광업용 인공지능(AI) 시장 : 시장 규모, 점유율, 동향 분석(유형별, 배포 모드별, 기술별, 지역별) 전망 및 예측(2025-2032년)
Global AI In Mining Market Size, Share & Industry Analysis Report By Type, By Deployment, By Technology, By Regional Outlook and Forecast, 2025 - 2032
상품코드:1803999
리서치사:KBV Research
발행일:2025년 08월
페이지 정보:영문 493 Pages
라이선스 & 가격 (부가세 별도)
한글목차
광업용 인공지능(AI) 시장 규모는 예측기간 동안 40.6%의 연평균 복합 성장률(CAGR)을 나타내 2032년까지 4,359억 4,000만 달러에 달할 것으로 예상되고 있습니다.
주요 하이라이트 :
북미의 광업용 인공지능(AI) 시장은 2024년 세계 시장을 독점했으며, 수익 점유율은 36.80%에 달했습니다.
미국의 광업용 인공지능(AI) 시장은 북미에서 우위를 유지하고 2032년까지 시장 규모 913억 7,000만 달러에 이를 것으로 예상됩니다.
유형별로는 노천굴굴 부문이 세계 시장을 독점했으며 2024년에는 수익 점유율의 54.62%를 차지했습니다.
클라우드 부문은 2024년에 도입 부문을 선도해, 51.71%의 수익 공유를 획득했고, 예측 기간 동안에도 그 우위성을 유지할 것으로 전망되고 있습니다.
기술별로는 머신러닝 및 심층 학습 부문은 2024년에 107억 4,000만 달러의 수익 공헌이 있어, 계속 우위에 선다고 추정되고 있습니다.
AI는 광업에 변화를 가져왔고 보호 기능을 강화하고 생산성을 향상시키고 기술에 대한 대응력을 강화했습니다. 광업은 1980년대에 Modular Mining사의 DISPATCH 시스템이라고 하는 스마트 플릿 관리 툴을 도입하고 있었습니다만, 현재는 리얼타임 광석 선별, 예지 보전, 대규모 자율 운용이라고 하는 고도의 용도를 도입하고 있습니다. 현재 AI는 위성 데이터, 지질 조사, 굴착 로그를 뒷받침하는 탐사에도 활용되고 있어 광상 특정에 드는 비용과 시간을 대폭 삭감하고 있습니다. 세계 정부와 기업은 인도의 라자스탄 주에서 리튬과 희토류와 같은 중요한 광물의 매핑에 중점을 둔 국가 계획 등 공적 이니셔티브를 통해 광업에 AI를 도입하고 있습니다.
경쟁 시나리오는 매우 엄격하며 광업 대기업, OEM, 기술 기업 및 모든 신생 기업이 참여하고 있습니다. BHP, 리오 틴트, 발레, 글렌코어 등 대기업은 스마트 플릿 시스템과 예측 플랫폼을 활용하여 광업용 인공지능(AI) 도입의 최전선에 서 있습니다. 한편, 코마츠, 캐터필러, 샌드빅은 디지털 트윈 기술과 AI 탑재의 자율형 기계에 주력하고 있습니다. IBM, Microsoft, Google과 같은 기술 공급업체는 클라우드 기반 AI 솔루션으로 시장을 석권하고 있으며, 스타트업 기업은 지질 모델링 및 자원 추정에 대한 혁신을 추진하고 있습니다. 또한 세계 각국의 정부도 중요한 광물 확보와 탐사의 근대화를 목표로 광업용 인공지능(AI)에 많은 투자를 하고 있습니다.
COVID-19의 영향 분석
COVID-19 팬데믹은 록다운, 건강 제한, 현장 접근 제한 등에 의해 조업을 방해하여 광업에의 AI 도입에 악영향을 미쳤습니다. 재정적인 불확실성으로 인해 기업은 디지털 혁신보다 필수적인 업무를 선호했고, 그 결과 많은 AI 프로젝트가 중단되거나 연기되었습니다. 자동화, 예지보전, 데이터 분석 프로젝트는 대규모 인프라, 소프트웨어, 숙련 노동자를 필요로 하는 AI 기술에 대한 투자가 불필요하다고 판단되어 보류되었습니다. 세계 공급망 위기의 영향으로 센서, 무인 항공기, 컴퓨터 장비와 같은 중요한 하드웨어의 부족과 지연은 도입과 유지보수를 더욱 방해했습니다. 또한 훈련과 노동력의 유동성에 대한 한계도 진행을 늦추었습니다. 종합적으로 보면 팬데믹은 AI 도입에 불리한 환경을 만들어 광산의 디지털 전환 정체로 이어졌습니다. 이와 같이 COVID-19 팬데믹은 시장에 악영향을 미쳤습니다.
