VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå - ¿¹Ãø(2024-2029³â)
VAT Photopolymerization 3D Printing Technology Market - Forecasts from 2024 to 2029
»óǰÄÚµå : 1479856
¸®¼­Ä¡»ç : Knowledge Sourcing Intelligence
¹ßÇàÀÏ : 2024³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 110 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,250 £Ü 5,889,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,850 £Ü 6,721,000
PDF (Multiple User License) help
PDF º¸°í¼­¸¦ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,250 £Ü 10,047,000
PDF (Enterprise License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀåÀº ¿¬Æò±Õ 28.18%ÀÇ CAGR·Î »ó½ÂÇÏ¿© 2022³â 52¾ï 8,323¸¸ ´Þ·¯¿¡¼­ 2029³â 300¾ï 3,773¸¸ 8,000´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

VAT ±¤ÁßÇÕÀº ¾×ü Àç·áÀÎ VAT¸¦ »ç¿ëÇÏ¿© 3D Á¶Çü¹°À» ÇÑ Ãþ¾¿ ½×¾Æ ¿Ã¸° ÈÄ Àڿܼ±À» Á¶»çÇÏ¿© ÀÀ°í½ÃŰ´Â 3D ÇÁ¸°ÆÃ °øÁ¤ÀÔ´Ï´Ù. ÀÌ ±â¼úÀÇ ³ôÀº Á¤¹Ðµµ¿Í ¸Å²ô·¯¿î ¸¶¹«¸®¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á¿Í °°Àº ƯÁ¤ ºÐ¾ß¿¡¼­ Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖÀ¸¸ç, ÇâÈÄ ¸î ³â µ¿¾È ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡Àå ¿À·¡µÈ ±â¼ú ¿ø¸®·Î ¿©°ÜÁö´Â ¹öÆ® ¿ÉƼÄà ÁßÇÕ(VP) ÇÁ¸°ÆÃÀº ÀçÇö¼º, Á¤È®¼º, °æÁ¦¼º ¹× ÀûÀÀ¼ºÀ¸·Î ÀÎÇØ Ä¡°ú Áø·áÀÇ Ç¥ÁØÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀϺΠ°³¾÷ÀǵéÀº Àç·á ¾ÐÃâ(MEX) Àμâ, ƯÈ÷ ¿ëÀ¶ ÀûÃþ Á¦Á¶(FDM)¸¦ »ç¿ëÇÏ¿© ¸ðÇüÀ» Á¦ÀÛÇϱ⵵ ÇÏÁö¸¸, ¿©±â¼­´Â ´Ù·çÁö ¾Ê°Ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÁÖ·Î Àμ⠽ð£ÀÌ ±æ°í, Àç·áÀÇ ´Ù°ø¼ºÀÌ ³ô°í, ¾ÈÁ¤ÀûÀÎ »ýü ÀûÇÕ¼º Àç·á°¡ ¾ø±â ¶§¹®¿¡ Àå±âÀûÀÎ Ä¡°ú ÀÇ·á±â±â Á¦Á¶¿¡ ÀûÇÕÇÏÁö ¾Ê±â ¶§¹®ÀÔ´Ï´Ù. ¹Ì±¹ Ä¡°úÀÇ»çÇùȸÀÇ 2021³â º¸°í¼­¿¡ µû¸£¸é 2020³â ¹Ì±¹ÀÇ ÇöÁ÷ Ä¡°úÀÇ»ç ¼ö´Â 20¸¸ 1,117¸íÀ¸·Î Àα¸ 10¸¸ ¸í´ç Ä¡°úÀÇ»ç ¼ö´Â 61.0¸í¿¡ ´ÞÇÕ´Ï´Ù. ÀÌ º¸°í¼­´Â Àα¸ 10¸¸ ¸í´ç Ä¡°úÀÇ»ç ¼öÀÇ Á¶Á¤ Àü ºñÀ²ÀÌ 2020³â 60.7¸í¿¡¼­ 2040³â 67.0¸íÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù.

