ÀÇ °æ¿ì ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦°¡ ºÎ°úµÇ±â ¶§¹®¿¡ ¿î¿µ ºñ¿ëÀÌ Áõ°¡ÇÏ°Ô µË´Ï´Ù.
ÀüüÀûÀ¸·Î °í°µµ °ÆÇ »ê¾÷¿¡ ÀÛ¿ëÇÏ´Â ÃßÁø·Â°ú ±× µµÀüÀº ÇöÀçµµ °í°µµ °ÆÇ »ê¾÷À» °è¼Ó Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú ½ÃÀåÀÇ ¿ä±¸´Â Çõ½Å°ú Áøº¸¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.
ºÎ¹®º° °í¼Óµµ°
º» Á¶»ç¿¡¼´Â ¼¼°è °í¼Óµµ° À¯Çüº°, »ý»ê¹æ½Äº°, µî±Þº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° ¿¹ÃøÀ» ¼ö·ÏÇß½À´Ï´Ù.
±¹°¡º° °í¼Óµµ° ½ÃÀå Àü¸Á
°í¼Óµµ°(HSS)Àº Ãʰí¿Â¿¡¼µµ °æµµ¸¦ ÀÒÁö ¾Ê±â ¶§¹®¿¡ Á¦Á¶ »ê¾÷¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼º´É°ú À¯¿¬¼º ºÐ¾ß¿¡¼ Àü ¼¼°èÀûÀ¸·Î ÷´Ü ±â´ÉÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹, Áß±¹, µ¶ÀÏ, Àεµ, ±×¸®°í ÀϺ»Àº °í¼Óµµ°ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î µ¶ÀÚÀûÀÎ ±â¿©¸¦ ÅëÇØ ±â¼ú Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ¼ ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÌ·¯ÇÑ °³¹ßÀº ¿¾ÇÇÑ È¯°æ¿¡¼ÀÇ Á¾ÇÕÀûÀÎ ¼º´É»Ó¸¸ ¾Æ´Ï¶ó »ý»ê¼º ¿ä±¸, °ø±¸ ¼ö¸íÀ» °³¼±ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ´ÙÀ½Àº °¢±¹ÀÇ ÃֽŠÁ¤º¸¸¦ ¿ä¾àÇÑ °ÍÀÔ´Ï´Ù.
- ¹Ì±¹: ¹Ì±¹Àº HSSÀÇ ³»¸¶¸ð¼º°ú ÀμºÀ» Çâ»ó½Ã۱â À§ÇØ ÇÕ±Ý Á¶¼ºÀ» °³¼±ÇÏ´Â µ¥ Å« ÁøÀüÀ» ÀÌ·ç¾ú½À´Ï´Ù. ´õ ³ªÀº °á°ú¸¦ ¾ò±â À§ÇØ ¿¬±¸¿ø°ú Á¦Á¶¾÷ü´Â ¿Ã³¸® °øÁ¤¿¡¼ °í±Þ źȹ°À» ´õ ¸¹ÀÌ »ç¿ëÇÒ ¼ö ÀÖµµ·ÏÇÏ´Â µ¥ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ HSS ½ºÅ©·¦ÀÇ ÀçȰ¿ë ¹× »ý»ê ½Ã ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÌ´Â µî ȯ°æ Ä£ÈÀû ÀÎ Á¦Á¶ ±â¼ú¿¡µµ ¸¹Àº °ü½ÉÀÌ ÁýÁߵǰí ÀÖ½À´Ï´Ù.
- Áß±¹: Áß±¹Àº ½Å±â¼ú°ú »õ·Î¿î °øÁ¤¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ ÅëÇØ °íǰÁú HSS Á¦Á¶¿¡ ÁøÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¹ßÀü¿¡´Â ÃֽŠºÐ¸» ¾ß±Ý ±â¼úÀ» ÅëÇÑ HSSÀÇ °³¼±°ú ¹Ù³ªµãÀÌ Ç³ºÎÇÑ ÇÕ±ÝÀÇ °¡´ÉÇÑ ¸ðµç Àû¿ëÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Àý»è È¿À²À» Çâ»ó½ÃŰ°í °ø±¸ ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù. Áß±¹ ±â¾÷µéÀº ¶ÇÇÑ HSSÀÇ ¿Âµµ ¾ÈÁ¤¼º°ú ³»¸¶¸ð¼ºÀ» Çâ»ó½ÃŰ´Â ÄÚÆÃ¿¡ ´ëÇÑ ¿¬±¸µµ ÁøÇàÇϰí ÀÖ½À´Ï´Ù.