유형별 전망
광업용 인공지능(AI) 시장은 유형별로 노천굴, 지하 채굴 등으로 분류됩니다. 지하 채굴 부문은 2024년 시장의 39% 수익 점유율을 획득했습니다. 이 부문은 시야 제한, 공간 제약, 안전 위험 증가 등 지하 채굴의 복잡한 과제를 해결하는 AI 대응 솔루션의 혜택을 누리고 있습니다. 지능형 환기 시스템, 자율 드릴링 머신, AI 지원 지리 공간 매핑 등의 기술은 지하 채굴의 운영 성과를 크게 향상시키고 있습니다. 또한 AI는 지질 데이터 분석을 통해 의사결정을 개선하는데 기여하며, 광업 회사가 복잡한 지하 구조를 탐색하면서 위험을 최소화하고 생산 효율을 향상시키는 데 도움이 됩니다.
기술별 전망
광업용 인공지능(AI) 시장은 기술별로 머신러닝·심층 학습, 로보틱스·자동화, 컴퓨터 비전, NLP 등으로 분류됩니다. 로보틱스 및 자동화 분야는 2024년 시장 점유율의 27%를 획득했습니다. 이러한 기술은 반복 작업과 위험한 작업의 자동화를 지원하여 작업자의 안전과 작업 정확도를 크게 향상시킵니다. 자율 운반 시스템, 로봇 드릴링, 무인 항공기 등은 공정 합리화, 인적 실수 감소, 운영 비용 절감을 실현하는 로봇 응용의 예입니다. 자동화 기술은 광석 취급 및 운송 시스템도 개선하여 생산성 최적화와 에너지 소비 절감으로 이어집니다. 광업 현장은 원격지와 고위험 환경에서 가동되기 때문에 인간의 개입을 최소화하면서 지속적인 가동을 가능하게 하기 위해 로봇과 자동화의 도입이 점점 더 진행되고 있습니다.
지역별 전망
지역별로 보면 광업용 인공지능(AI) 시장은 북미, 유럽, 아시아태평양, LAMEA에서 분석되고 있습니다. 북미 부문은 2024년 시장에서 37%의 수익 점유율을 기록했습니다. 강력한 기술 채용과 고급 인프라가 북미의 광업용 인공지능(AI) 시장을 형성하고 있습니다. 자율 운반 시스템, 예측 유지보수 플랫폼, AI를 활용한 탐사 도구는 미국과 캐나다 광업 회사에서 이미 사용되고 있습니다. 디지털 전환은 주로 이 분야에서의 운영 안전성을 높이고 더 많은 근로자를 고용하고 생산성을 향상시키는 것입니다. 유럽에서는 지속가능성에 대한 엄격한 규칙과 환경법 준수가 시장을 견인하고 있습니다. 유럽의 광산 회사는 운영의 에너지 효율을 높이고, 배출량을 추적하고, 로봇에 의한 채굴 솔루션을 찾기 위해 AI에 자금을 투입하고 있습니다. 정부도 지속 가능한 광업 생태계 구축을 지원합니다.
아시아태평양에서는 광업의 급속한 성장, 광물 자원의 풍부함, 정부의 디지털화 지원 프로그램 등으로 광업용 인공지능(AI)의 활용이 확대되고 있습니다. 호주, 중국, 인도 등의 국가에서는 AI를 탑재한 자율형 머신, 실시간 광석 처리, 탐사 플랫폼을 활용하여 효율성을 향상시키고 중요한 광물 자원을 확보하기 위해 노력하고 있습니다. 한편, 라틴아메리카·중동·아프리카(LAMEA)에서는 AI 도입은 아직 초기 단계이지만 큰 가능성을 가지고 있습니다. 라틴아메리카에서 AI는 대규모 광업의 안전과 효율성을 높이기 위해 활용됩니다. 중동 및 아프리카에서는 채굴 곤란한 지역에서 에너지 이용, 자원 관리, 원격 감시 개선에 AI 활용이 확대되고 있습니다.