±¤ÁßÇÕü ºÎ¹®ÀÇ Á¶»ç È®´ë´Â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»ó

³»±¸¼º ÀÖ´Â Æ÷ÅäÆú¸®¸ÓÀÇ °³¹ßÀº ÇüÅ ±â¾ï Æú¸®¸Ó¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ 3D ÇÁ¸°ÆÃ ÀÀ¿ë ºÐ¾ß¸¦ À§ÇÑ VAT Æ÷ÅäÆú¸®¸Ó Àç·áÀÇ ¿¬±¸ °³¹ßÀ» ÅëÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿À½ºÆ®¸®¾Æ ºó °ø°ú´ëÇÐ(TU Wien)ÀÇ °úÇÐÀÚµéÀº °ß°íÇÏ°í °íÇØ»óµµÀÇ 3D ÇÁ¸°ÆÃ¿ë Æú¸®¸Ó¸¦ ¸¸µå´Â ±â¼úÀ» °í¾ÈÇÏ¿© ÇöÀç ±¤°æÈ­¼º 3D ÇÁ¸°ÆÃ Àç·á¿¡ Á¸ÀçÇÏ´Â Á¦¾àÀ» ±Øº¹ÇÒ ¼ö ÀÖ´Â ±â¼úÀ» °³¹ßÇß½À´Ï´Ù. ÀÌ ±â¼úÀº °æÈ­ ÀýÂ÷¸¦ º¯°æÇÏÁö ¾Ê°í ¸ÞŸũ¸±·¹ÀÌÆ® ±â¹Ý ±¤ÁßÇÕü¸¦ ¸ÂÃãÇüÀ¸·Î Á¦Á¶ÇÏ´Â °ÍÀÔ´Ï´Ù. µû¶ó¼­ Æ÷ÅäÆú¸®¸Ó´Â 3D ÇÁ¸°ÆÃ ±â¼ú¿¡¼­ Á¡Á¡ ´õ Áß¿äÇØÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ, VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼úÀº »çÃâ ¼ºÇü¿¡ ´ëÇ×ÇÏ°í ±¸½Ä ·¡Çǵå ÇÁ·ÎÅäŸÀÔ ±â¼úÀ̶ó´Â ÆòÆÇÀ» ¾ø¾Ö±â À§ÇØ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼úÀÌ Å©°Ô °³¼±µÇ°í ÀÖÀ¸¸ç, VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼úÀº Â÷¼¼´ë Àδõ½ºÆ®¸® 4.0 µðÁöÅÐ Á¦Á¶ °øÁ¤ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ³»±¸¼ºÀÌ ¶Ù¾î³­ ¾×ü ¼öÁö ¼ººÐ°ú µî¹æ¼º ¼ººÐÀ» »ç¿ëÇÒ ¼ö ÀÖ´Â °í¼Ó, ·¹ÀÌ¾î ¾ø´Â ±¤ÁßÇÕ ÇÁ¸°ÆÃ ±â¼úÀÇ °³¹ß, ½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ¿Í °°Àº ÀüÅëÀûÀÎ VAT ±¤ÁßÇÕ ÀýÂ÷¿¡ »ç¿ëµÇ´Â ±¤ÁßÇÕ Àç·áÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀÌ ÇÑ ¸òÀ» Çϰí ÀÖ½À´Ï´Ù.