- µ¶ÀÏ: µ¶ÀÏÀÇ HSS ¿¬±¸´Â °Ã¶ÀÇ ¿ì¼öÇÑ ±â°èÀû Ư¼ºÀ» ½ÇÇöÇϱâ À§ÇÑ ¹Ì¼¼±¸Á¶ °³¼±¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÷´Ü ½Ã¹Ä·¹ÀÌ¼Ç µµ±¸¿Í °íÁ¤¹Ð Á¦Á¶ ¹æ¹ýÀ» Ȱ¿ëÇÏ¿© ÀÌ·¸°Ô Á¦Á¶µÈ HSSEÀÇ Àý»è ¼º´É Çâ»ó°ú ¼ö¸í ¿¬ÀåÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¶ÀÏÀÇ ÁÖ¿ä ±â¾÷µéÀº ÀÌ ºÐ¾ß¿¡¼ »ý»ê °øÁ¤ÀÇ ÃÖÀûȻӸ¸ ¾Æ´Ï¶ó ǰÁú °ü¸® Á¶Ä¡ÀÇ °³¼±¿¡µµ µðÁöÅÐ ±â¼úÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù.
- Àεµ: ºñ¿ë È¿À²ÀûÀÎ HSSE Á¦Á¶¿Í ¿ì¼öÇÑ Ç°Áú ±âÁØÀº ¿©ÀüÈ÷ ÀεµÀÇ ÁÖ¿ä °ü½É»çÀÔ´Ï´Ù. ÃÖ±Ù µ¿ÇâÀ¸·Î´Â ¼öÀÔ ÀÇÁ¸µµ¸¦ ³·Ãß´Â °È °¡°øÀ¯ÀÇ µµÀÔ°ú ÇöÁö »ý»ê ´É·ÂÀÇ È®´ë°¡ ÀÖ½À´Ï´Ù. Àεµ´Â ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷À» °Ü³ÉÇÑ µ¶ÀÚÀûÀÎ µî±ÞÀÇ ¼ÒÀ縦 °³¹ßÇÔÀ¸·Î½á °æÀï·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
- ÀϺ»: ÀϺ»Àº °¼º»Ó¸¸ ¾Æ´Ï¶ó ¹«¾ùº¸´Ùµµ ¾ÈÁ¤¼ºÀ» ³ôÀÌ´Â °ÍÀ» ±â¹ÝÀ¸·Î HSS ±â¼ú Çõ½Å¿¡¼ ¿©ÀüÈ÷ ±ê¹ßÀ» µé°í ÀÖ½À´Ï´Ù. ÀϺ» ¿¬±¸ÁøÀº °ø±¸ ¼ö¸í°ú ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ »õ·Î¿î ÇÕ±Ý ¿ø¼Ò¿Í ¿Ã³¸® ±â¼úÀ» ¿¬±¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, HSSÀÇ Æ¯¼º°ú ¼º´ÉÀ» ÃÖÀûÈÇϱâ À§ÇØ ¼³°è ¹× Á¦Á¶ °øÁ¤¿¡ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×À» µµÀÔÇÏ·Á´Â ¿òÁ÷ÀÓµµ ÀÖ½À´Ï´Ù.
ÀÚÁÖ ¹¯´Â Áú¹®
Q1. ½ÃÀå ±Ô¸ð :
A1. ¼¼°è °í¼Óµµ° ½ÃÀåÀº 2030³â±îÁö ¾à 31¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Q2. ½ÃÀå ¼ºÀå ¿¹ÃøÀº ´ÙÀ½°ú °°½À´Ï´Ù.
A2. ¼¼°è °í¼Óµµ° ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 6.3%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Q3. ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ÃËÁø¿äÀÎÀº ´ÙÀ½°ú °°½À´Ï´Ù.
A3.ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº Á¦Á¶ ¹× °Ç¼³ »ê¾÷¿¡¼ °í¼Óµµ°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ¼¼°è ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ® Áõ°¡ÀÔ´Ï´Ù.