목차
제1장 시장의 범위와 분석 수법
시장의 정의
목적
시장 범위
세분화
분석 방법
제2장 시장 개관
주요 하이라이트
제3장 시장 개요
서론
개요
시장구성과 시나리오
시장에 영향을 미치는 주요 요인
시장 성장 촉진요인
시장 성장 억제요인
시장 기회
시장 과제
제4장 시장 동향 : 광업용 인공지능(AI) 시장
제5장 경쟁 구도 : 광업용 인공지능(AI) 시장
제6장 제품 수명주기(PLC) : 광업용 인공지능(AI) 시장
제7장 시장 통합 : 광업용 인공지능(AI) 시장
제8장 경쟁 분석 : 세계 시장
시장 점유율 분석(2024년)
광업용 인공지능(AI) 시장에서 전개되고 있는 최근의 전략
Porter's Five Forces 분석
제9장 밸류체인 분석 : 광업용 인공지능(AI) 시장
기술 개발
데이터 수집 및 통합
인프라 및 배포
AI의 응용 분야
통합 및 서비스
출력 최적화 및 의사 결정
피드백 및 연속 학습
제10장 주요 고객 기준 : 광업용 인공지능(AI) 시장
제11장 세계의 광업용 인공지능(AI) 시장 : 유형별
세계의 지표 채굴 시장 : 지역별
세계의 지하 채굴 시장 : 지역별
세계의 기타 유형 시장 : 지역별
제12장 세계의 광업용 인공지능(AI) 시장 : 배포 모드별
세계의 클라우드 시장 : 지역별
세계의 하이브리드 시장 : 지역별
세계의 On-Premise 시장 : 지역별
제13장 세계의 광업용 인공지능(AI) 시장 : 기술별
세계의 머신러닝 및 딥러닝 시장 : 지역별
세계의 로보공학 및 자동화 시장 : 지역별
세계의 컴퓨터 비전 시장 : 지역별
세계의 NLP 시장 : 지역별
세계의 기타 기술 시장 : 지역별
제14장 세계의 광업용 인공지능(AI) 시장 : 지역별
북미
시장 성장 촉진요인
시장 성장 억제요인
시장 기회
시장 과제
북미의 광업용 인공지능(AI) 시장 : 국가별
미국
캐나다
멕시코
기타 북미지
유럽
시장 성장 촉진요인
시장 성장 억제요인
시장 기회
시장 과제
유럽의 광업용 인공지능(AI) 시장 : 국가별
독일
영국
프랑스
러시아
스페인
이탈리아
기타 유럽
아시아태평양
시장 성장 촉진요인
시장 성장 억제요인
시장 기회
시장 과제
아시아태평양의 광업용 인공지능(AI) 시장 : 국가별
중국
일본
인도
한국
호주
말레이시아
기타 아시아태평양
라틴아메리카·중동·아프리카(LAMEA)
시장 성장 촉진요인
시장 성장 억제요인
시장 기회
시장 과제
라틴아메리카·중동·아프리카의 광업용 인공지능(AI) 시장 : 국가별
브라질
아르헨티나
아랍에미리트(UAE)
사우디아라비아
남아프리카
나이지리아
기타 라틴아메리카·중동·아프리카
제15장 기업 프로파일
IBM Corporation
Komatsu Ltd
Caterpillar, Inc
Sandvik AB
SAP SE
Microsoft Corporation
Datarock Pty Ltd
Earth AI Inc
BHP Group Limited
Rio Tinto PLC(Rio Tinto International Holdings Limited)
제16장 광업용 인공지능(AI) 시장의 성공 필수 조건
KTH
영문 목차
영문목차
The Global AI In Mining Market size is expected to reach USD 435.94 billion by 2032, rising at a market growth of 40.6% CAGR during the forecast period.
Key Highlights:
The North America AI In Mining Market dominated the Global Market in 2024, accounting for a 36.80% revenue share in 2024.
The US AI In Mining Market is expected to continue its dominance in North America region thereby reaching a market size of 91.37 billion by 2032.
Among the various type segments, the Surface Mining segment dominated the global market, contributing a revenue share of 54.62% in 2024.
Cloud segment led the deployment segments in 2024, capturing a 51.71% revenue share and is projected to continue its dominance during projected period.
Among different Technology segments, Machine Learning & Deep Learning segment with a revenue contribution of 10.74 billion in 2024 is projected to continue its dominance.
AI has transformed the mining industry by making it better protected, more productive and tech-savvy. The mining industry used smart fleet management tools such as Modular Mining's DISPATCH system in the 1980s, now the industry is incorporating advanced applications like real-time ore sorting, predictive maintenance, and large-scale autonomous operations. Currently, AI is being used in exploration backed with satellite data, geophysical surveys, and drill logs, decreeing the cost and time in identifying deposits. Government and companies across the globe are adopting AI in mining through public initiatives, such as national plans focused on mapping critical minerals like lithium and rare earths in Rajasthan, India.
