¼¼°èÀÇ ÀÇ·á ºÐ¾ß ¿¬ÇÕ ÇнÀ ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® : Àü°³ ¸ðµåº°, ÃÖÁ¾ ¿ëµµº°, ¿ëµµº°, Áö¿ªº°, Àü¸Á°ú ¿¹Ãø(2025-2032³â)
Global Federated Learning In Healthcare Market Size, Share & Trends Analysis Report By Deployment Mode (On-Premise and Cloud-Based) By End Use, By Application, By Regional Outlook and Forecast, 2025 - 2032
»óǰÄÚµå : 1767814
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 332 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 4,992,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 5,990,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,387,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀÇ·á ºÐ¾ß ¿¬ÇÕ ÇнÀ ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ Áß¿¡ 15.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 877¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ °ü½ÉÀº ÀÇ·á ºÐ¾ß¿¡¼­ Ç×»ó Áß¿äÇϸç, ƯÈ÷ ȯÀÚ µ¥ÀÌÅÍ °øÀ¯¿¡ À־´Â ´õ¿í ±×·¯ÇÕ´Ï´Ù. ÇÁ¶óÀ̹ö½Ã º¸È£ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÀÇ·á ºÐ¾ß¿¡¼­ÀÇ ¿¬ÇÕÇнÀ µµÀÔÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ ¸Ó½Å·¯´×Àº µ¥ÀÌÅ͸¦ Áß¾Ó¿¡¼­ °ü¸®ÇØ¾ß ÇÏÁö¸¸, ¿¬ÇÕÇнÀÀº µ¥ÀÌÅ͸¦ ·ÎÄÿ¡ ¾ÈÀüÇÏ°Ô º¸°üÇϸ鼭 ºÐ»êµÈ µ¥ÀÌÅÍ ¼Ò½º¸¦ ÅëÇØ ¸ðµ¨À» ÈÆ·Ã½Ãų ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ȯÀÚ µ¥ÀÌÅÍ °øÀ¯¿¡¼­ ÇÁ¶óÀ̹ö½Ã º¸È£ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

Äڷγª19 »çÅ´ ÀÇ·á ºÐ¾ß ½ÃÀå ¼ºÀå¿¡ Å« ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹Í ±â°£ µ¿¾È Àü ¼¼°è ÀÇ·á ±â°üµéÀÌ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¤À» À§¹ÝÇÏÁö ¾Ê°í ¹Î°¨ÇÑ È¯ÀÚ µ¥ÀÌÅ͸¦ ¿¬°èÇÏ°í ºÐ¼®ÇØ¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹ÞÀ¸¸é¼­ °í±Þ ÇÁ¶óÀ̹ö½Ã º¸È£ ¸Ó½Å·¯´× ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ¿¬ÇÕÇнÀÀº ¿©·¯ ±â°ü¿¡ °ÉÄ£ AI ¸ðµ¨ÀÇ ºÐ»ê ÇнÀÀ» °¡´ÉÇÏ°Ô Çϰí, ȯÀÚÀÇ ¿ø½Ã µ¥ÀÌÅ͸¦ °øÀ¯ÇÏÁö ¾Ê¾Æµµ µÇ¹Ç·Î Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ¶°¿Ã¶ú½À´Ï´Ù. ÀÌó·³ Äڷγª19 ÆÒµ¥¹ÍÀº ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.

±×·¯³ª ½ÃÀå µµÀÔÀ» °¡·Î¸·´Â Å« ¿äÀÎ Áß Çϳª´Â ÇÊ¿äÇÑ ÀÎÇÁ¶ó¿Í ±â¼ú ±¸Ãà¿¡ µû¸¥ Ãʱâ ÅõÀÚ ¹× Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ºñ¿ëÀÌ ³ô´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÇ·á±â°ü, ƯÈ÷ ±Ô¸ð°¡ À۰ųª ÀÚ¿øÀÌ ÇÑÁ¤µÈ ÀÇ·á±â°üÀº Æä´õ·² ·¯´× ½Ã½ºÅÛ µµÀÔ¿¡ ¼Ò¿äµÇ´Â Ãʱ⠺ñ¿ëÀÌ ³Ê¹« ºñ½Î´Ù°í ´À³¥ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ Á¢±Ù¼ºÀÇ ºÒÆòµîÀº ÀÇ·á ºÐ¾ß¿¡¼­ Æä´õ·² ·¯´×ÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀ» ÀúÇØÇϰí, ȯÀÚ Ä¡·á¿Í ÀÇ·á ¹ßÀü¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¦ÇÑÀûÀ¸·Î ¸¸µé ¼ö ÀÖ½À´Ï´Ù.