Q4. ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®Àº ´ÙÀ½°ú °°½À´Ï´Ù.
A4. °í¼Óµµ° ½ÃÀåÀÇ ¹Ì·¡´Â ÀÚµ¿Â÷, Á¦Á¶¾÷, Ç×°ø¿ìÁÖ, ±â°è°øÇÐ, °Ç¼³ ½ÃÀå¿¡¼ À¯¸ÁÇÕ´Ï´Ù.
Q5. ½ÃÀå ÁÖ¿ä ±â¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù.
A5. ÁÖ¿ä °í¼Óµµ° ±â¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù.
- ArcelorMittal
- Amada
- Sandvik
- NIPPON KOSHUHA STEEL
- RUKO
- Kyocera
- Walter
- Kennametal
- Proterial
- OSG
Q6. ÇâÈÄ °¡Àå Å« ½ÃÀå ºÎ¹®Àº ´ÙÀ½°ú °°½À´Ï´Ù.
A6. LucintelÀº ¸ô¸®ºêµ§ÀÌ ¿ì¼öÇÑ ³»¸¶¸ð¼º, °í¿Â °µµ ¹× °æµµ·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù.
Q7. ½ÃÀå¿¡¼ ÇâÈÄ 5³â°£ °¡Àå Å« ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹»óµÇ´Â Áö¿ªÀº ¾îµðÀԴϱî?
A7. ºÏ¹Ì´Â °æÁ¦ ¼ºÀå, °í¼Óµµ°¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ Áõ°¡, ÁÖ¿ä ±â¾÷ÀÇ Á¸Àç·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Q8. º¸°í¼ »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇմϱî?
A8. ³×. LucintelÀº Ãß°¡ ºñ¿ë¾øÀÌ 10%ÀÇ »ç¿ëÀÚ Á¤ÀǸ¦ Á¦°øÇÕ´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
Á¦2Àå ¼¼°èÀÇ °í¼Óµµ° ½ÃÀå : ½ÃÀå ¿ªÇÐ
- ¼·Ð, ¹è°æ, ºÐ·ù
- °ø±Þ¸Á
- ¾÷°è ÃËÁø¿äÀΰú °úÁ¦
Á¦3Àå ½ÃÀå µ¿Çâ°ú ¿¹Ãø ºÐ¼®(2018-2030³â)
- °Å½Ã°æÁ¦ µ¿Çâ(2018-2023³â)°ú ¿¹Ãø(2024-2030³â)
- ¼¼°èÀÇ °í¼Óµµ° ½ÃÀå µ¿Çâ(2018-2023³â)°ú ¿¹Ãø(2024-2030³â)
- À¯Çüº° ¼¼°è °í¼Óµµ° ½ÃÀå
- ÅÖ½ºÅÙ °í¼Óµµ°
- ¸ô¸®ºêµ§ °í¼Óµµ°
- ÄÚ¹ßÆ® °í¼Óµµ°
- ±âŸ
- »ý»ê ¹æ¹ýº° ¼¼°è °í¼Óµµ° ½ÃÀå
- ±âÁ¸ °í¼Óµµ°
- ºÐ¸»¾ß±Ý(PM) °í¼Óµµ°
- ½ºÇÁ·¹ÀÌÆ÷¹Ö(SF) °í¼Óµµ°
- µî±Þº° ¼¼°è °í¼Óµµ° ½ÃÀå
- M Grade
- T Grade
- Advance Grade
- ÃÖÁ¾ ¿ëµµº° ¼¼°è °í¼Óµµ° ½ÃÀå
- ÀÚµ¿Â÷
- Á¦Á¶¾÷
- Ç×°ø¿ìÁÖ
- ±â°è°øÇÐ
- °Ç¼³
- ±âŸ
Á¦4Àå Áö¿ªº° ½ÃÀå µ¿Çâ°ú ¿¹Ãø ºÐ¼®(2018-2023³â)
- Áö¿ªº° ¼¼°è °í¼Óµµ° ½ÃÀå
- ºÏ¹ÌÀÇ °í¼Óµµ° ½ÃÀå
- À¯·´ÀÇ °í¼Óµµ° ½ÃÀå
- ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °í¼Óµµ° ½ÃÀå
- ±âŸ Áö¿ªÀÇ °í¼Óµµ° ½ÃÀå
Á¦5Àå °æÀï ºÐ¼®
- Á¦Ç° Æ÷Æ®Æú¸®¿À ºÐ¼®
- ¿î¿µ ÅëÇÕ
- PorterÀÇ Five Forces ºÐ¼®
Á¦6Àå ¼ºÀå ±âȸ¿Í Àü·« ºÐ¼®
- ¼ºÀå ±âȸ ºÐ¼®
- ¼¼°èÀÇ °í¼Óµµ° ½ÃÀå ¼ºÀå ±âȸ(À¯Çüº°)
- »ý»ê ¹æ¹ýº° ¼¼°è °í¼Óµµ° ½ÃÀå ¼ºÀå ±âȸ
- µî±Þº° ¼¼°è °í¼Óµµ° ½ÃÀå ¼ºÀå ±âȸ
- ÃÖÁ¾ ¿ëµµº° ¼¼°è °í¼Óµµ° ½ÃÀå ¼ºÀå ±âȸ
- Áö¿ªº° ¼¼°è °í¼Óµµ° ½ÃÀå ¼ºÀå ±âȸ
- ¼¼°è °í¼Óµµ° ½ÃÀåÀÇ »õ·Î¿î µ¿Çâ
- Àü·« ºÐ¼®
- ½ÅÁ¦Ç° °³¹ß
- ¼¼°èÀÇ °í¼Óµµ° ½ÃÀå »ý»ê´É·Â È®´ë
- ¼¼°è °í¼Óµµ° ½ÃÀå¿¡¼ÀÇ ÀμöÇÕº´(M&A) ¹× ÇÕÀÛÅõÀÚ(JV)
- ÀÎÁõ°ú ¶óÀ̼±½Ì
Á¦7Àå ÁÖ¿ä ±â¾÷ °³¿ä
- ArcelorMittal
- Amada
- Sandvik
- NIPPON KOSHUHA STEEL
- RUKO
- Kyocera
- Walter
- Kennametal
- Proterial
- OSG
LSH
High Speed Steel Trends and Forecast