The competitive scenario is highly robust, with mining giants, OEMs, tech companies, and all startups are contributing in it. Corporates like BHP, Rio Tinto, Vale, and Glencore are at the forefront of the AI adoption in mining with smart fleet systems and predictive platforms, meanwhile Komatsu, Caterpillar, and Sandvik emphasizes on digital twin technologies and AI-powered autonomous machinery. Technology suppliers like IBM, Microsoft, and Google are penetrating with cloud-based AI solutions, while starts are working on the innovations related to the geological modeling and resource estimation. Furthermore, governments globally are also investing heavily in AI to secure critical minerals and modernize exploration.
COVID 19 Impact Analysis
By interfering with operations through lockdowns, health restrictions, and site access limitations, the COVID-19 pandemic had a detrimental effect on the mining industry's adoption of AI. Due to financial uncertainty, businesses prioritized essential operations over digital innovation, which resulted in the cancellation or delay of numerous AI projects. Automation, predictive maintenance, and data analytics projects were put on hold when it was decided that investing in AI technologies-which require a large amount of infrastructure, software, and trained workers-was not necessary. Deployment and maintenance were further hampered by shortages and delays in vital hardware, including sensors, drones, and computer equipment, brought on by the global supply chain crisis. Progress was also slowed by limitations on training and workforce mobility. All things considered, the pandemic produced an unfavorable climate for integrating AI, which led to a halt in the digital transformation of the mining industry. Thus, the COVID-19 pandemic had a Negative impact on the market.
Type Outlook
Based on type, the AI in mining market is characterized into surface mining, underground mining, and others. The underground mining segment attained 39% revenue share in the market in 2024. This segment benefits from AI-enabled solutions that address the complex challenges of subterranean operations, such as limited visibility, constrained space, and heightened safety risks. Technologies such as intelligent ventilation systems, autonomous drilling machinery, and AI-assisted geospatial mapping have significantly improved operational outcomes in underground mining. Moreover, AI contributes to better decision-making through the analysis of geological data, helping mining companies navigate intricate underground structures while minimizing risks and improving yield efficiency.
Technology Outlook
By technology, the AI in mining market is divided into machine learning & deep learning, robotics & automation, computer vision, NLP, and others. The robotics & automation segment attained 27% revenue share in the market in 2024. These technologies support the automation of repetitive and hazardous tasks, significantly enhancing worker safety and operational precision. Autonomous haulage systems, robotic drilling, and unmanned aerial vehicles are examples of robotics applications that streamline processes, reduce human error, and lower operational costs. Automation technologies also improve ore handling and transport systems, resulting in optimized productivity and reduced energy consumption. As mining sites often operate in remote and high-risk environments, robotics and automation are increasingly being adopted to enable continuous operations with minimal human intervention.
Regional Outlook
Region-wise, the AI in mining market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 37% revenue share in the market in 2024. Strong technology adoption and advanced infrastructure are shaping AI in mining market in North America. Autonomous haulage systems, predictive maintenance platforms, and AI-powered exploration tools are already being used by mining companies in the U.S. and Canada. Digital transformation is mostly about making operations safer, hiring more workers, and boosting productivity in this area. In Europe, strict rules about sustainability and following environmental laws drive the market. European miners are putting money into AI to make their operations more energy-efficient, keep track of emissions, and find robotic mining solutions. The government is also helping them build sustainable mining ecosystems.
AI is being used more in mining in the Asia-Pacific region because of the fast growth of the industry, the availability of mineral resources, and government-backed programs to digitize. Countries like Australia, China, and India are using AI-powered autonomous machines, real-time ore processing, and exploration platforms to improve efficiency and ensure they have enough important minerals. In LAMEA, on the other hand, AI adoption is still in its early stages but has significant potential. In Latin America, AI is being used to make large-scale mining safer and more efficient. In the Middle East and Africa, AI is being used increasingly to improve energy use, resource management, and remote monitoring in difficult mining areas.
Recent Strategies Deployed in the Market
Apr-2025: Datarock Pty Ltd teamed up with DataArk Systems to launch a quantum-secure, ransomware-proof database tailored for AI and analytics applications. This solution enhances cybersecurity and data integrity for mining operations, supporting safer and more reliable AI-driven decision-making in the mining sector's digital transformation efforts.
Dec-2024: Sandvik AB announced the acquisition of Universal Field Robots to develop autonomous robotic solutions for mining. This collaboration will enhance productivity and safety through AI-powered automation, marking a strategic step toward advanced, intelligent mining operations that utilize robotics and intelligent field systems.