Àü°³ ¸ðµåÀÇ Àü¸Á

¹èÆ÷ ¸ðµå¿¡ µû¶ó ½ÃÀåÀº On-Premise ¹× Ŭ¶ó¿ìµå ±â¹ÝÀ¸·Î ºÐ·ùµË´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®Àº 2024³â ½ÃÀå ¸ÅÃâÀÇ 47%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº È®À强, À¯¿¬¼º, ºñ¿ë È¿À²¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Æä´õ·¹ÀÌÆ¼µå ·¯´× ¼Ö·ç¼Ç µµÀÔ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µµÀÔÀ¸·Î ÀÇ·á Á¦°ø¾÷ü¿Í ¿¬±¸ÀÚµéÀº Áö¸®ÀûÀ¸·Î ¸Ö¸® ¶³¾îÁ® ÀÖ´Â ÀÇ·áÁø°ú ¿¬±¸ÀÚµéÀÌ ¼­·Î Çù·ÂÇÏ°í ºÐ»êµÈ µ¥ÀÌÅÍ ¼Ò½º¿¡ ¿øÈ°ÇÏ°Ô Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµ Àü¸Á

ÃÖÁ¾ ¿ëµµº°·Î ½ÃÀåÀº º´¿ø ¹× ÀÇ·á Á¦°ø¾÷ü, Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷, ¿¬±¸ ±â°ü, Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀ¸·Î ºÐ·ùµË´Ï´Ù. Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ ºÎ¹®Àº 2024³â ½ÃÀå ¼öÀÍÀÇ 31%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌµé ±â¾÷Àº °æÀï·Â ÀÖ´Â µ¥ÀÌÅÍÀÇ ±â¹Ð¼ºÀ» À¯ÁöÇϸ鼭 ¿¬±¸°³¹ßÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ¿¬ÇÕÇнÀÀ» µµÀÔÇÏ´Â »ç·Ê°¡ ´Ã°í ÀÖ½À´Ï´Ù. Æä´õ·¹ÀÌÆ¼µå ·¯´×Àº µ¶Á¡ µ¥ÀÌÅͳª ±â¹Ð µ¥ÀÌÅ͸¦ °øÀ¯ÇÏÁö ¾Ê°íµµ ¿©·¯ ¼Ò½ºÀÇ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ç¿ëÇÏ¿© Çù·ÂÀûÀÎ ¸ðµ¨ ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÀÀ¿ë Àü¸Á

¿ëµµº°·Î ½ÃÀåÀº ÀÇ·á ¿µ»ó, ½Å¾à °³¹ß, ÀüÀÚ °Ç°­ ±â·Ï(EHR) ºÐ¼®, ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ, ÀÓ»ó½ÃÇèÀ¸·Î ºÐ·ùµË´Ï´Ù. ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ ºÎ¹®Àº 2024³â ½ÃÀå Á¡À¯À²ÀÇ 14%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áö¼ÓÀûÀÎ °Ç°­ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ƯÈ÷ ¸¸¼º Áúȯ °ü¸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¬ÇÕ ÇнÀÀÇ µµÀÔÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü´Â ¿þ¾î·¯ºí ±â±â, ¸ð¹ÙÀÏ °Ç°­ ¾Û, ¿ø°Ý ¼¾¼­¿¡¼­ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ºÐ¼®Çϸ鼭 ȯÀÚ Á¤º¸ÀÇ ±â¹Ð¼º°ú ±¹¼Ò¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, LAMEA·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº 2024³â ½ÃÀåÀÇ 30%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼ºÀåÀº ÀÇ·á ºÎ¹®ÀÇ È®´ë, ÀÇ·á ±â·ÏÀÇ µðÁöÅÐÈ­ ¹ßÀü, AI ±â¹Ý ÀÇ·á ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¿½Ã¿¡ ÀÓ»ó ¿¬±¸ ¹× °³ÀÎ ¸ÂÃãÇü Ä¡·á¸¦ À§ÇÑ È¯ÀÚ µ¥ÀÌÅÍÀÇ È¿°úÀûÀΠȰ¿ëÀ» À§ÇØ Æä´õ·² ·¯´×À» Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå °³°ü

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® : ¼¼°è

Á¦5Àå ¼¼°è ½ÃÀå : Àü°³ ¸ðµåº°

Á¦6Àå ¼¼°è ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

Á¦7Àå ¼¼°è ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°è ½ÃÀå : Áö¿ªº°

Á¦9Àå ±â¾÷ °³¿ä

Á¦10Àå ÀÇ·á ºÐ¾ß ¿¬ÇÕ ÇнÀ ½ÃÀåÀ» À§ÇÑ ¼º°ø Çʼö Á¶°Ç

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Federated Learning In Healthcare Market size is expected to reach $87.77 billion by 2032, rising at a market growth of 15.5% CAGR during the forecast period.