The future of the global high speed steel market looks promising with opportunities in the automotive, manufacturing, aerospace, mechanical engineering, and construction markets. The global high speed steel market is expected to reach an estimated $3.1 billion by 2030 with a CAGR of 6.3% from 2024 to 2030. The major drivers for this market are increasing demand for this steel in manufacturing and construction industries and rise in infrastructure development projects worldwide.
Lucintel forecasts that molybdenum is expected to witness the highest growth over the forecast period due to its excellent wear resistance, high-temperature strength and hardness.
Within this market, automotive is expected to witness the highest growth due to rising demand for high speed steel from this industry for production of automotive components.
North America is expected to witness highest growth over the forecast period due to substantial economic growth, increased government investments in high-speed steel, and presence of key players in the region.
Emerging Trends in the High Speed Steel Market
The high-speed steel industry is currently going through a number of transformative trends that have significantly altered its landscape. These movements are fueled by technological advancements and changing consumer tastes, all aimed at improving performance, sustainability, and cost-effectiveness.
- Advanced Alloy Compositions: The use of tungsten, molybdenum and cobalt has been increased in innovations involving alloying elements used to produce HSS. This allows for higher level of hardness, wear resistance increases as well as more thermal stability so that tools designed will live longer becoming more efficient at their high-speed operations.
- Powder Metallurgy: The adoption rate of powder metallurgical processes has been increasing making it possible to produce ultra-fine-grained HSS with high density. It offers exceptional mechanical properties such as uniformity thus leading to improved quality cutting tools with better service life-span.
- Eco-friendly Production: Attention has shifted towards sustainable development within the firms producing HSS around the world. Attempts made entail energy saving activities such as emissions reduction while recycling HSSE scrap metal gets expanded from time to time which reduces ecological footprint associated with manufacturing these products aligning well with global principles of sustainability.
- Advanced Coating Technologies: The performance of HSS tools is being enhanced by means of advanced coating technologies such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These coatings offer improved heat, wear and corrosion resistance thus prolonging the life span of tools and enhancing the cutting efficiency.