Oct-2024: Komatsu Ltd. announced the acquisition of Octodots Analytics, a Chilean provider of mining optimization software, to enhance its AI capabilities. Integrated into Komatsu's Modular ecosystem-which builds on its DISPATCH fleet management platform-the acquisition will advance AI-driven data integration and decision-making across machine, site, and enterprise levels in mining operations.
May-2023: BHP Group Limited teamed up with Microsoft to deploy Azure Machine Learning and real-time data analytics at its Escondida copper mine in Chile, using AI-driven recommendations to optimise concentrator operations and boost copper recovery. These highlights growing adoption of digital technologies in mining, reinforcing the AI-in-mining market trend.
Apr-2021: IBM Corporation announced the acquisition of myInvenio, a process mining software provider, to boost AI-driven automation. This acquisition enables businesses, including mining companies, to map, analyze, and optimize workflows using AI for improved efficiency and reduced operational costs.
List of Key Companies Profiled
IBM Corporation
Komatsu Ltd.
Caterpillar, Inc.
Sandvik AB
SAP SE
Microsoft Corporation
Datarock Pty Ltd
Earth AI Inc.
BHP Group Limited
Rio Tinto PLC (Rio Tinto International Holdings Limited)
Global AI In Mining Market Report Segmentation
By Type
Surface Mining
Underground Mining
Other Type
By Deployment
Cloud
Hybrid
On-premises
By Technology
Machine Learning & Deep Learning
Robotics & Automation
Computer Vision
NLP
Other Technology
By Geography
North America
US
Canada
Mexico
Rest of North America
Europe
Germany
UK
France
Russia
Spain
Italy
Rest of Europe
Asia Pacific
China
Japan
India
South Korea
Australia
Malaysia
Rest of Asia Pacific
LAMEA
Brazil
Argentina
UAE
Saudi Arabia
South Africa
Nigeria
Rest of LAMEA
Table of Contents
Chapter 1. Market Scope & Methodology
1.1 Market Definition
1.2 Objectives
1.3 Market Scope
1.4 Segmentation
1.4.1 Global AI In Mining Market, by Type
1.4.2 Global AI In Mining Market, by Deployment
1.4.3 Global AI In Mining Market, by Technology
1.4.4 Global AI In Mining Market, by Geography
1.5 Methodology for the research
Chapter 2. Market at a Glance
2.1 Key Highlights
Chapter 3. Market Overview
3.1 Introduction
3.1.1 Overview
3.1.1.1 Market Composition and Scenario
3.2 Key Factors Impacting the Market
3.2.1 Market Drivers
3.2.2 Market Restraints
3.2.3 Market Opportunities
3.2.4 Market Challenges
Chapter 4. Market Trends - AI In Mining Market
Chapter 5. State of Competition - AI In Mining Market
Chapter 6. Product Life Cycle - AI In Mining Market
Chapter 7. Market Consolidation - AI In Mining Market
Chapter 8. Competition Analysis - Global
8.1 Market Share Analysis, 2024
8.2 Recent Strategies Deployed in AI In Mining Market
8.3 Porter Five Forces Analysis
Chapter 9. Value Chain Analysis - AI In Mining Market
9.1 Technology Development
9.2 Data Acquisition and Integration
9.3 Infrastructure and Deployment
9.4 AI Application Areas
9.5 Integration and Services
9.6 Output Optimization and Decision-Making
9.7 Feedback and Continuous Learning
Chapter 10. Key Customer Criteria - AI In Mining Market
Chapter 11. Global AI In Mining Market by Type
11.1 Global Surface Mining Market by Region
11.2 Global Underground Mining Market by Region
11.3 Global Other Type Market by Region
Chapter 12. Global AI In Mining Market by Deployment
12.1 Global Cloud Market by Region
12.2 Global Hybrid Market by Region
12.3 Global On-premises Market by Region
Chapter 13. Global AI In Mining Market by Technology
13.1 Global Machine Learning & Deep Learning Market by Region
13.2 Global Robotics & Automation Market by Region
13.3 Global Computer Vision Market by Region
13.4 Global NLP Market by Region