Ä¡°ú ºÐ¾ß¿¡¼­´Â VAT ±¤ÁßÇÕ¿¡ ´ëÇÑ °ü½É°ú Ȱ¿ëµµ°¡ ¸Å¿ì ³ô½À´Ï´Ù. ¶ÇÇÑ VAT ±¤ÁßÇÕü´Â º¸Ã»±â Á¦Á¶, ¼ö¼ú Àü °èȹ ¹× Áø´Ü¿¡ µµ¿òÀ̵Ǵ ¸ðµ¨ Á¦ÀÛ, »À Àý´Ü°ú °°Àº ¼¶¼¼ÇÑ ¼ö¼úÀ» º¸¿©ÁÖ´Â ÈÆ·Ã ¸ñÀûÀ¸·Î »ç¿ëÇÒ ¼öÀÖ´Â Àå±â ¹× ½Åü ºÎÀ§ÀÇ º¹Á¦Ç°À» ¸¸µå´Â µ¥¿¡µµ »ç¿ëµË´Ï´Ù. ¿¹¸¦ µé¾î, ¿ÀŬ¶óÈ£¸¶ ´ëÇб³ ¿¬±¸ÆÀÀº 2022³â 6¿ù û·Â º¸È£ ÀåÄ¡(HPD)ÀÇ Æø¹ß ³ëÃâ Å×½ºÆ®¸¦ Ç¥ÁØÈ­Çϱâ À§ÇØ 3D ÇÁ¸°ÆÃÀ¸·Î »ç¶÷ÀÇ ±Í ¸ðÇüÀ» Á¦ÀÛÇß½À´Ï´Ù. ¿¬±¸ÆÀÀº 3D ÇÁ¸°ÆÃ ±â¼úÀ» Àû¿ëÇÏ¸é °³ÀÎÈ­, ºñ¿ë È¿À²¼º Çâ»ó ¹× ÇÁ·Î¼¼½º °¡¼ÓÈ­¸¦ ÅëÇØ HPDÀÇ Æò°¡°¡ Å©°Ô Çâ»óµÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ ¿¬±¸ ³ë·ÂÀº ÀÇ·á ÁöÃâÀ» Áõ°¡½ÃŰ°í ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» Áõ°¡½Ãų °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Æ÷ÅäÆú¸®¸Ó ºÎ¹®ÀÇ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå

±¤ÁßÇÕÀº Àڿܼ±À¸·Î °æÈ­µÇ´Â ¾×ü ¼öÁö¸¦ »ç¿ëÇÏ¿© °íü ºÎǰÀ» ¸¸µå´Â 3D ÇÁ¸°ÆÃ ±â¼úÀÔ´Ï´Ù. Æ÷ÅäÆú¸®¸Ó´Â ÀÌ °øÁ¤¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¼öÁöÀÇ ÀÏÁ¾À¸·Î, °íÇØ»óµµ, °íÁ¤¹Ð, °íÁ¤¹Ð, ¸Å¿ì ¼¼¹ÐÇÏ°í º¹ÀâÇÑ ºÎǰÀ» ¸¸µé ¼ö Àֱ⠶§¹®¿¡ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

±¤ÁßÇÕü´Â °­¼º, À¯¿¬¼º, Åõ¸í¼º µî ƯÁ¤ Àç·á Ư¼ºÀ» °®µµ·Ï ¹èÇÕÇÒ ¼ö Àֱ⠶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Æø³Ð°Ô Ȱ¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÇ·á ºÐ¾ß¿¡¼­´Â ±¤ÁßÇÕÀ» ÅëÇØ °íÁ¤¹Ð ¸ÂÃãÇü Ä¡°ú¿ë ÀÓÇöõÆ® ¹× º¸Ã¶¹°À» Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ »ê¾÷¿¡¼­´Â °¡º±°í È¿À²ÀûÀÎ ¼³°è¸¦ À§ÇØ º¹ÀâÇÑ ÇüÅÂÀÇ ºÎǰÀ» Á¦Á¶ÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

±¤ÁßÇÕ ±â¹Ý 3D ÇÁ¸°ÆÃ ±â¼úÀº °íÇØ»óµµ·Î º¹ÀâÇÏ°í ¼¼¹ÐÇÑ ºÎǰÀ» Á¦ÀÛÇÒ ¼ö Àֱ⠶§¹®¿¡ ´Ù¾çÇÑ ºÐ¾ß¿Í »ê¾÷¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±¤ÁßÇÕü 3D ÇÁ¸°ÆÃÀÌ »ç¿ëµÇ´Â ºÐ¾ß¿Í »ê¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù.

VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå¿¡ ÁøÃâÇÑ ÁÖ¿ä ±â¾÷À¸·Î´Â Stratasys Ltd, 3D Systems Corporation, EOS GmbH, Materialise NV, EnvisionTEC GmbH, Formlabs, Inc. Carbon, Inc. µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âÁ¸ ±â¾÷µé°ú ÇÔ²² ÃÖ±Ù ¸î ³â µ¿¾È ½Å»ý ±â¾÷µéµµ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. À̵éÀº Çõ½ÅÀûÀÎ ¾ÆÀ̵ð¾î¿Í ±â¼úÀ» ½ÃÀå¿¡ µµÀÔÇÏ¿© ¾÷°è ¼ºÀåÀ» ÁÖµµÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡¼­ ÁÖ¸ñÇÒ ¸¸ÇÑ ½ºÅ¸Æ®¾÷À¸·Î´Â Nexa3D, Sisma, Nanofabrica, Velo3D, RPS µîÀÌ ÀÖ½À´Ï´Ù.

ÀÌ·¸°Ô ¿ªµ¿ÀûÀÌ°í ºü¸£°Ô º¯È­ÇÏ´Â ½ÃÀå ȯ°æ¿¡¼­´Â ÀÌÇØ°ü°èÀÚµéÀÌ ÃֽŠƮ·»µå¿Í Áøº¸¸¦ ÆÄ¾ÇÇϰí ÀÌ¿¡ ¸ÂÃç Àü·«À» Á¶Á¤Çϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î ³ë·ÂÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀº R&D ¿ª·®À» °­È­Çϰí, ½ÃÀå °³Ã´À» È®´ëÇϰí, °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ °øµ¿ ¿¬±¸, Á¦ÈÞ, Àμö¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ ´õ¿í ¼ºÀåÇÒ °ÍÀÓÀº ºÐ¸íÇϸç, °í±ÞÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ 3D ÇÁ¸°ÆÃ ¼Ö·ç¼ÇÀ» ã´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ðµç Á¾·ùÀÇ Àç·á »ç¿ëÀº Áö³­ 2³â µ¿¾È Å©°Ô ¼ºÀåÇß½À´Ï´Ù. ÇÃ¶ó½ºÆ½°ú Æú¸®¸Ó°¡ ¿©ÀüÈ÷ ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, 2019³â¿¡´Â ÀÀ´äÀÚÀÇ 74%°¡ ÀÚüÀûÀ¸·Î ÇÃ¶ó½ºÆ½/Æú¸®¸Ó¸¦ »ç¿ëÇÑ´Ù°í ´äÇß½À´Ï´Ù(Ãâó: 3D ÇÁ¸°ÆÃ ±â¼ú µ¿Çâ º¸°í¼­, Jabil).