- Digital Integration: HSS design and manufacturing is being revolutionized through digital integration which includes artificial intelligence (AI) and machine learning among others. The precision control over production processes supported by these technologies optimize properties ensuring consistent quality that enhances performance leading to reduced costs.
These are some significant changes that are taking place in the HSS industry aimed at enhancing performance, reducing environmental impact and increasing efficiency. Advanced technology focus together with ecological economic approach can determine new levels for high speed steel use.
Recent Developments in the High Speed Steel Market
High-speed steels have undergone significant advancements lately due to innovations in material sciences, specific requirements as well as various manufacturing processes used in their fabrication. These developments involve composite modifications, progress in production techniques, eco-friendly trends towards sustainability; all explicitly intended to enhance the capability, competency and green footprint of HSS for diverse industrial uses.
- Enhanced Alloy Compositions: The hardness and wear resistance of new HSS grades has been improved through employment of more complex alloys composition including higher contents of tungsten or molybdenum. These materials allow for higher tool speeds at increased temperatures making it last long while improving cutting efficiency.
- Powder Metallurgy Innovations: There have been advances made in powder metallurgical methods to create high-density high-speed steel having improved mechanical properties. This procedure results into uniform microstructure alongside superior performance that makes a device more reliable and efficient under heavy duty loads.
- Eco-Friendly Production Methods: An aspiration towards sustainable ways of producing high speed steel is increasingly becoming more popular. This encompasses energy efficient manufacturing techniques, lesser emissions as well as greater recycling of HSS scrap. The aim is to minimize the environmental impact caused by HSS manufacturing.
- Advanced Coating Technologies: PVD and CVD are few of the advanced coating methods that can be employed on high speed steel (HSS) that enhance their performance characteristics. Hence, such coatings have been developed in a way that they exhibit better resistance against heat, wear and corrosion that result in prolonged tool life and improved cutting ability.
- Digital Manufacturing Techniques: The integration of digital technologies like Artificial Intelligence (AI) and Machine Learning allow for optimizing designs and processes of High Speed Steel (HSS). They ensure precise control over material properties as well as production processes resulting into superior quality cost effective products made from HSS.
These developments are driving HSS evolution towards increased efficiency, durability, and sustainability thereby meeting various industries' rising demands for it.
Strategic Growth Opportunities for High Speed Steel Market
The high-speed steel market is developing with some strategic growth opportunities emerging across key applications. These include evolving technology platforms alongside increasing demand of high-performance tools in many industrial segments.
- Aerospace Industry: The aerospace industry represents the most important segment where growth prospects for HSS are huge due to requirements for high performance cutting tools capable of withstanding extreme conditions. Innovations in HSS grades along with coatings improve precision and toughness of aerospace manufacturing equipment which leads to its demand increase in this industry sector.
- Automotive Manufacturing: The automotive companies' move towards adoption of advanced materials and manufacturing approaches promotes opportunities for usage of HSS. Manufacture using complex components necessitates high-quality cutting tools; therefore, this field is one of the main drivers where manufacturers can grow their businesses on the basis of supplying such devices.
- Energy Sector: The extraction of oil and gas or renewable energy in the energy industry requires strong HSS-drills and tools to machine hard materials. Modernizations in High-Speed Steels (HSS) can meet these requirements by improving tool life and performance under severe operating conditions.
- Medical Device Production: The high-growth medical device segment is an opportunity for HSS due to the need for precision cutting tools used in producing complex components. This production process that utilizes HSS with improved properties and coatings ensures that medical devices are enhanced for better quality, reliability and performance.
- Tooling for Additive Manufacturing: Rapidly growing additive manufacturing (AM), also known as 3D printing, raises a demand for HSS machining that can handle multifaceted metal component construction. New development of advanced High Speed Steels (HSS) grades has opened avenues for adoption of this technology.
These growth opportunities highlight the expanding applications of HSS across various industries, driven by advancements in technology and increasing demand for high-performance tools.
High Speed Steel Market Driver and Challenges
The high-speed steel (HSS) industry is influenced by various drivers and challenges, which include technological innovations, economic factors, and regulatory considerations. Understanding these factors is crucial for navigating the market and capitalizing on opportunities.
The factors responsible for driving the high speed steel market include:
1. Technological Advancements: Advances in alloy composition and manufacturing processes are driving improvements in higher performance forms of HSS including improvements in tool life cycle efficiency, hence rising demand from multiple industries.