13.5 Global Other Technology Market by Region
Chapter 14. Global AI In Mining Market by Region
14.1 North America AI In Mining Market
14.1.1 Key Factors Impacting the Market
14.1.1.1 Market Drivers
14.1.1.2 Market Restraints
14.1.1.3 Market Opportunities
14.1.1.4 Market Challenges
14.1.2 Market Trends - North America AI In Mining Market
14.1.3 State of Competition - North America AI In Mining Market
14.1.4 North America AI In Mining Market by Type
14.1.4.1 North America Surface Mining Market by Country
14.1.4.2 North America Underground Mining Market by Country
14.1.4.3 North America Other Type Market by Country
14.1.5 North America AI In Mining Market by Deployment
14.1.5.1 North America Cloud Market by Country
14.1.5.2 North America Hybrid Market by Country
14.1.5.3 North America On-premises Market by Country
14.1.6 North America AI In Mining Market by Technology
14.1.6.1 North America Machine Learning & Deep Learning Market by Country
14.1.6.2 North America Robotics & Automation Market by Country
14.1.6.3 North America Computer Vision Market by Country
14.1.6.4 North America NLP Market by Country
14.1.6.5 North America Other Technology Market by Country
14.1.7 North America AI In Mining Market by Country
14.1.7.1 US AI In Mining Market
14.1.7.1.1 US AI In Mining Market by Type
14.1.7.1.2 US AI In Mining Market by Deployment
14.1.7.1.3 US AI In Mining Market by Technology
14.1.7.2 Canada AI In Mining Market
14.1.7.2.1 Canada AI In Mining Market by Type
14.1.7.2.2 Canada AI In Mining Market by Deployment
14.1.7.2.3 Canada AI In Mining Market by Technology
14.1.7.3 Mexico AI In Mining Market
14.1.7.3.1 Mexico AI In Mining Market by Type
14.1.7.3.2 Mexico AI In Mining Market by Deployment
14.1.7.3.3 Mexico AI In Mining Market by Technology
14.1.7.4 Rest of North America AI In Mining Market
14.1.7.4.1 Rest of North America AI In Mining Market by Type
14.1.7.4.2 Rest of North America AI In Mining Market by Deployment
14.1.7.4.3 Rest of North America AI In Mining Market by Technology
14.2 Europe AI In Mining Market
14.2.1 Key Factors Impacting the Market
14.2.1.1 Market Drivers
14.2.1.2 Market Restraints
14.2.1.3 Market Opportunities
14.2.1.4 Market Challenges
14.2.2 Market Trends - Europe AI In Mining Market
14.2.3 State of Competition - Europe AI In Mining Market
14.2.4 Europe AI In Mining Market by Type
14.2.4.1 Europe Surface Mining Market by Country
14.2.4.2 Europe Underground Mining Market by Country
14.2.4.3 Europe Other Type Market by Country
14.2.5 Europe AI In Mining Market by Deployment
14.2.5.1 Europe Cloud Market by Country
14.2.5.2 Europe Hybrid Market by Country
14.2.5.3 Europe On-premises Market by Country
14.2.6 Europe AI In Mining Market by Technology
14.2.6.1 Europe Machine Learning & Deep Learning Market by Country
14.2.6.2 Europe Robotics & Automation Market by Country
14.2.6.3 Europe Computer Vision Market by Country
14.2.6.4 Europe NLP Market by Country
14.2.6.5 Europe Other Technology Market by Country
14.2.7 Europe AI In Mining Market by Country
14.2.7.1 Germany AI In Mining Market
14.2.7.1.1 Germany AI In Mining Market by Type
14.2.7.1.2 Germany AI In Mining Market by Deployment
14.2.7.1.3 Germany AI In Mining Market by Technology
14.2.7.2 UK AI In Mining Market
14.2.7.2.1 UK AI In Mining Market by Type
14.2.7.2.2 UK AI In Mining Market by Deployment
14.2.7.2.3 UK AI In Mining Market by Technology
14.2.7.3 France AI In Mining Market
14.2.7.3.1 France AI In Mining Market by Type
14.2.7.3.2 France AI In Mining Market by Deployment
14.2.7.3.3 France AI In Mining Market by Technology
14.2.7.4 Russia AI In Mining Market
14.2.7.4.1 Russia AI In Mining Market by Type
14.2.7.4.2 Russia AI In Mining Market by Deployment