±¤ÁßÇÕ ±â¹Ý 3D ÇÁ¸°ÆÃ ±â¼úÀº ¹Ì¼¼ À¯Ã¼, Ä¡°ú, ¹ÙÀÌ¿À ÀÇ·á±â±â, Á¶Á÷ °øÇÐ, ¾à¹°Àü´Þ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ±×·¯³ª ÀÌ ±â¼úÀÇ ±Þ¼ÓÇÑ ¼ºÀå¿¡µµ ºÒ±¸Çϰí, ´õ ¸¹Àº ¹ßÀüÀ» À§ÇØ ÇØ°áÇØ¾ß ÇÒ °úÁ¦°¡ ³²¾ÆÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¿¡´Â 3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ º¸´Ù ´Ù¾çÇÑ »ýüÀûÇÕ¼º ¼ÒÀç °³¹ß, ´õ ºü¸£°í ´õ ³ôÀº ÇØ»óµµÀÇ 3D ÇÁ¸°ÆÃ ±â¼ú, »ýü ±â´ÉÀ» °¡Áø 3D ¼ÒÀç Á¦Á¶, 3D ÇÁ¸°ÆÃ Àç·áÀÇ ¹°¸®È­ÇÐÀû ¹× ±â°èÀû Ư¼º È®´ë, ¿­°æÈ­¼º ¼ÒÀç Á¦Á¶¿Í °ü·ÃµÈ ȯ°æ ¹®Á¦ ÇØ°á µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹ÇÏ°í »ê¾÷°è¿¡ »õ·Î¿î ÀÀ¿ë ºÐ¾ß¸¦ Á¦°øÇϱâ À§Çؼ­´Â ´ÙÇÐÁ¦Àû ¿¬±¸ÀÚµéÀÇ Çù·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ¿¬±¸ ºÐ¾ß´Â ¾ÕÀ¸·Îµµ °è¼Ó ¹ßÀüÇÒ °ÍÀ̸ç, ÷´Ü ¿¬±¸¿Í ÀÀ¿ëÀÌ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀåÀº ºÏ¹Ì¿¡¼­ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀÇ·á, °ÇÃà µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸ÂÃãÇü º¹ÀâÇÑ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ ½ÃÀå ¼ºÀåÀÇ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼úÀÌ ±âÁ¸ Á¦Á¶ ¹æ½ÄÀ¸·Î´Â ºÒ°¡´ÉÇß´ø ¸Å¿ì ¼¼¹ÐÇÏ°í º¹ÀâÇÑ µðÀÚÀÎÀ» Á¦Á¶ÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÇ·á »ê¾÷¿¡¼­´Â VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼úÀ» Ȱ¿ëÇÏ¿© ȯÀÚ °³°³ÀÎÀÇ ¿ä±¸¿¡ ¸Â´Â °íµµÀÇ ¸ÂÃãÇü ÀÇ·á±â±â ¹× ÀÓÇöõÆ®¸¦ Á¦Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â º¸Ã¶ ºÐ¾ß¿¡µµ Çõ¸íÀ» ÀÏÀ¸ÄÑ Æí¾ÈÇÏ°í ±â´ÉÀûÀÌ¸ç ½É¹ÌÀûÀ¸·Î ¿ì¼öÇÑ º¸Ã¶¹° ¹× ±âŸ ±â±¸¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿¡º¸´ÐÀº 2021³â 4¿ù SLA ¹× DLP VAT ÁßÇÕ ±â¼ú¿¡ ´ëÀÀÇÏ´Â µÎ °¡Áö ±¤ÁßÇÕü(INFINAM(R) TI 3100 L ¹× INFINAM(R) ST 6100 L)¸¦ Ãâ½ÃÇÏ¿´½À´Ï´Ù.