2. Growing Industrial Applications: Demand for reliable tools has been increasing across several industries including automotive sector, aerospace industry as well as energy industry; thus driving the HSS market growth rate. These sectors require durable and superior performing instruments; therefore creating an upswing in new varieties of high speed steels.
3. Focus on Sustainability: Sustainable manufacturing practices encompass sustainable energy use as well as recycling are among others. Therefore, the utility of HSS products is becoming more attractive to environmentally conscious customers in line with eco-friendly production methods that are increasingly gaining popularity.
4. Rising Investment in R&D: Continuous research and development (R&D) investments into HSS technology lead to new grades and applications. This investment ensures good competitive positioning to satisfy changing industrial requirements.
5. Demand for Precision Tools: The increasing complexity of industrial processes and components necessitates the use of high-precision tools. Consequently, high speed steels have been undergoing significant advancements so as to cater for such an upsurge in demand from precision manufacturing sectors like tooling and molding among others.
Challenges in the high speed steel market are:
1. High Production Costs: Producing high-quality HSS is a costly affair due raw material costs well as advanced manufacturing techniques used. These costs may affect both pricing decisions and competitiveness in the market.
2. Supply Chain Disruptions: Global supply chain issues, including raw material shortages and transportation delays, can affect the availability and cost of HSS. These disruptions can lead to production delays and increased costs.
3. Environmental Regulations: Environmental laws with stringent rules can be very challenging for producers of these materials. Indeed, adherence to these laws requires capital injection towards cleaner technologies leading to higher operating costs especially because of tougher discharge limits imposed by some facilities.
Overall, the drivers acting on the HSS industry along with its challenges continue shaping it at present time. Technological breakthroughs and market requirements are calling for innovation and progress.
List of High Speed Steel Companies
Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies high speed steel companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the high speed steel companies profiled in this report include-
- ArcelorMittal
- Amada
- Sandvik
- NIPPON KOSHUHA STEEL
- RUKO
- Kyocera
- Walter
- Kennametal
- Proterial
- OSG
High Speed Steel by Segment
The study includes a forecast for the global high speed steel by type, production method, grade, end use, and region.
High Speed Steel Market by Type [Analysis by Value from 2018 to 2030]:
- Tungsten High Speed Steel
- Molybdenum High Speed Steel
- Cobalt High Speed Steel
- Others
High Speed Steel Market by Production Method [Analysis by Value from 2018 to 2030]:
- Conventional High Speed Steel
- Powder Metallurgy (PM) High Speed Steel
- Spray Forming (SF) High Speed Steel
High Speed Steel Market by Grade [Analysis by Value from 2018 to 2030]:
- M Grade
- T Grade
- Advance Grade
High Speed Steel Market by End Use [Analysis by Value from 2018 to 2030]:
- Automotive
- Manufacturing
- Aerospace
- Mechanical Engineering
- Construction
- Others
High Speed Steel Market by Region [Analysis by Value from 2018 to 2030]:
- North America
- Europe
- Asia Pacific
- The Rest of the World
Country Wise Outlook for the High Speed Steel Market
Manufacturing uses high speed steel (HSS) because it does not lose hardness even at very high temperatures. Advanced features in the area of performance and flexibility have been developed globally. The United States, China, Germany, India and Japan are at the forefront of innovation with their unique contributions that shape the future of HSS. As a result, these developments aim to improve productivity needs, tools' lifespan as well as an overall performance under extreme environments. Below is a summary of the latest information coming from each country.
- United States: The US has made great strides in improving alloy compositions for better HSS wear resistance and toughness. In order to achieve better results, researchers and manufacturers are concentrating on making advanced carbides more used in heat treatment processes. Furthermore, there has been increased focus on environmentally-friendly production techniques such as recycling HSS scrap and reducing energy consumed during manufacture.
- China: By investing significantly in new technologies and processes, China is moving ahead in high-quality HSS production. Essential progressions include improving the HSS by means of modern powder metallurgical techniques and application of vanadium-rich alloys to it is widerest extent possible. Such innovations will increase cutting efficiency while prolonging tool life-span. Chinese companies also extend research on coatings for HSS enhancing its temperature stability and abrasive wear resistance.