The North America segment recorded 33% revenue share in the market in 2024. This leadership is primarily driven by the region's advanced healthcare infrastructure, strong presence of key technology providers, and high investment in AI and machine learning innovations. Federated learning has gained momentum across hospitals, research centers, and pharmaceutical companies in the U.S. and Canada due to its ability to enhance data collaboration while upholding stringent privacy standards like HIPAA.

The healthcare sector increasingly emphasizes preventive care and early disease detection to reduce the long-term burden on healthcare systems. Federated learning, an advanced machine learning technique that allows data to remain securely within its local environment, aligns perfectly with this shift toward preventive healthcare. In conclusion, as healthcare systems worldwide embrace preventive measures and early detection methods, federated learning will transform healthcare delivery into a more efficient and proactive system.

Additionally, Privacy concerns have always been critical in healthcare, particularly regarding patient data sharing. The increasing demand for privacy-preserving technologies has become a key driver for adopting federated learning in healthcare. Unlike traditional machine learning, which requires data to be centralized in one location, federated learning allows models to be trained across decentralized data sources while keeping the data local and secure. Thus, increasing demand for privacy-preserving technologies in patient data sharing drives the market's growth.

The outbreak of COVID-19 had a significant positive impact on the growth of the market in the healthcare sector. During the pandemic, the demand for advanced and privacy-preserving machine learning techniques surged, as healthcare organizations worldwide were under immense pressure to collaborate and analyze sensitive patient data without violating privacy regulations. Federated learning emerged as a crucial solution by enabling decentralized training of AI models across multiple institutions, eliminating the need to share raw patient data. Thus, the COVID-19 pandemic had a positive impact on the market.

However, One of the major restraints for adopting market is the high initial investment and ongoing maintenance costs associated with setting up the necessary infrastructure and technology. Healthcare organizations, especially those in smaller or resource-limited settings, may find the upfront costs of deploying federated learning systems prohibitive. Therefore, this uneven access could hinder the widespread implementation of federated learning in healthcare, limiting its impact on patient care and medical advancements.

Deployment Mode Outlook

On the basis of deployment mode, the market is classified into on-premise and cloud-based. The cloud-based segment recorded 47% revenue share in the market in 2024. This growth is driven by the increasing demand for scalability, flexibility, and cost-efficiency in deploying federated learning solutions. Cloud-based deployment enables healthcare providers and researchers to collaborate across geographies, facilitating seamless access to decentralized data sources.

End Use Outlook

By end use, the market is divided into hospitals & healthcare providers, pharmaceutical and biotechnology companies, research institutions, and government & regulatory bodies. The pharmaceutical and biotechnology companies segment garnered 31% revenue share in the market in 2024. These companies increasingly adopt federated learning to accelerate research and development while maintaining competitive data confidentiality. Federated learning allows for collaborative model training using datasets from multiple sources without sharing proprietary or sensitive data.

Application Outlook

Based on application, the market is characterized into medical imaging, drug discovery & development, electronic health records (EHR) analysis, remote patient monitoring, and clinical trials. The remote patient monitoring segment procured 14% revenue share in the market in 2024. The rising demand for continuous health monitoring solutions, especially in managing chronic conditions, has fuelled the adoption of federated learning. This technology allows healthcare providers to gather and analyze data from wearable devices, mobile health apps, and remote sensors while ensuring that patient information remains confidential and localized.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific segment witnessed 30% revenue share in the market in 2024. The region's growth is attributed to the expanding healthcare sector, increasing digitization of medical records, and rising investments in AI-based healthcare technologies. Countries such as China, India, Japan, and South Korea are actively embracing federated learning to address data privacy challenges while enabling effective use of patient data for clinical research and personalized treatment.

List of Key Companies Profiled

Global Federated Learning In Healthcare Market Report Segmentation

By Deployment Mode

By End Use

By Application

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Federated Learning In Healthcare Market by Deployment Mode

Chapter 6. Global Federated Learning In Healthcare Market by End Use

Chapter 7. Global Federated Learning In Healthcare Market by Application

Chapter 8. Global Federated Learning In Healthcare Market by Region

Chapter 9. Company Profiles

Chapter 10. Winning Imperatives of Federated Learning In Healthcare Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â