¶ÇÇÑ, ½ÅÈï±¹ ½ÃÀåÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃÀÌ ´õ ³ÐÀº ¹üÀ§¿¡¼­ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ¹Ì±¹ ³» VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, »ýüÀûÇÕ¼º ¼öÁöÀÇ »ç¿ëÀº ¸ÂÃãÇü ÀÇ·á¿ë ÀÓÇöõÆ® ¹× Àΰøº¸Ã¶¹° »ý»êÀ» °¡´ÉÇÏ°Ô Çϰí, °í°­µµ ¼öÁöÀÇ »ç¿ëÀº Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÎǰÀÇ »ý»êÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¹Ì±¹¿¡¼­´Â 3D ÇÁ¸°ÆÃ ±â¼ú ºñ¿ëÀÌ ³·¾ÆÁö¸é¼­ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °ú°Å 3D ÇÁ¸°ÆÃ ±â¼úÀº °í°¡ÀÇ ±â¼ú·Î ¿©°ÜÁ® ÁÖ·Î ´ë±â¾÷°ú ¿¬±¸ ±â°ü¿¡¼­ ÁÖ·Î »ç¿ëµÇ¾ú½À´Ï´Ù. ±×·¯³ª ¼ö³â°£ÀÇ ±â¼ú ¹ßÀü°ú ±Ô¸ðÀÇ °æÁ¦·Î ÀÎÇØ 3D ÇÁ¸°ÆÃ ±â¼úÀÇ ºñ¿ëÀÌ Å©°Ô ³·¾ÆÁ³½À´Ï´Ù. ÀÌ¿¡ µû¶ó Áß¼Ò±â¾÷»Ó¸¸ ¾Æ´Ï¶ó °³ÀÎ Ãë¹Ì »ç¿ëÀÚµµ 3D ÇÁ¸°ÆÃ ±â¼ú¿¡ ÅõÀÚÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼úÀÇ ºñ¿ëÀÌ ³·¾ÆÁü¿¡ µû¶ó º»°ÝÀûÀÎ »ý»ê¿¡ µé¾î°¡±â Àü¿¡ ºü¸£°í ºñ¿ë È¿À²ÀûÀ¸·Î ½ÃÁ¦Ç°À» Á¦ÀÛÇÒ ¼ö ÀÖ¾î ±â¾÷µéÀÌ »õ·Î¿î Á¦Ç°À̳ª µðÀÚÀÎÀ» ½ÃÇèÇØ º¼ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, ¹Ì±¹ Á¤ºÎ´Â ¿¬±¸°³¹ßÀ» À§ÇÑ ÀÚ±Ý Áö¿ø°ú º¸Á¶±ÝÀ» ÅëÇØ VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀ» Àû±ØÀûÀ¸·Î ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ´Â ¶ÇÇÑ 3D ÇÁ¸°ÆÃ ±â¼ú °³¹ß ¹× »ó¿ëÈ­¸¦ Áö¿øÇϱâ À§ÇØ ¹Î°£ ±â¾÷ ¹× Çмú ±â°ü°úÀÇ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ´Â ¶ÇÇÑ 3D ÇÁ¸°ÆÃ »ê¾÷ÀÇ ¼ºÀåÀ» Áö¿øÇϱâ À§ÇØ ¼¼Á¦ ÇýÅà ¹× ±âŸ ±ÝÀ¶ ÇÁ·Î±×·¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, R&D ¼¼¾×°øÁ¦´Â 3D ÇÁ¸°ÆÃ ±â¼ú°ú °ü·ÃµÈ R&D Ȱµ¿¿¡ ÅõÀÚÇÏ´Â ±â¾÷¿¡°Ô ¿¬¹æ ¼¼¾×°øÁ¦ ¹× ÁÖÁ¤ºÎ ¼¼¾×°øÁ¦¸¦ Á¦°øÇϴµ¥, ÀÌ ¼¼¾×°øÁ¦ÀÇ ¸ñÀûÀº ¹Ýµå½Ã ÇÏµå °úÇп¡ ÀÇÁ¸ÇÏ´Â »õ·Î¿î Á¦Ç°À̳ª °³¼±µÈ Á¦Ç°À» »ý»êÇÏ´Â °ÍÀ̾î¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ÁøÃâ ±â¾÷

¸ñÂ÷

Á¦1Àå ¼Ò°³

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

Á¦5Àå VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : ±â¼úº°

Á¦7Àå VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦8Àå VAT ±¤ÁßÇÕ 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : Áö¿ªº°

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

Á¦10Àå ±â¾÷ °³¿ä

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The VAT photopolymerization 3D printing technology market is projected to rise at a compound annual growth rate (CAGR) of 28.18% to reach a market valuation of US$30,037.738 million by 2029, from US$5,283.230 million in 2022.

VAT photopolymerization is a 3D printing process that uses a VAT of liquid material to build 3D things layer by layer, which are subsequently solidified using ultraviolet radiation. Due to the rising need for this technology's high accuracy and smooth finish that enables its extensive application in particular sectors like healthcare, demand is predicted to increase significantly over the coming years.

Vat photopolymerization (VP) printing, considered the oldest technological principle, has emerged as the standard in dental practice due to its reproducibility, precision, affordability, and adaptability. While some practitioners utilize material extrusion (MEX) printing, notably fused deposition modeling (FDM), to create models, it won't be discussed here. This is because these technologies are unsuitable for long-term dental medical device production, primarily due to their extended printing duration, high material porosity, and lack of stable biocompatible materials. According to a 2021 report from the American Dental Association, the United States had 201,117 active dentists in 2020, which equated to a ratio of 61.0 dentists per 100,000 people. The report projected that the unadjusted ratio of dentists per 100,000 population would rise from 60.7 in 2020 to 67.0 by the year 2040.