- Germany: German work on HSS hones in on microstructural refinements for superior mechanical properties of steels. Utilization of sophisticated simulation tools and highly accurate manufacturing methods lead to improved cutting performance and longer life service for HSSEs produced this way. Additionally, prominent German players employ digital technologies to improve quality control measures as well as optimize their production process within this sector.
- India: Cost-effective HSSE manufacturing coupled with good quality standards remains India's major concern over here. Recent development activities embraced introduction of enhanced machining oil which cut down import dependency as well as scaling up local manufacturing capacities; the nation thus boosted its competitiveness through creating unique grades of these materials targeting automotive and aerospace industries.
- Japan: Japan still keeps the flag flying in respect to HSS innovation grounded on enhancing stability above all other things as well as rigidity. Japanese researchers are working on new alloying elements and heat treatment techniques aiming at improvement of tool life and performance. Moreover, there is a drive for adopting artificial intelligence (AI) and machine learning in designing and manufacturing processes to optimize HSS properties as well as performance.
Features of the Global High Speed Steel Market
Market Size Estimates: High speed steel market size estimation in terms of value ($B).
Trend and Forecast Analysis: Market trends (2018 to 2023) and forecast (2024 to 2030) by various segments and regions.
Segmentation Analysis: High speed steel market size by various segments, such as by type, production method, grade, end use, and region in terms of value ($B).
Regional Analysis: High speed steel market breakdown by North America, Europe, Asia Pacific, and Rest of the World.
Growth Opportunities: Analysis of growth opportunities in different types, production methods, grades, end uses, and regions for the high speed steel market.
Strategic Analysis: This includes M&A, new product development, and competitive landscape of the high speed steel market.
Analysis of competitive intensity of the industry based on Porter's Five Forces model.
If you are looking to expand your business in this or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.
FAQ
Q1. What is the high speed steel market size?
Answer: The global high speed steel market is expected to reach an estimated $3.1 billion by 2030.
Q2. What is the growth forecast for high speed steel market?
Answer: The global high speed steel market is expected to grow with a CAGR of 6.3% from 2024 to 2030.
Q3. What are the major drivers influencing the growth of the high speed steel market?
Answer: The major drivers for this market are increasing demand for this steel in manufacturing and construction industries and rise in infrastructure development projects worldwide.
Q4. What are the major segments for high speed steel market?
Answer: The future of the high speed steel market looks promising with opportunities in the automotive, manufacturing, aerospace, mechanical engineering, and construction markets.
Q5. Who are the key high speed steel market companies?
Answer: Some of the key high speed steel companies are as follows:
- ArcelorMittal
- Amada
- Sandvik
- NIPPON KOSHUHA STEEL
- RUKO
- Kyocera
- Walter
- Kennametal
- Proterial
- OSG
Q6. Which high speed steel market segment will be the largest in future?
Answer: Lucintel forecasts that molybdenum is expected to witness the highest growth over the forecast period due to its excellent wear resistance, high-temperature strength and hardness.
Q7. In high speed steel market, which region is expected to be the largest in next 5 years?
Answer: North America is expected to witness highest growth over the forecast period due to substantial economic growth, increased government investments in high-speed steel, and presence of key players in the region.
Q.8 Do we receive customization in this report?
Answer: Yes, Lucintel provides 10% customization without any additional cost.
This report answers following 11 key questions:
- Q.1. What are some of the most promising, high-growth opportunities for the high speed steel market by type (tungsten high speed steel, molybdenum high speed steel, cobalt high speed steel, and others), production method (conventional high speed steel, powder metallurgy (PM) high speed steel, and spray forming (SF) high speed steel), grade (M grade, T grade, and advance grade), end use (automotive, manufacturing, aerospace, mechanical engineering, construction, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
- Q.2. Which segments will grow at a faster pace and why?
- Q.3. Which region will grow at a faster pace and why?
- Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
- Q.5. What are the business risks and competitive threats in this market?
- Q.6. What are the emerging trends in this market and the reasons behind them?
- Q.7. What are some of the changing demands of customers in the market?
- Q.8. What are the new developments in the market? Which companies are leading these developments?
- Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
- Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
- Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?