14.2.7.4.3 Russia AI In Mining Market by Technology
14.2.7.5 Spain AI In Mining Market
14.2.7.5.1 Spain AI In Mining Market by Type
14.2.7.5.2 Spain AI In Mining Market by Deployment
14.2.7.5.3 Spain AI In Mining Market by Technology
14.2.7.6 Italy AI In Mining Market
14.2.7.6.1 Italy AI In Mining Market by Type
14.2.7.6.2 Italy AI In Mining Market by Deployment
14.2.7.6.3 Italy AI In Mining Market by Technology
14.2.7.7 Rest of Europe AI In Mining Market
14.2.7.7.1 Rest of Europe AI In Mining Market by Type
14.2.7.7.2 Rest of Europe AI In Mining Market by Deployment
14.2.7.7.3 Rest of Europe AI In Mining Market by Technology
14.3 Asia Pacific AI In Mining Market
14.3.1 Key Factors Impacting the Market
14.3.1.1 Market Drivers
14.3.1.2 Market Restraints
14.3.1.3 Market Opportunities
14.3.1.4 Market Challenges
14.3.2 Market Trends - Asia Pacific AI In Mining Market
14.3.3 State of Competition - Asia Pacific AI In Mining Market
14.3.4 Asia Pacific AI In Mining Market by Type
14.3.4.1 Asia Pacific Surface Mining Market by Country
14.3.4.2 Asia Pacific Underground Mining Market by Country
14.3.4.3 Asia Pacific Other Type Market by Country
14.3.5 Asia Pacific AI In Mining Market by Deployment
14.3.5.1 Asia Pacific Cloud Market by Country
14.3.5.2 Asia Pacific Hybrid Market by Country
14.3.5.3 Asia Pacific On-premises Market by Country
14.3.6 Asia Pacific AI In Mining Market by Technology
14.3.6.1 Asia Pacific Machine Learning & Deep Learning Market by Country
14.3.6.2 Asia Pacific Robotics & Automation Market by Country
14.3.6.3 Asia Pacific Computer Vision Market by Country
14.3.6.4 Asia Pacific NLP Market by Country
14.3.6.5 Asia Pacific Other Technology Market by Country
14.3.7 Asia Pacific AI In Mining Market by Country
14.3.7.1 China AI In Mining Market
14.3.7.1.1 China AI In Mining Market by Type
14.3.7.1.2 China AI In Mining Market by Deployment
14.3.7.1.3 China AI In Mining Market by Technology
14.3.7.2 Japan AI In Mining Market
14.3.7.2.1 Japan AI In Mining Market by Type
14.3.7.2.2 Japan AI In Mining Market by Deployment
14.3.7.2.3 Japan AI In Mining Market by Technology
14.3.7.3 India AI In Mining Market
14.3.7.3.1 India AI In Mining Market by Type
14.3.7.3.2 India AI In Mining Market by Deployment
14.3.7.3.3 India AI In Mining Market by Technology
14.3.7.4 South Korea AI In Mining Market
14.3.7.4.1 South Korea AI In Mining Market by Type
14.3.7.4.2 South Korea AI In Mining Market by Deployment
14.3.7.4.3 South Korea AI In Mining Market by Technology
14.3.7.5 Australia AI In Mining Market
14.3.7.5.1 Australia AI In Mining Market by Type
14.3.7.5.2 Australia AI In Mining Market by Deployment
14.3.7.5.3 Australia AI In Mining Market by Technology
14.3.7.6 Malaysia AI In Mining Market
14.3.7.6.1 Malaysia AI In Mining Market by Type
14.3.7.6.2 Malaysia AI In Mining Market by Deployment
14.3.7.6.3 Malaysia AI In Mining Market by Technology
14.3.7.7 Rest of Asia Pacific AI In Mining Market
14.3.7.7.1 Rest of Asia Pacific AI In Mining Market by Type
14.3.7.7.2 Rest of Asia Pacific AI In Mining Market by Deployment
14.3.7.7.3 Rest of Asia Pacific AI In Mining Market by Technology
14.4 LAMEA AI In Mining Market
14.4.1 Key Factors Impacting the Market
14.4.1.1 Market Drivers
14.4.1.2 Market Restraints
14.4.1.3 Market Opportunities
14.4.1.4 Market Challenges
14.4.2 Market Trends - LAMEA AI In Mining Market
14.4.3 State of Competition - LAMEA AI In Mining Market
14.4.4 LAMEA AI In Mining Market by Type
14.4.4.1 LAMEA Surface Mining Market by Country
14.4.4.2 LAMEA Underground Mining Market by Country
14.4.4.3 LAMEA Other Type Market by Country
14.4.5 LAMEA AI In Mining Market by Deployment
14.4.5.1 LAMEA Cloud Market by Country
14.4.5.2 LAMEA Hybrid Market by Country