Growing research in the photopolymer sector is expected to boost the market in the projected period

The development of durable photopolymers is driven by research and development in VAT photopolymer materials for a variety of 3D printing applications, including the creation of form-memory polymers. For instance, scientists from the Technical University of Vienna (TU Wien) in Austria have devised a technique for creating robust, high-resolution 3D printed polymers that may make it possible to get around the constraints that now exist for light-cured 3D printing materials. This entails customizing the manufacturing of photopolymers based on methacrylates without altering the curing procedure. Photopolymers are, therefore, expected to become increasingly important in 3D printing technology.

Further, in order to compete with injection molding and shed its reputation as an outdated rapid prototype technique, VAT photopolymerization 3D printing technology is significantly improving. It is gradually becoming a next-generation, Industry 4.0 digital manufacturing process. The development of high-speed, layer-free photopolymerization printing techniques that enable the use of more durable liquid resin components and isotropic component properties, as well as the continued advancement of photopolymer materials used in conventional VAT photopolymerization procedures like stereolithography, are contributing factors.

The dental sector has a significant interest in and uses VAT photopolymerization. Additionally, VAT photopolymers are employed in the manufacture of hearing aids, the creation of models that can aid in preoperative planning and diagnostics, and the creation of replicas of organs or parts of the body that can be used for training purposes to show delicate surgical operations like osteotomies. A 3D-printed human ear model, for instance, was created in June 2022 by a team of researchers from the University of Oklahoma in order to standardize testing for blast exposure of hearing protection devices (HPDs ). The researchers predict that applying 3D printing technology will significantly enhance the evaluation of HPDs by enhancing personalization, enhancing cost-effectiveness, and speeding up the process. Therefore, these research endeavors have increased the healthcare expenditure and expected to augment the market growth during the forecast period.

The VAT photopolymerization 3D printing technology market for the photopolymers segment

Photopolymerization is a 3D printing technology that uses liquid resins that are cured by UV light to create solid parts. Photopolymers are a type of resin that can be used in this process, and they have become increasingly popular in the VAT photopolymerization 3D printing technology market due to their ability to produce highly detailed and intricate parts with high resolution, accuracy, and precision.

Photopolymers can be formulated to have specific material properties, such as rigidity, flexibility, or transparency, making them ideal for a wide range of applications in various industries. For example, in healthcare, photopolymerization can be used to produce customized dental implants or prosthetics with high accuracy and precision, while in aerospace and automotive industries, it can be used to produce complex parts with intricate geometries for lightweight and efficient designs.

Photopolymerization-based 3D printing techniques is used in various domains and industries due to its ability to produce high-resolution, intricate, and detailed parts. Some of the domains and industries where photopolymer 3D printing is used are:

Some of the key players in the VAT photopolymerization 3D printing technology market includes Stratasys Ltd., 3D Systems Corporation, EOS GmbH, Materialise NV, EnvisionTEC GmbH, Formlabs, Inc., and Carbon, Inc. Alongside the established players, there has been a surge of startups in recent years. These companies are bringing innovative ideas and technologies to the market and are playing a significant role in driving the industry's growth. Some of the notable startups in the market include Nexa3D, Sisma, Nanofabrica, Velo3D, and RPS among others.

Such a dynamic and rapidly evolving market landscape demands continuous efforts by the stakeholders to stay abreast of the latest developments and advancements and align their strategies accordingly. The companies are also investing in collaborations, partnerships, and acquisitions to bolster their research and development capabilities, expand their market reach, and gain a competitive edge. It is evident that the market is poised for further growth and is expected to witness a surge in demand from various industries seeking advanced and cost-effective 3D printing solutions.