- Market Report
Table of Contents
1. Executive Summary
2. Global High Speed Steel Market : Market Dynamics
- 2.1: Introduction, Background, and Classifications
- 2.2: Supply Chain
- 2.3: Industry Drivers and Challenges
3. Market Trends and Forecast Analysis from 2018 to 2030
- 3.1. Macroeconomic Trends (2018-2023) and Forecast (2024-2030)
- 3.2. Global High Speed Steel Market Trends (2018-2023) and Forecast (2024-2030)
- 3.3: Global High Speed Steel Market by Type
- 3.3.1: Tungsten High Speed Steel
- 3.3.2: Molybdenum High Speed Steel
- 3.3.3: Cobalt High Speed Steel
- 3.3.4: Others
- 3.4: Global High Speed Steel Market by Production Method
- 3.4.1: Conventional High Speed Steel
- 3.4.2: Powder Metallurgy (PM) High Speed Steel
- 3.4.3: Spray Forming (SF) High Speed Steel
- 3.5: Global High Speed Steel Market by Grade
- 3.5.1: M Grade
- 3.5.2: T Grade
- 3.5.3: Advance Grade
- 3.6: Global High Speed Steel Market by End Use
- 3.6.1: Automotive
- 3.6.2: Manufacturing
- 3.6.3: Aerospace
- 3.6.4: Mechanical Engineering
- 3.6.5: Construction
- 3.6.6: Others
4. Market Trends and Forecast Analysis by Region from 2018 to 2030
- 4.1: Global High Speed Steel Market by Region
- 4.2: North American High Speed Steel Market
- 4.2.1: North American High Speed Steel Market by Type: Tungsten High Speed Steel, Molybdenum High Speed Steel, Cobalt High Speed Steel, and Others
- 4.2.2: North American High Speed Steel Market by End Use: Automotive, Manufacturing, Aerospace, Mechanical Engineering, Construction, and Others
- 4.3: European High Speed Steel Market
- 4.3.1: European High Speed Steel Market by Type: Tungsten High Speed Steel, Molybdenum High Speed Steel, Cobalt High Speed Steel, and Others
- 4.3.2: European High Speed Steel Market by End Use: Automotive, Manufacturing, Aerospace, Mechanical Engineering, Construction, and Others
- 4.4: APAC High Speed Steel Market
- 4.4.1: APAC High Speed Steel Market by Type: Tungsten High Speed Steel, Molybdenum High Speed Steel, Cobalt High Speed Steel, and Others
- 4.4.2: APAC High Speed Steel Market by End Use: Automotive, Manufacturing, Aerospace, Mechanical Engineering, Construction, and Others
- 4.5: ROW High Speed Steel Market
- 4.5.1: ROW High Speed Steel Market by Type: Tungsten High Speed Steel, Molybdenum High Speed Steel, Cobalt High Speed Steel, and Others
- 4.5.2: ROW High Speed Steel Market by End Use: Automotive, Manufacturing, Aerospace, Mechanical Engineering, Construction, and Others
5. Competitor Analysis
- 5.1: Product Portfolio Analysis
- 5.2: Operational Integration
- 5.3: Porter's Five Forces Analysis
6. Growth Opportunities and Strategic Analysis
- 6.1: Growth Opportunity Analysis
- 6.1.1: Growth Opportunities for the Global High Speed Steel Market by Type
- 6.1.2: Growth Opportunities for the Global High Speed Steel Market by Production Method
- 6.1.3: Growth Opportunities for the Global High Speed Steel Market by Grade
- 6.1.4: Growth Opportunities for the Global High Speed Steel Market by End Use
- 6.1.5: Growth Opportunities for the Global High Speed Steel Market by Region
- 6.2: Emerging Trends in the Global High Speed Steel Market
- 6.3: Strategic Analysis
- 6.3.1: New Product Development
- 6.3.2: Capacity Expansion of the Global High Speed Steel Market
- 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global High Speed Steel Market
- 6.3.4: Certification and Licensing
7. Company Profiles of Leading Players
- 7.1: ArcelorMittal
- 7.2: Amada
- 7.3: Sandvik
- 7.4: NIPPON KOSHUHA STEEL
- 7.5: RUKO
- 7.6: Kyocera
- 7.7: Walter
- 7.8: Kennametal
- 7.9: Proterial
- 7.10: OSG