14.4.5.3 LAMEA On-premises Market by Country
14.4.6 LAMEA AI In Mining Market by Technology
14.4.6.1 LAMEA Machine Learning & Deep Learning Market by Country
14.4.6.2 LAMEA Robotics & Automation Market by Country
14.4.6.3 LAMEA Computer Vision Market by Country
14.4.6.4 LAMEA NLP Market by Country
14.4.6.5 LAMEA Other Technology Market by Country
14.4.7 LAMEA AI In Mining Market by Country
14.4.7.1 Brazil AI In Mining Market
14.4.7.1.1 Brazil AI In Mining Market by Type
14.4.7.1.2 Brazil AI In Mining Market by Deployment
14.4.7.1.3 Brazil AI In Mining Market by Technology
14.4.7.2 Argentina AI In Mining Market
14.4.7.2.1 Argentina AI In Mining Market by Type
14.4.7.2.2 Argentina AI In Mining Market by Deployment
14.4.7.2.3 Argentina AI In Mining Market by Technology
14.4.7.3 UAE AI In Mining Market
14.4.7.3.1 UAE AI In Mining Market by Type
14.4.7.3.2 UAE AI In Mining Market by Deployment
14.4.7.3.3 UAE AI In Mining Market by Technology
14.4.7.4 Saudi Arabia AI In Mining Market
14.4.7.4.1 Saudi Arabia AI In Mining Market by Type
14.4.7.4.2 Saudi Arabia AI In Mining Market by Deployment
14.4.7.4.3 Saudi Arabia AI In Mining Market by Technology
14.4.7.5 South Africa AI In Mining Market
14.4.7.5.1 South Africa AI In Mining Market by Type
14.4.7.5.2 South Africa AI In Mining Market by Deployment
14.4.7.5.3 South Africa AI In Mining Market by Technology
14.4.7.6 Nigeria AI In Mining Market
14.4.7.6.1 Nigeria AI In Mining Market by Type
14.4.7.6.2 Nigeria AI In Mining Market by Deployment
14.4.7.6.3 Nigeria AI In Mining Market by Technology
14.4.7.7 Rest of LAMEA AI In Mining Market
14.4.7.7.1 Rest of LAMEA AI In Mining Market by Type
14.4.7.7.2 Rest of LAMEA AI In Mining Market by Deployment
14.4.7.7.3 Rest of LAMEA AI In Mining Market by Technology
Chapter 15. Company Profiles
15.1 IBM Corporation
15.1.1 Company Overview
15.1.2 Financial Analysis
15.1.3 Regional & Segmental Analysis
15.1.4 Research & Development Expenses
15.1.5 Recent strategies and developments:
15.1.5.1 Acquisition and Mergers:
15.1.6 SWOT Analysis
15.2 Komatsu Ltd.
15.2.1 Company Overview
15.2.2 Financial Analysis
15.2.3 Segmental and Regional Analysis
15.2.4 Research & Development Expenses
15.2.5 Recent strategies and developments:
15.2.5.1 Acquisition and Mergers:
15.2.6 SWOT Analysis
15.3 Caterpillar, Inc.
15.3.1 Company Overview
15.3.2 Financial Analysis
15.3.3 Segmental and Regional Analysis
15.3.4 Research & Development Expense
15.3.5 SWOT Analysis
15.4 Sandvik AB
15.4.1 Company Overview
15.4.2 Financial Analysis
15.4.3 Segmental and Regional Analysis
15.4.4 Research & Development Expenses
15.4.5 Recent strategies and developments:
15.4.5.1 Acquisition and Mergers:
15.4.6 SWOT Analysis
15.5 SAP SE
15.5.1 Company Overview
15.5.2 Financial Analysis
15.5.3 Regional Analysis
15.5.4 Research & Development Expense
15.5.5 SWOT Analysis
15.6 Microsoft Corporation
15.6.1 Company Overview
15.6.2 Financial Analysis
15.6.3 Segmental and Regional Analysis
15.6.4 Research & Development Expenses
15.6.5 SWOT Analysis
15.7 Datarock Pty Ltd
15.7.1 Company Overview
15.7.2 Recent strategies and developments:
15.7.2.1 Partnerships, Collaborations, and Agreements:
15.8 Earth AI Inc.
15.8.1 Company Overview
15.9 BHP Group Limited
15.9.1 Company Overview
15.9.2 Financial Analysis
15.9.3 Segmental and Regional Analysis
15.9.4 Recent strategies and developments:
15.9.4.1 Partnerships, Collaborations, and Agreements:
15.9.5 SWOT Analysis
15.10. Rio Tinto PLC (Rio Tinto International Holdings Limited)
15.10.1 Company Overview
15.10.2 Financial Analysis
15.10.3 Segmental and Regional Analysis
15.10.4 Research & Development Expenses
15.10.5 SWOT Analysis
Chapter 16. Winning Imperatives of AI In Mining Market