The use of all types of materials has grown by significantly in about two years. Plastics and polymers continue to sit at the top of the leaderboard, but in 2019, 74% of respondents said their companies used plastics/polymers (Source: 3D Printing Technology Trends Report, Jabil)

Photopolymerization-based 3D printing techniques have revolutionized various fields, including microfluidics, dentistry, biomedical devices, tissue engineering, and drug delivery. However, despite the rapid growth of this technology, there are still challenges that need to be addressed to enable its further progress. These challenges include the development of more diverse biocompatible materials for 3D bioprinting applications, 3D printing technologies with higher speed and resolution, the production of 3D materials with living features, expanding the physicochemical and mechanical properties of 3D printed materials, and addressing environmental concerns related to the production of thermosets. Collaboration among multidisciplinary researchers is crucial to overcome these challenges and bring about new applications for industries. This research area is expected to continue to evolve and hold promise for advanced studies and applications.

The market is projected to grow in the North American region.

The market growth is being driven on account of increasing demand for customized and complex products across various industries, including aerospace, automotive, healthcare, and architecture. This is because VAT photopolymerization 3D printing technology allows for the production of highly detailed and intricate designs that cannot be produced using traditional manufacturing methods. In the healthcare industry, VAT photopolymerization 3D printing technology is being used to produce highly customized medical devices and implants that fit the specific needs of individual patients. This has revolutionized the field of prosthetics, allowing for the production of prosthetic limbs and other devices that are comfortable, functional, and aesthetically pleasing. For instance, in April 2021, Evonik launched two photopolymers under their brand names INFINAM(R) TI 3100 L and INFINAM(R) ST 6100 L which are compatible with both SLA and DLP VAT polymerization technologies.

Additionally, the development of advanced materials has enabled VAT photopolymerization 3D printing to be used in a wider range of applications which is a key factor driving the growth of the VAT photopolymerization 3D printing technology market in the United States. For example, the use of biocompatible resins has enabled the production of customized medical implants and prosthetics, while the use of high-strength resins has enabled the production of aerospace and automotive parts.

The decreasing cost of 3D printing technology in the United States is driving the adoption of VAT photopolymerization 3D printing solutions. In the past, 3D printing technology was considered expensive and was primarily used by large corporations and research institutions. However, over the years, advancements in technology and economies of scale have resulted in the cost of 3D printing technology coming down significantly. This has made it possible for small and medium-sized businesses as well as individual hobbyists to invest in 3D printing technology. The reduced cost of VAT photopolymerization 3D printing technology is also making it easier for businesses to experiment with new products and designs, as they can quickly and cost-effectively produce prototypes before moving into full-scale production.

Furthermore, the United States government has been actively promoting the growth of the VAT photopolymerization 3D printing technology market growth through funding and grants for research and development. The government has also established partnerships with private industry and academic institutions to support the development and commercialization of 3D printing technologies. The government has also implemented tax incentives and other financial programs to support the growth of the 3D printing industry. For example, the Research and Development Tax Credit provides federal and state tax credits to companies that invest in research and development activities, including those related to 3D printing technology and the purpose should be to create new or improved products relying on hard sciences.

Key Players:

Segmentation:

By Component:

By Technology

By End-User

By Geography

TABLE OF CONTENTS

1. INTRODUCTION

2. RESEARCH METHODOLOGY

3. EXECUTIVE SUMMARY

4. MARKET DYNAMICS

5. VAT PHOTOPOLYMERIZATION 3D PRINTING TECHNOLOGY MARKET BY COMPONENT

6. VAT PHOTOPOLYMERIZATION 3D PRINTING TECHNOLOGY MARKET BY TECHNOLOGY

7. VAT PHOTOPOLYMERIZATION 3D PRINTING TECHNOLOGY MARKET BY END-USER

8. VAT PHOTOPOLYMERIZATION 3D PRINTING TECHNOLOGY MARKET BY GEOGRAPHY

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

10. COMPANY PROFILES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â